过表达Ack1通过Crk信号通路促进肝细胞癌侵袭转移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(HCC)是全球最为常见的恶性肿瘤之一,2002年全球HCC新发病例数为62.6万,而年死亡人数达59.8万,死亡人数与发病人数比接近1:1,预后相当恶劣。中国每年HCC死亡病例数占全球总数的55%,HCC死亡率已达20.37/10万,居国内恶性肿瘤死亡率第二位。综合分析究其原因,其中HCC的高侵袭转移能力是导致其不良预后的关键原因之一。深入探讨HCC侵袭转移的分子机制,阐明在侵袭转移中起关键作用的基因,有助于发现新的HCC预后标志物和研制新的有效的抗HCC药物。我们在先前的临床实践中发现孤立性大肝癌(SLHCC)较结节性肝癌(NHCC)有着明显较低的侵袭转移潜能和较好的预后。在这个非常有意义的临床发现的基础上,我们以SLHCC为切入点对HCC侵袭转移潜能的内在分子机制进行了一系列研究。我们采用了基因芯片的技术分析了在SLHCC和NHCC存在显著差异表达的基因,发现Ackl (Activated Cdc42-associated tyrosine kinase 1)在NHCC中的表达水平较SLHCC显著升高,提示其可能为一个与HCC侵袭转移相关的基因。
     Ack1基因定位于人染色体3q29,其编码蛋白大小约120KD,主要定位于细胞胞浆,其分子结构包括一个激酶区、一个SH3区、一个Cdc42/Rac结合区和一个富含脯氨酸的羧基端。Ack1蛋白属于酪氨酸激酶家族,最早作为Cdc42下游的作用蛋白被发现。已有的研究表明,Ack1作为Cdc42下游的效应器参与了多条信号通路,在细胞增殖、运动和侵袭中发挥重要作用。尽管如此,Ack1在恶性肿瘤中作用还远未阐明,其与肿瘤患者的预后关系及肿瘤的临床病理特征的关系尚不清楚,且其在HCC中的作用尚未有研究涉及。基于此,我们在本研究中通过体内和体外两个水平,运用质粒转染、小RNA干扰和裸鼠成瘤等实验方法,对Ack1在HCC侵袭转移中的作用,以及其可能的分子机制进行了一系列研究,主要结果如下:
     1.我们运用real-time RT-PCR及Western blot方法在检测了38例手术切除的新鲜HCC和相应的邻近非瘤肝组织(ANLT)以及5例正常肝组织(NL)中Ack1 mRNA和蛋白的表达水平。结果显示Ack1 mRNA和蛋白均在HCC中明显高表达(P<0.05)。免疫组化法检测了131例HCC石蜡切片中Ack1蛋白的表达强度。结果显示Ack1在85.5%(112/131)的HCC中表达,根据免疫组化的结果将此131例HCC分为Ack1高表达组和Ack1低表达组并比较两组患者的预后,结果显示Ack1高表达组患者的术后无瘤生存率(P<0.05)和总生存率(P<0.01)皆明显短于Ack1低表达组。进一步将Ack1蛋白表达水平纳入单因素和多因素Cox比例风险回归模型分析。结果显示Ack1的高表达是HCC患者预后的独立危险因素(RR,1.758;P=0.029)。继而我们又进一步分析了Ack1表达水平与HCC不同临床病理特征之间的关系,结果显示Ack1的表达水平与肿瘤结节数目、细胞分化程度以及有无静脉浸润等与HCC侵袭性生长相关的临床病理特征密切相关(P<0.05),并且在NHCC中Ack1的表达明显高于SLHCC。提示Ack1的高表达与HCC的侵袭转移密切相关,并可能因此而导致了HCC患者的不良预后。
     2. RT-PCR及Western blot方法检测Ackl mRNA和蛋白在HepG2、MHCC97-L和HCCLM3这3种侵袭转移潜能依次递增的HCC细胞系中的表达水平,并以常氏肝细胞系CCL13作为对照。结果显示Ack1 mRNA和蛋白在3种HCC细胞系中的表达皆显著高于CCL13 (P<0.01),且其表达水平在HepG2、MHCC97-L和HCCLM3细胞中依次升高(任意两者比较,P<0.05),提示Ack1的高表达与HCC细胞的侵袭转移潜能密切相关。
     3.为了寻找Ack1参与HCC的生长和侵袭转移的直接证据,我们接下来采用体内实验进行了验证。我们选取了侵袭转移潜能相对较低的MHCC97-L细胞,利用质粒转染的方法获得了过表达Ack1的MHCC97-L细胞系MHCC97-LAck1,以转染空载体的MHCC97-L细胞系MHCC97-LVector作为对照,并建立了MHCC97-L裸鼠原位HCC生长转移模型,以此观察过表达Ack1对HCC生长和转移的作用。结果显示MHCC97-LAck1组裸鼠所形成的肝脏原位种植瘤的平均体积较MHCC97-LVector组裸鼠明显增大(P<0.05),且有着更高肝内转移率(P<0.05)和肺转移率(P<0.01),提示上调Ack1的表达促进了HCC在体内的生长和转移。
     4.为进一步深入研究Ack1在HCC中的作用,解释我们在体内实验观察到的Ack1对HCC生长和转移的作用。我们随后进行了一系列体外细胞学实验,从细胞的层面来观察上调Ack1对HCC细胞恶性生物学行为的作用。生长曲线和平板克隆形成实验的结果显示MHCC97-LAckl细胞较MHCC97-LVector细胞的增殖能力显著增强,生长速度显著加快(P<0.05);划痕愈合实验的结果显示MHCC97-LAck1细胞较MHCC97-LVector细胞迁移能力显著增强(P<0.01);基质胶侵袭实验显示MHCC97-LAck1细胞较MHCC97-LVector细胞的侵袭能力亦显著增强(P<0.01)。进一步行细胞骨架(F-actin)荧光染色发现显示过表达Ack1以后,MHCC97-L细胞的肌动蛋白细胞骨架发生明显形变。这些结果提示上调Ack1能够增强HCC细胞的恶性表型,促进HCC细胞生长增殖、运动和侵袭能力,从而促进HCC的生长和转移。
     5.接下来我们进一步研究试图弄清楚Ack1通过何种分子机制促进HCC细胞的恶性生物学行为。鉴于已有的研究证实Crk在肿瘤运动侵袭中发挥着重要作用,并且Crk参与了Ack1的同源蛋白Ack2诱导的细胞运动。因此我们推测Crk亦可能参与了Ack1在HCC中的信号通路。我们首先检测了MHCC97-L细胞中Crk的表达水平,以常肝细胞系CCL13作为对照,结果显示Crk在MHCC97-L细胞中存在明显的表达上调,提示Crk可能在HCC的发生和/或发展发挥了一定的作用。接下来我们用免疫共沉淀的方法证明了在MHCC97-L中Ack1与Crk存在相互作用。随后我们利用小RNA干扰的方法阻断Crk的表达,再重复前面所进行的一系列体内和体外实验,以观察阻断Crk对Ack1诱导的HCC细胞增殖、运动、侵袭和转移的影响。体内和体外的实验显示阻断Crk对Ack1诱导增强的HCC生长和增殖并无显著影响(P>0.05);而对Ack1诱导增强的HCC运动、侵袭和转移能力皆有明显抑制作用(P<0.05),且进一步研究发现在Crk被阻断的情况下,过表达Ack1不能再对HCC的运动、侵袭和转移产生显著的促进作用(P>0.05),提示Crk参与了Ack1诱导的HCC运动、侵袭和转移的信号通路。
