基于平板扫描器的新型原子力显微镜的研制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术已经成为世界科技发展的潮流,极大地推动了现代科学技术、工业生产及人类社会各个重要领域的进步。微纳米检测技术是纳米技术的一个重要方面,也是纳米技术发展的重要基础。随着科技的进步,微纳米检测技术不断有新的理论、新的方法和新的技术产生。扫描隧道显微镜(STM)和原子力显微镜(AFM)的出现是微纳米检测技术发展史的里程碑,是纳米技术发展的基础,是纳米科技工作者必不可少的研究工具。其中又以AFM需求更大,应用领域更为广泛。传统AFM因压电扫描器的横向(X或Y向)与纵向(Z向)存在交叉耦合误差,使得AFM在大范围扫描中,样品图像失真、扭曲,只能通过软件校正,这严重限制了AFM扫描范围的扩大。针对这种情况,本文提出了一种基于新的扫描器的新型AFM系统,较好的解决了交叉耦合误差问题。
     本文分别从理论方法、系统设计以及实验技术方面对该AFM系统进行了研究,主要研究内容和创新之处包括:
     1.在原理和设计方面,发展和优化了基于平板扫描器的原子力显微镜的新方法。这一方法的显著特色是用平板扫描器驱动样品扫描和用Z向反馈控制器驱动微悬臂上下作反馈运动,实现了XY平面扫描和Z向反馈的分离,消除了耦合误差,从而在设计方法上保证了AFM在大范围扫描上得到理想图像的性能。
     2.基于上述原理和新方法,独立研制了基于平板扫描器的原子力显微镜系统。首先,成功研制了基于平板扫描器的AFM探头,包括创新的平板扫描器,特有的Z向反馈控制器、粗调与微调进给机构。其次,自行设计了微悬臂偏转量的检测光路,研制了性能优良的平板扫描驱动电路,PSD前置放大电路,Z向反馈控制器的PID反馈电路,系统采用了高速度、高精度的A/D&D/A卡实现样品AFM图像数据读入和扫描控制信号的输出、转换。另外,独立研制了功能完善的平板扫描驱动控制软件和图像处理软件系统。
     3.在基于平板扫描器的AFM系统中,引入了CCD显微摄像监控系统,有效实现了对探针一样品间的进给过程及微探针扫描操作过程的实时监控;同时引入了XY微动平台,实现了该系统对任意区域的定位扫描以及基于序列图像扫描和图像拼接技术的大范围扫描的功能。
     4.对基于平板扫描器的AFM系统进行了误差分析并做出了优化措施,进一步提高和改善系统的性能。最后,进行了大量的实验测试工作,首先,将本文研制的基于平板扫描器的AFM系统和基于传统扫描器的AFM系统做了对比实验,其次对镀银薄膜、有机材料CuPc、锗量子点进行了扫描实验,对镀金膜的成膜过程进行了扫描成像研究。实验表明,基于平板扫描器的AFM具有大范围均匀扫描下良好的图像对比度和清晰度,具有应用的广泛性,扫描的稳定性和重复性。
Nano-technology has become the world trend of science and technology development, which has greatly promoted the advancement of modern science and technology, industrial production, human society and so on. Micro-nano detection technology is not only an important nano-technology, but also the basis of it. Along with the advancement of technology, it develops many new theories, new methods and new technologies about micro-nano detection technology. Scanning tunneling microscope (STM) and atomic force microscope (AFM) are not only the milestone of micro-nano detection technology development in the history, but also the basis for the development of nano-technology and essential research tools for nano-scientists and engineers. Compared to STM, AFM has been the more demanded and applied tools for researchers to pursue more ambitious goals. In the large scanning scale, because the piezoelectric scanner has cross-coupling error between direction X (or Y) and direction Z, the sample image detected by the traditional AFM is warped and distorted, which can only be corrected by software. The disadvantage of traditional AFM limits the increment of scanning area. In this situation, the paper proposes an AFM system based on new scanner, which solve the problem of cross-coupling error very well.
     In this project, I have worked on theoretical methods, systems design and experiment aspects of the AFM system, the main research work and innovation as follows:
     1. This thesis proposes a new method of AFM based on a plat scanner. The advantage of this method is using the plate scanner to scan the sample and using the feedback controller of direction Z to drive the up and down feedback movement of micro cantilever. The method realizes the separation of XY plane and direction Z, which removes the cross-coupling error. So the new method can ensure the performance of getting the ideal image by AFM system in wide range scanning.