     通过以上的研究,我们发现了Ack1在HCC中表达上调并且在HCC的侵袭转移中发挥了重要作用。我们还首次证实了Ack1的高表达与肿瘤患者的不良预后以及侵袭转移相关的临床病理特征密切相关;并且首次证实了过表达Ack1通过Crk信号通路实现促进肝细胞癌的侵袭转移。我们的研究提示,Ack1可作为一个新的HCC预后标志物和潜在的侵袭转移干预靶点。
Hepatocellular carcinoma (HCC), one of the most common malignancies in China and worldwide, has a very high mortality and poor prognosis. The poor prognosis of HCC is mainly due to its high potential of invasion and metastasis. Clarifying the molecular mechanisms underlying the invasion and metastasis of HCC and find "key genes" in this process will help to better understand the progression of HCC and therefore provide potent prognostic biomarkers and molecular targets for developing effective drugs against HCC. But until now, the invasion and metastasis process of HCC is still not fully understood and need more investigation to give us more detailed information. During our long-term clinical practice, we have previously identified a specific subtype of hepatocellular carcinoma, which we categorized as solitary large hepatocellular carcinoma (SLHCC, one nodule, and diameter>5 cm), had a lower tumor recurrence and metastasis rate and a better outcome compared with nodular hepatocellular carcinoma (NHCC, nodule number≥2, and diameter>5 cm). Based on this interesting clinical finding, we have previously carried out a series of studies on the mechanisms underlying the invasiveness and metastasis of HCC. By using cDNA microarray analysis to identify differentially expressed genes between SLHCC and NHCC, we found a number of genes which were significantly up-regulated in NHCC as compared with SLHCC, including Ackl.
     Ackl (activated Cdc42-associated tyrosine kinase 1), a downstream tyrosine kinase of Cdc42, have being found to be a key transducer in several cancer-related signaling pathway such as integrins, EGF, PDGF pathways and so on, and played an important role in cell proliferation, migration and invasion. Although previous studies have provided us some information about the role of Ack1 in malignant tumors, its role and detailed mechanism in cancers are still far from clear, its correlations with prognosis and clinicopathological characteristics of cancer patients have never been revealed, and its role in HCC has not been investigated. Therefore, we carried out the present study to investigate the expression of Ack1 in HCC and its correlations with prognosis and clinicopathological characteristics of HCC, as well as the role of Ack1 in the growth and metastasis of HCC and the possible underlying molecular mechanism. By using plasmid transfection and RNA interference, as well as a series of in vitro and in vivo assays, we got the following results.
     1. Real-time RT-PCR and Western blot were employed to examined Ack1 mRNA and protein expressions in 38 HCCs and their corresponding adjacent non-tumorous liver tissues (ANLTs), as well as in 5 normal liver tissues (NLs). The results showed that both mRNA and protein levels of Ack1 were significantly increased in HCCs than in ANLTs and NLs (P<0.05). Next, we used immunohistochemistry (IHC) to detect Ack1 expression in the paraffin sections of 131 cases of HCC and observed Ack1 protein was expressed in 85.5%(112/131) of all HCCs. Based on the results of IHC, we divided these 131 HCC patients into two subgroups:Ack1 high expression group and Ack1 low expression group, and then studied the prognosis of the two groups of patients. Our results showed HCC patients of the Ack1 high expression group had both a shorter disease-free survival (P<0.05) and a shorter overall survival (P<0.01) than those of the Ack1 low expression group. By univariate and multivariate Cox regression analysis, high Ack1 expression was found to be an independent prognostic factor for overall survival (RR,1.758; P<0.05). In further analysis of correlations of Ack1 with clinicopathological characteristics, we found overexpression of Ack1 in HCCs was significantly related with several aggressive clinicopathological characteristics, including multiple nodules, high Edmondson-Stainer grade, and with vein invasion (P<0.05).
     2. We further examined Ack1 mRNA and protein expressions in three HCC cell lines:HepG2, MHCC97-L and HCCLM3, using the Chang's liver cell line CCL13 as a control. By RT-PCR and Western blot, we found all three HCC cell lines exhibited elevated Ackl mRNA and protein levels (P<0.01), and the expression levels in the three cell lines increased with the rising of metastatic potentiality of the cell lines, which were the highest in HCCLM3, followed by MHCC97-L (P<0.001) and HepG2 (P<0.05), indicating Ackl expression may be correlated with metastatic potential of HCC.
     3. To further verify the role of Ackl in HCC, we forcibly overexpressed Ackl into MHCC97-L cell line, which has a relative low metastatic potential, by transfecting with Ack1-expressing plasmids pCMV-Tag2B-Ack1, and used the empty vector pCMV-Tag2B as a control. After G418 selection, we got the Ackl overexpressed cell line MHCC97-LAckl and the control cell line MHCC97-LVector. By establishing mice orthotopic hepatocellular carcinoma growth and metastasis models, we observed that compared with mice implanted with MHCC97-LVector cells, those implanted with MHCC97-LAck1 cells have a significantly larger average volume of in situ liver tumors (P<0.05), as well as significantly higher incidences of intrahepatic metastasis (P<0.05) and pulmonary metastasis (P<0.01). The results based on the mice models indicated Ackl promotes tumor growth and metastasis.
     4. To explain our findings from in vivo nude mice models and further elucidate how Ackl promotes the tumor growth and metastasis of HCC, we then observed the role of Ackl in malignant biological behaviors of HCC cells by employing a series of in vitro assays. Results of growth assay and plate colony formation assay showed overexpression Ackl in MHCC97-L cells significantly enhanced cell proliferation (P<0.05) and speeded up cell growth (P<0.05). Wound-healing assay and matrigel-invasion assay demonstrated MHCC97-LAck1 cells exhibited a significantly higher motility and invasive ability compared with MHCC97-LVector cells (P<0.01). By immunofluorescence stain of cytoskeleton (F-actin), we observed overexpression of Ackl induced significant cytoskeleton reorganization and morphological change of MHCC97-L cells.
     5. To further investigate the underlying molecular mechanism in Ack1-enhanced HCC growth and metastasis, we investigated the possible downstream protein of Ackl in MHCC97-L. We focused on Crk, an adaptor protein which has crucial functions in the signaling pathways regulating cell proliferation and migration by acting as an adaptor to link tyrosine kinases and its effectors. More importantly, Crk has been previously shown to be involved in the signaling pathway in cell motility enhanced by Ack2, which is a homolog of Ack1. By RT-PCR and Western blot, we firstly observed Crk was overexpressed in HCC cell line MHCC97-L compared with Chang's liver cell line CCL13. We then confirmed the interaction between Ackl and Crk in MHCC97-L cells by using co-immunoprecipitation assay. Next, we silenced the expression of Crk in MHCC97-L cells by RNA interference, and then investigated the influence of Crk-silencing on Ack1-induced HCC growth, invasion and metastasis, by repeating the in vitro and in vivo assays as we had employed earlier. The results showed silencing of Crk did not cause significant alteration in Ack1-promoted HCC cell proliferation or growth in vitro (P>0.05), or HCC tumor formation in vivo (P>0.05). But more interestingly, we observed that silencing of Crk significantly reversed Ack1-enhanced HCC cell migration and invasion in vitro (P<0.05), as well as reduced incidence of intrahepatic and pulmonary metastasis of HCC in vivo (P<0.05). And when Crk being silenced, overexpression of Ack1 failed to induce significant enhancement neither in cell migration or invasion in vitro (P>0.05), nor in incidence of intrahepatic or pulmonary metastasis in vivo (P>0.05), as compared with control cells. These results indicated Crk was required in Ack1-induced HCC invasion and metastasis but not growth and proliferation.