     2. Based on the above principles and new methods, we have developed the AFM system based on the plat scanner, which has superior performances. Firstly, we developed the AFM probe based on the plat scanner successfully including the novel plat scanner, the unique Z-direction feedback controller and micro linear drive with the coarse-tuning and fine-tuning. Secondly, we designed the optical path of detection, developed the plate scanning drive circuit with excellent performances, the PSD pre-amplifier circuit and the PID feedback circuit of Z-direction feedback controller. We use the AD/DA cards with high-speed and high-precision to achieve the data's input and output and conversion of the control signals. In addition, the plat scanning drive controller and the image analysis software with good performances are developed independently.
     3. In the AFM system based on the plat scanner, firstly we introduced the CCD microscope and camera monitoring system, which help to realize real-time monitoring to the operation between the probe and the samples and the probe scanning effectively. Then, we build the micro-dynamic platform in XY directions, which help to realize the performances of good scan orientation to any region and a wild range scanning based the sequence image scanning and image mosaic technology.
     4. We give the error analysis of the AFM system based on plat scanner and present the optimization scheme, which is certified to further enhance and improve the system's performances. And we carry on a large number of experimental tests. Firstly, though some experimental results we contrast the AFM system based on the plat scanners to traditional scanners. We perform the scanning image experiments to the silver-plating film, the organic materials CuPc and the Ge quantum point. We also research the film process to gold-plating. The experiments show that the AFM system based on plat scanner has many advantages of good image contrast and definition even in a large scanning range, and has a universal application with good scanning stability and repeatability.
引文
[1]白春礼.纳米科学与技术.昆明:云南科技出版社,1995
    [2]Richard P.Feynman,"There's Plenty of Room at the Bottom",was first presented as an address at the annual meeting of the American Physical Society,held at the California Institute of Technology on December 26,1959.Feynman's talk was first published in Engineering,Feb.1960:22-36
    [3]袁哲俊.纳米科学与技术.哈尔滨:哈尔滨工业大学出版社,2005
    [4]黄得欢.纳米技术与应用.上海:中国纺织大学出版社,200l
    [5]蔡萍.微纳米检测技术的研究进展.上海计量测试,2002,29(6):4-7
    [6]Phillip D.Szuromi.The Nanotechnician's Baedeker.Materials Science,2000,288(5471):1596
    [7]朱宜,张存.电子显微镜的原理和使用.北京:北京大学出版社,1983
    [8]Gan S Y.Characteristics and development of conventional scanning electron microscope.Analytical Instrumentation,2000(1):51-53
    [9]姚骏恩.电子显微镜的现状与展望.电子显微学报,1998,17(6):767-776
    [10]M.Haider,J.Zach.Resolution improvement of electron microscope by means of corrector to compensate for axial aberrations.Electron Microscopy,1998(1):53-54
    [11]管汀鹭.电子显微术.上海:知识出版社,1982
    [12]W.H.Han,S.M.lindsay and T.W.Jing.Appl.Phys.Lett.1996(69):4111
    [13]J.Tersoff,D.R.Hamann.Theory of the Scanning Tunneling Microscope.Physical Review B,1985,31(2):805-813
    [14]白春礼.扫描隧道显微术及其应用.上海:上海科学技术出版社,1992
    [15]G.Binnig,H.Rohrer,Ch.Gerber and E.Weibel.Surface studies by scanning tunneling microscopy.Physical Rebiew Letters,1982,49(1):57-61
    [16]G.Binnig and H.Rohrer.Scanning tunneling microscopy -from birth to adolescence.Reviews of Modern Physics,1987,59(3):615-625