     In conclusion, our results have demonstrated Ack1 was overexpressed in HCC and played an important role in invasion and metastasis of HCC. We also have shown for the first time that high Ack1 expression closely correlated with poor prognosis and aggressive clinicopathological characteristics of HCC. Furthermore, we have identified for the first time that Crk was involved in Ack1-driven invasion and metastasis of HCC. Taken together, our findings suggest Ack1 as a novel prognostic marker and a potential therapeutic target for treatment of HCC.
引文
1. Ikai I, Itai Y, Okita K, Omata M, Kojiro M, Kobayashi K, Nakanuma Y, Futagawa S, Makuuchi M, Yamaoka Y. Report of the 15th follow-up survey of primary liver cancer. Hepatol Res 2004;28:21-9.
    2. El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132:2557-76.
    3. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA Cancer J Clin 2005;55:74-108.
    4. 张思维,李连弟.中国1990-1992年原发性肝癌死亡调查分析.中华肿瘤杂志1999;21:245-9.
    5. Makuuchi M, Imamura H, Sugawara Y, Takayama T. Progress in surgical treatment of hepatocellular carcinoma. Oncology 2002;62:74-81.
    6. Poon R, Fan S, Lo C, Ng I, Liu C, Lam C, Wong J. Improving survival results after resection of hepatocellular carcinoma:a prospective study of 377 patients over 10 years. Ann Surg 2001;234:63-70.
    7. Poon R, Fan S, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg 2000;232:10-24.
    8. Poon RT, Fan ST, Ng IO, Lo CM, Liu CL, Wong J. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer 2000;89:500-7.
    9. 杨连粤,黄耿文.大肝癌的外科治疗策略.临床外科杂志2001;9:4-5.
    10. Yang LY, Fang F, Ou DP, Wu W, Zeng ZJ, Wu F. Solitary Large Hepatocellular Carcinoma A Specific Subtype of Hepatocellular Carcinoma With Good Outcome After Hepatic Resection. Ann Surg 2009;249:118-23.
    11. Huang GW, Yang LY. Metallothionein expression in hepatocellular carcinoma. World J Gastroenterol 2002;8:650-3.
    12. Wang W, Wu F, Fang F, Tao YM, Yang LY. Inhibition of Invasion and Metastasis of Hepatocellular Carcinoma Cells via Targeting RhoC In vitro and In vivo. Clin Cancer Res 2008;14:6804-12.
    13. Yang LY, Tao YM, Ou DP, Wang W, Chang ZG, Wu F. Increased expression of Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 correlated with poor prognosis of hepatocellular carcinoma. Clin Cancer Res 2006;12:5673-9.
    14. Ou DP, Tao YM, Chang ZG, Tang FQ, Yang LY. Hepatocellular carcinoma cells containing hepatitis B virus X protein have enhanced invasive potential conditionally. Dig Liver Dis 2006;38:262-7.
    15. Ou DP, Tao YM, Tang FQ, Yang LY. The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. Int J Cancer 2007;120:1208-14.
    16. Wang W, Yang LY, Huang GW, Lu WQ, Yang ZL, Yang JQ, Liu HL. Genomic analysis reveals RhoC as a potential marker in hepatocellular carcinoma with poor prognosis. Br J Cancer 2004;90:2349-55.
    17. Wang W, Yang LY, Yang ZL, Huang GW, Lu WQ. Expression and significance of RhoC gene in hepatocellular carcinoma. World J Gastroenterol 2003;9:1950-3.
    18. Wang W, Yang LY, Yang ZL, Peng JX, Yang JQ. Elevated expression of autocrine motility factor receptor correlates with overexpression of RhoC and indicates poor prognosis in hepatocellular carcinoma. Dig Dis Sci 2007;52:770-5.
    19. Yang L, Wang W, Peng J, Yang J, Huang G. Differentially expressed genes between solitary large hepatocellular carcinoma and nodular hepatocellular carcinoma. World J Gastroenterol 2004;10:3569-73.
    20. Chang ZG, Yang LY, Wang W, Peng JX, Huang GW, Tao YM, Ding X. Determination of high mobility group al (HMGA1) expression in hepatocellular carcinoma:A potential prognostic marker. Dig Dis Sci 2005;50:1764-70.
    21. Yang LY, Lu WQ, Huang GW, Wang W. Correlation between CD 105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma. BMC Cancer 2006;6:110.
    22. Ye Q, Qin L, Forgues M, He P, Kim J, Peng A, Simon R, Li Y, Robles A, Chen Y. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 2003;9:416-23.
    23. Yang JM, Peng ZH, Si SH, Liu WW, Luo YH, Ye ZY. KAI1 gene suppresses invasion and metastasis of hepatocellular carcinoma MHCC97-H cells in vitro and in animal models. Liver Int 2008;28:132-9.
    24. Ching Y, Leong V, Lee M, Xu H, Jin D, Ng I. P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res 2007;67:3601-8.
    25. Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008;48:2047-63.
    26. van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, Rong MQ, Li SY, See LH, Nguyen KQC, Hoey T, Wesche H, Powers S. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci U S A 2005;102:15901-6.
    27. Bourdoulous S, Orend G, MacKenna DA, Pasqualini R, Ruoslahti E. Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. J Cell Biol 1998;143:267-76.
    28. Manser E, Leung T, Salihuddin H, Tan L, Lim L. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21 cdc42. Nature 1993;363:364-7.
    29. Linseman DA, Heidenreich KA, Fisher SK. Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway. J Biol Chem 2001;276:5622-8.
    30. Galisteo ML, Yang Y, Urena J, Schlessinger J. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci U S A 2006;103:9796-801.
    31. Yang W, Cerione RA. Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain. J Biol Chem 1997;272:24819-24.
    32. Yang WN, Lin Q, Guan JL, Cerione RA. Activation of the Cdc42-associated tyrosine kinase-2 (ACK-2) by cell adhesion via integrin betal. J Biol Chem 1999;274:8524-30.
    33. Teo M, Tan L, Lim L, Manser E. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem 2001;276:18392-8.
    34. Satoh T, Kato J, Nishida K, Kaziro Y. Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett 1996;386:230-4.
    35. Worby CA, Simonson-Leff N, Clemens JC, Huddler D, Jr., Muda M, Dixon JE. Drosophila Ack targets its substrate, the sorting nexin DSH3PX1, to a protein complex involved in axonal guidance. J Biol Chem 2002;277:9422-8.
    36. Yokoyama N, Miller WT. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1-Substrate specificity, autophosphorylation, and interaction with Hck. J Biol Chem 2003;278:47713-23.
    37. Oda T, Muramatsu M, Isogai T, Masuho Y, Asano S, Yamashita T. HSH2:A novel SH2 domain-containing adapter protein involved in tyrosine kinase signaling in hematopoietic cells. Biochem Biophys Res Commun 2001;288:1078-86.
    38. Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T. Epidermal growth factor stimulation of the ACK1/Db1 pathway in a Cdc42 and Grb2-dependent manner. Biochem Biophys Res Commun 2001;284:470-7.
    39. Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, Lim L, Manser E, Furcht LT, Iida J. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130(cas). Nat Cell Biol 1999;1:507-13.
    40. Wang L, Shui Zhu J, Quan Song M, Qiang Chen G, Lian Chen J. Comparison of gene expression profiles between primary tumor and metastatic lesions in gastric cancer patients using laser microdissection and cDNA microarray. World J Gastroenterol 2006; 12:6949-54.
    41. MacKeigan JP, Murphy LO, Blenis J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 2005;7:591-600.
    42. Nur-E-Kamal A, Zhang AL, Keenan SM, Wang XI, Seraj J, Satoh T, Meiners S, Welsh WJ. Requirement of activated Cdc42-associated kinase for survival of v-Ras-transformed mammalian cells. Mol Cancer Res 2005;3:297-305.
    43. Mahajan NP, Whang YE, Mohler JL, Earp HS. Activated tyrosine kinase Ackl promotes prostate tumorigenesis:Role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 2005;65:10514-23.
    44. Edmondson HA, Steiner PE. Primary carcinoma of the liver:a study of 100 cases among 48,900 necropsies. Cancer 1954;7:462-503.
    45. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001;25:402-8.
    46. Shimizu M, Saitoh Y, Itoh H. Immunohistochemical staining of Ha-ras oncogene product in normal, benign, and malignant human pancreatic tissues. Hum Pathol 1990;21:607-12.
    47. Assoian R, Nagashima K, Endo A, Ogita H, Kawana A, Yamagishi A, Kitabatake A, Matsuda M, Mochizuki N. Adaptor protein Crk is required for ephrin-B1-induced membrane ruffling and focal complex assembly of human aortic endothelial cells. Mol Biol Cell 2002; 13:4231-42.
    48. Patterson MK, Jr. Measurement of growth and viability of cells in culture. Methods Enzymol 1979;58:141-52.
    49. Li WC, Ye SL, Sun RX, Liu YK, Tang ZY, Kim Y, Karras JG, Zhang H. Inhibition of growth and metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting signal transducer and activator of transcription 3. Clin Cancer Res 2006;12:7140-8.
    50. Coon M, Herrera R. Modulation of HeLa cells spreading by the non-receptor tyrosine kinase ACK-2. J Cell Biochem 2002;84:655-65.
    51. Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, Ogura K, Tanaka S, Inagaki F. Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nat Struct Mol Biol 2007;14:503-10.
    52. 张思维,李连弟.中国1990-1992年原发性肝癌死亡调查分析.中华肿瘤杂志1999:21:245-249.