    [17]H.Heinzelmann,E.Meyer,D.Brodbeck,G.Overney and H.J.Guntherodt,Z.Phys.1992,B88:321
    [18]H.Kawakatsu,H.Kougami.Crstalline lattice for metroiogical applications and positioning control by a dual tunneling unit scanning tunneling microscope.Vac Sci Techno 1,1996, B14(1):11-17
    [19]F.F.Abrahan,I.P.Batra and S.Ciraci.Phys.Re.Lett,1988(88):1314
    [20]G.Binnig,C.F.Quate.Atomic force microscopy.Phys.Rev.Lett,1986,56(5):930-935
    [21]G.Meyer,N.M.Amer.Novel optical approach to atomic force microscopy.Appl.Phys.Lett.,1988,53(12):1045-1047
    [22]张冬仙,章海军,李博,黄峰.新型原子力显微镜的研制及其应用.光子学报,2002,31(1):50-54
    [23]Zhang H J,Lin X F,Zhang D X.A novel atomic force microscopy operating in liquid for in-situ investigation of electrochemical preparation of porous alumina.Microscope Research & Technique,2005,66(2-3):126-131
    [24]J.H.Hob and P.K.Hansma.Atomic force microscopy for high-resolution imaging in cell biology.Trends in Cell Biology,1992,2(7):208-213
    [25]D.Baselt.The tip-sample interaction in atomic force microscopy and its implications for biological applications.Ph..D.thesis,California Institute of Technology,1993
    [26]朱吉牧,章海军,张冬仙.AFM在纳米结构加工中的应用研究.激光与红外,2003,33(4):283-286
    [1]朱杰,孙润广.原子力显微镜的基本原理及其方法学研究.生命科学仪器,2005,3(1):22-26
    [2]张亦奕等.原子力显微镜.光学学报,1995,15(1):112-116
    [3]G.Binnig,C.F.Quate.Atomic force microscopy.Phys.Rev.Lett.,1986,56(5):930-935
    [4]黄得欢.纳米技术与应用.上海:中国纺织大学出版社,2001
    [5]张冬仙,章海军,李博,黄峰.新型原子力显微镜的研制及其应用.光子学报,2002,31(1):50-54
    [6]田中哲郎等.压电陶瓷材料.北京:科学出版社,1982:10-32
    [7]张传忠.压电陶瓷的应用和发展.压电与声光,1993,15(3):64-74
    [8]B.Jaffe,W.R.Cook and H.Jaffe.Piezoelectric Ceramics.Academic Press,London and New York.1971:136-137
    [9]张涛,孙立宁.压电陶瓷基本特性研究.光学精密工程,1998,6(5):26-32
    [10]孙立宁,张涛等.压电/电致伸缩陶瓷模型归一化的研究.哈尔滨工业大学学报,1998,30(5):4-7
    [11]施洋,章海军.新型大扫描范围原子力显微镜的研究.光电工程,2004,31(6):30-33
    [12]D.Guyomar,N.Aurelle and L.Eyraud.Piezoelectric ceramics nonlinear behavior:application to langevin transduce.Journal de Physique,1997,7(6):1197-1208
    [13]G.Ping,J.Musa.Modeling hysteresis in piezoceramic actuators.Precision Engineering,1995,17(3):211-221
    [14]H.W.Jung,J.Y.Shim and D.G.Gweon.Enhancement of AFM image by Compensating the hysteresis and creep effect within PZT.SPIE.1999,37(40):327-330
    [15]于海峰,刘超,张冬仙.基于平板扫描器的新型AFM系统.光学仪器,2007,29(4):62-65
    [1]贾宝贤,李文卓.微纳米科学技术导论.北京:化学工业出版社,2007
    [2]张冬仙,章海军,李博,黄峰.新型原子力显微镜的研制及其应用.光子学报,2002,31(1):50-54
    [3]张福学.现代压电学.北京:科学出版社,2002
    [4]于海峰,刘超,张冬仙.基于平板扫描器的新型AFM系统.光学仪器,2007,29(4):62-65
    [5]曲远方.功能陶瓷材料.北京:化学工业出版社,2003
    [6]袁哲俊.纳米科学与技术.哈尔滨:哈尔滨工业大学出版社,2005
    [7]王庆有等.光电技术.北京:电子工业出版社,2005:70-74
    [8]陶永华.新型PID控制及其应用.北京:机械工业出版社,2002
    [9]林晓峰,章海军,张冬仙.双成像单元原子力显微镜及其在大范围纳米计量中的应用.仪器仪表学报,2005,26(10):991-993
    [1]施洋,章海军.新型大扫描范围原子力显微镜的研究.光电工程,2004,31(6):30-33
    [2]袁哲俊.纳米科学与技术.哈尔滨:哈尔滨工业大学出版社,2005
    [3]于海峰,刘超,张冬仙.基于平板扫描器的新型AFM系统.光学仪器,2007,29(4):62-65
    [4]张冬仙,章海军.原子力显微镜的压电陶瓷非线性及图像畸变的校正.光子学报,2002,31(10):51-54
    [5]H.W.Jung,J.Y.Shim and D.G.Gweon.Enhancement of AFM image by Compensating the hysteresis and creep effect within PZT.SPIE.1999,37(40):327-330
    [6]张涛,孙立宁.压电陶瓷基本特性研究.光学精密工程,1998,6(5):26-32
    [7]张冬仙,章海军,李博,黄峰.新型原子力显微镜的研制及其应用.光子学报,2002,31(1):50-54
    [1]于海峰,刘超,张冬仙.基于平极扫描器的新型AFM系统.光学仪器,2007,29(4):62-65
    [2]张冬仙,章海军,林晓峰,何玉琳.多孔氧化铝薄膜的纳米结构和光谱特性研究.光谱学与光谱分析,2006,26(3):411-413
    [3]王力峰.衍射光栅技术进展.光机电信息,1998,15(1):23-25
    [4]顾培夫.薄膜技术.杭州:浙江大学出版社,1990:93-102
    [5]陈启英,顾冬红,干福熹.酞菁铜薄膜的折射率及吸收特性.光学学报,1995,15(12):1717-1720
    [6]秦捷,蒋最敏,王讯.自组织生长锗硅量子点及其特性.物理,1998,27(6):365-368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700