    53. Nagasue N, Uchida M, Makino Y, Takemoto Y, Yamanoi A, Hayashi T, Chang YC, Kohno H, Nakamura T, Yukaya H. Incidence and factors associated with intrahepatic recurrence following resection of hepatocellular carcinoma. Gastroenterology 1993; 105:488-94.
    54. Yamamoto J, Kosuge T, Takayama T, Shimada K, Yamasaki S, Ozaki H, Yamaguchi N, Makuuchi M. Recurrence of hepatocellular carcinoma after surgery. Br J Surg 1996;83:1219-22.
    55. Poon RT, Fan ST, Lo CM, Liu CL, Wong J. Intrahepatic recurrence after curative resection of hepatocellular carcinoma:long-term results of treatment and prognostic factors. Ann Surg 1999;229:216-22.
    56. Sawyers CL. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes Dev 2003;17:2998-3010.
    57. Noble MEM, Endicott JA, Johnson LN. Protein kinase inhibitors:Insights into drug design from structure. Science 2004;303:1800-5.
    58. Traxler P. Tyrosine kinases as targets in cancer therapy-successes and failures. Expert Opin Ther Targets 2003;7:215-34.
    59. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi
    L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-90.
    60. Phillips JM, Goodman JI. Identification of genes that may play critical roles in phenobarbital (PB)-induced liver tumorigenesis due to altered DNA methylation. Toxicol Sci 2008;104:86-99.
    61. Vucic EA, Brown CJ, Lam WL. Epigenetics of cancer progression. Pharmacogenomics 2008;9:215-34.
    62. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science 1977;197:893-5.
    63. Poste G, Fidler IJ. The pathogenesis of cancer metastasis. Nature 1980;283:139-46.
    64. Israeli 0, Gotlieb WH, Friedman E, Korach J, Goldman B, Zeltser A, Ben-Baruch G, Rienstein S, Aviram-Goldring A. Genomic analyses of primary and metastatic serous epithelial ovarian cancer. Cancer Genet Cytogenet 2004; 154:16-21.
    65. Patmore HS, Ashman JN, Cawkwell L, MacDonald A, Stafford ND, Greenman J. Can a genetic signature for metastatic head and neck squamous cell carcinoma be characterised by comparative genomic hybridisation? Br J Cancer 2004;90:1976-82.
    66. Tomimaru Y, Sasaki Y, Yamada T, Eguchi H, Takami K, Ohigashi H, Higashiyama M, Ishikawa O, Kodama K, Imaoka S. The significance of surgical resection for pulmonary metastasis from hepatocellular carcinoma. Am J Surg 2006; 192:46-51.
    67. Woodhouse E, Chuaqui R, Liotta L. General mechanisms of metastasis. Cancer 1997;80:1529-37.
    68. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2:563-72.
    69. Linghu H, Tsuda M, Makino Y, Sakai M, Watanabe T, Ichihara S, Sawa H, Nagashima K, Mochizuki N, Tanaka S. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene 2006;25:3547-56.
    70. Nishihara H, Tanaka S, Tsuda M, Oikawa S, Maeda M, Shimizu M, Shinomiya H, Tanigami A, Sawa H, Nagashima K. Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers. Cancer Lett 2002;180:55-61.
    71. Beer D, Kardia S, Huang C, Giordano T, Levin A, Misek D, Lin L, Chen G, Gharib T, Thomas D. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002;8:816-24.
    72. Miller CT, Chen G, Gharib TG, Wang H, Thomas DG, Misek DE, Giordano TJ, Yee J, Orringer MB, Hanash SM, Beer DG. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 2003;22:7950-7.
    73. Takino T, Nakada M, Miyamori H, Yamashita J, Yamada KM, Sato H. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res 2003;63:2335-7.
    74. Watanabe T, Tsuda M, Makino Y, Ichihara S, Sawa H, Minami A, Mochizuki N, Nagashima K, Tanaka S. Adaptor molecule Crk is required for sustained phosphorylation of Grb2-associated binder 1 and hepatocyte growth factor-induced cell motility of human synovial sarcoma cell lines. Mol Cancer Res 2006;4:499-510.
    75. Tanaka S, Ouchi T, Hanafusa H. Downstream of Crk adaptor signaling pathway:activation of Jun kinase by v-Crk through the guanine nucleotide exchange protein C3G. Proc Natl Acad Sci U S A 1997;94:2356-61.
    76. Tanaka S, Hattori S, Kurata T, Nagashima K, Fukui Y, Nakamura S, Matsuda M. Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC 12 cells. Mol Cell Biol 1993; 13:4409-15.
    77. Feller SM. Crk family adaptors-signalling complex formation and biological roles. Oncogene 2001;20:6348-71.
    78. Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, Matsuda M. Activation of Racl by a Crk SH3-binding protein, DOCK180. Genes Dev 1998;12:3331-6.
    79. Park SW, Ludes-Meyers J, Zimonjic DB, Durkin ME, Popescu NC, Aldaz CM. Frequent downregulation and loss of WWOX gene expression in human hepatocellular carcinoma. Br J Cancer 2004;91:753-9.
    80. Bednarek A, Keck-Waggoner C, Daniel R, Laflin K, Bergsagel P, Kiguchi K, Brenner A, Aldaz C. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 2001;61:8068-73.
    81. Paige A, Taylor K, Taylor C, Hillier S, Farrington S, Scott D, Porteous D, Smyth J, Gabra H, Watson J. WWOX:a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci U S A 2001;98:11417-22.
    82. Aqeilan RI, Croce CM. WWOX in biological control and tumorigenesis. J Cell Physiol 2007;212:307-10.
    83. Aderca I, Moser CD, Veerasamy M, Bani-Hani AH, Bonilla-Guerrero R, Ahmed K, Shire A, Cazanave SC, Montoya DP, Mettler TA, Burgart LJ, Nagorney DM, Thibodeau SN, Cunningham JM, Lai JP, Roberts LR. The JNK inhibitor SP600129 enhances apoptosis of HCC cells induced by the tumor suppressor WWOX. J Hepatol 2008;49:373-83.
    84. Aqeilan R, Trapasso F, Hussain S, Costinean S, Marshall D, Pekarsky Y, Hagan J, Zanesi N, Kaou M, Stein G. Targeted deletion of Wwox reveals a tumor suppressor function. Proc Natl Acad Sci U S A 2007; 104:3949-54.
    1. Skorski T. Oncogenic tyrosine kinases and the DNA-damage response. Nat Rev Cancer 2002;2:351-60.
    2. Bardelli A, Parsons DW, Silliman N, Ptak J, Szabo S, Saha S, Markowitz S, Willson JK, Parmigiani G, Kinzler KW, Vogelstein B, Velculescu VE. Mutational analysis of the tyrosine kinome in colorectal cancers. Science 2003;300:949.
    3. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases:targets for cancer therapy. Nat Rev Cancer 2004;4:361-70.
    4. Sawyers CL. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes Dev 2003;17:2998-3010.
    5. Noble MEM, Endicott JA, Johnson LN. Protein kinase inhibitors:Insights into drug design from structure. Science 2004;303:1800-5.
    6. Traxler P. Tyrosine kinases as targets in cancer therapy-successes and failures. Expert Opin Ther Targets 2003;7:215-34.
    7. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-90.
    8. Manser E, Leung T, Salihuddin H, Tan L, Lim L. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21 cdc42. Nature 1993;363:364-7.
    9. Yang W, Cerione RA. Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain. J Biol Chem 1997;272:24819-24.
    10. Yokoyama N, Miller WT. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1-Substrate specificity, autophosphorylation, and interaction with Hck. J Biol Chem 2003;278:47713-23.
    11. Galisteo ML, Yang Y, Urena J, Schlessinger J. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci U S A 2006;103:9796-801.
    12. Ahmed I, Calle Y, Sayed MA, Kamal JM, Rengaswamy P, Manser E, Meiners S, Nur-E-Kamal A. Cdc42-dependent nuclear translocation of non-receptor tyrosine kinase, ACK. Biochem Biophys Res Commun 2004;314:571-9.
    13. Yamaga M, Fujii M, Kamata H, Hirata H, Yagisawa H. Phospholipase C-deltal contains a functional nuclear export signal sequence. J Biol Chem 1999;274:28537-41.
    14. Shen F, Lin Q, Gu Y, Childress C, Yang WN. Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol Biol Cell 2007;18:732-42.
    15. Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, Lim L, Manser E, Furcht LT, Iida J. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130(cas). Nat Cell Biol 1999;1:507-13.
    16. Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T. Epidermal growth factor stimulation of the ACKl/Dbl pathway in a Cdc42 and Grb2-dependent manner. Biochem Biophys Res Commun 2001;284:470-7.
    17. Teo M, Tan L, Lim L, Manser E. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem 2001;276:18392-8.
    18. Satoh T, Kato J, Nishida K, Kaziro Y. Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett 1996;386:230-4.
    19. Yeow-Fong L, Lim L, Manser E. SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1. FEBS Lett 2005;579:5040-48.
    20. Worby CA, Simonson-Leff N, Clemens JC, Huddler D, Jr., Muda M, Dixon JE. Drosophila Ack targets its substrate, the sorting nexin DSH3PX1, to a protein complex involved in axonal guidance. J Biol Chem 2002;277:9422-8.
    21. Oda T, Muramatsu M, Isogai T, Masuho Y, Asano S, Yamashita T. HSH2:A novel SH2 domain-containing adapter protein involved in tyrosine kinase signaling in hematopoietic cells. Biochem Biophys Res Commun 2001;288:1078-86.
    22. Yokoyama N, Lougheed J, Miller WT. Phosphorylation of WASP by the Cdc42-associated kinase ACK1-Dual hydroxyamino acid specificity in a tyrosine kinase. J Biol Chem 2005;280:42219-26.
    23. Yang WN, Lin Q, Guan JL, Cerione RA. Activation of the Cdc42-associated tyrosine kinase-2 (ACK-2) by cell adhesion via integrin betal. J Biol Chem 1999;274:8524-30.
    24. Linseman DA, Heidenreich KA, Fisher SK. Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway. J Biol Chem 2001;276:5622-8.
    25. Mahajan NP, Whang YE, Mohler JL, Earp HS. Activated tyrosine kinase Ackl promotes prostate tumorigenesis:Role of Ackl in polyubiquitination of tumor suppressor Wwox. Cancer Res 2005;65:10514-23.
    26. La Torre A, del Rio JA, Soriano E, Urena JM. Expression pattern of ACK1 tyrosine kinase during brain development in the mouse. Gene Expr Patterns 2006;6:886-92.
    27. Grovdal LM, Johannessen LE, Rodland MS, Madshus IH, Stang E. Dysregulation of Ackl inhibits down-regulation of the EGF receptor. Exp Cell Res 2008;314:1292-300.
    28. Eley L, Moochhala SH, Simms R, Hildebrandt F, Sayer JA. Nephrocystin-1 interacts directly with Ack1 and is expressed in human collecting duct. Biochem Biophys Res Commun 2008;371:877-82.
    29. van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, Rong MQ, Li SY, See LH, Nguyen KQC, Hoey T, Wesche H, Powers S. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci U S A 2005;102:15901-6.
    30. Wang L, Shui Zhu J, Quan Song M, Qiang Chen G, Lian Chen J. Comparison of gene expression profiles between primary tumor and metastatic lesions in gastric cancer patients using laser microdissection and cDNA microarray. World J Gastroenterol 2006;12:6949-54.
    31. Vucic EA, Brown CJ, Lam WL. Epigenetics of cancer progression. Pharmacogenomics 2008;9:215-34.
    32. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57-70.
    33. MacKeigan JP, Murphy LO, Blenis J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 2005;7:591-600.
    34. Nur-E-Kamal A, Zhang AL, Keenan SM, Wang XI, Seraj J, Satoh T, Meiners S, Welsh WJ. Requirement of activated Cdc42-associated kinase for survival of v-Ras-transformed mammalian cells. Mol Cancer Res 2005;3:297-305.
    35. Park SW, Ludes-Meyers J, Zimonjic DB, Durkin ME, Popescu NC, Aldaz CM. Frequent downregulation and loss of WWOX gene expression in human hepatocellular carcinoma. Br J Cancer 2004;91:753-9.
    36. Paige A, Taylor K, Taylor C, Hillier S, Farrington S, Scott D, Porteous D, Smyth J, Gabra H, Watson J. WWOX:a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci U S A 2001;98:11417-22.
    37. Bednarek A, Keck-Waggoner C, Daniel R, Laflin K, Bergsagel P, Kiguchi K, Brenner A, Aldaz C. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 2001;61:8068-73.
    38. Aqeilan R, Trapasso F, Hussain S, Costinean S, Marshall D, Pekarsky Y, Hagan J, Zanesi N, Kaou M, Stein G. Targeted deletion of Wwox reveals a tumor suppressor function. Proc Natl Acad Sci U S A 2007; 104:3949-54.
    39. Aqeilan RI, Croce CM. WWOX in biological control and tumorigenesis. J Cell Physiol 2007;212:307-10.
    40. Woodhouse E, Chuaqui R, Liotta L. General mechanisms of metastasis. Cancer 1997;80:1529-37.
    41. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2:563-72.
    42. Gronowski A, Bertics P. Modulation of epidermal growth factor receptor interaction with the detergent-insoluble cytoskeleton and its effects on receptor tyrosine kinase activity. Endocrinology 1995; 136:2198-205.
    43. Navolanic P, Steelman L, McCubrey J. EGFR family signaling and its association with breast cancer development and resistance to chemotherapy. Int J Oncol 2003;22:237-52.
    44. Price JT, Tiganis T, Agarwal A, Djakiew D, Thompson EW. Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3'-kinase and phospholipase C-dependent mechanism. Cancer Res 1999;59:5475-8.
    45. Howlin J, Rosenkvist J, Andersson T. TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells. Breast Cancer Res 2008;10:R36.
    46. Modzelewska K, Newman LP, Desai R, Keely PJ. Ackl mediates Cdc42-dependent cell migration and signaling to p130Cas. J Biol Chem 2006;281:37527-35.
    47. Lin Z, Han Y, Wu B. Altered cytoskeleton structures in transformed cells exhibiting obviously metastatic capabilities. Cell Res 1990;2:141.
    48. Nobes C, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995;81:53-62.
    49. Tapon N, Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 1997;9:86-92.
    50. Yamazaki D, Kurisu S, Takenawa T. Regulation of cancer cell motility through actin reorganization. Cancer Sci 2005;96:379-86.
    51. Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. BBA-Molecular Cell Research 2007; 1773:642-52.
    52. Condeelis J, Singer RH, Segall JE. The great escape:When cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 2005;21:695-718.
    53. Hay ED. The extracellular matrix in development and regeneration. An interview with Elizabeth D. Hay. Int J Dev Biol 2004;48:687-94.
    54. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2:442-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700