猪肉中沙门氏菌的分离鉴定及PCR快速检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙门氏菌是重要的病原菌,国内外食源性食品安全事故中,有很大一部分是由沙门氏菌引起的,所以对沙门氏菌的检测具有重要意义。本研究以沙门氏菌为出发菌株,验证肠杆菌科噬菌体的特异性及其在选择性增菌过程中消除非沙门氏菌的作用,分离、鉴定沙门氏菌,分析猪肉中肠杆菌科各属的分布;此外,根据沙门氏菌属特异基因FimY设计引物,检验该引物的特异性和在沙门氏菌属内的广谱性,优化普通PCR和Real-time PCR反应条件,建立快速、简便的沙门氏菌检测方法。通过研究得出以下结论:
     (1)肠杆菌科噬菌体对其宿主具有很强的专嗜性,选择性增菌过程中加入噬菌体能够有效地消除肠杆菌科中非沙门氏菌的影响;同时,肠杆菌科噬菌体也可用于检测沙门氏菌及其他肠杆菌科细菌;
     (2)肠杆菌科各属在猪肉中均有分布,来自市场的猪肉样品肠杆菌检出率低于来自小型屠宰场的猪肉样品;
     (3)根据沙门氏菌属特异基因FimY设计的引物在沙门氏菌属内具有广谱性,能够检测出不同血清型的沙门氏菌;同时该引物也具有很高的特异性,大肠杆菌等非沙门氏菌不能检出。
     (4)iQ5 PCR仪扩增鼠伤寒沙门氏菌DNA的最佳退火温度为57℃,引物最佳浓度约为0.4-1.0nmol/mL。在以上参数条件下可以得到良好的PCR产物溶解曲线,梯度稀释的DNA扩增曲线的CT值与初始DNA浓度相关性很高;
     本研究所用的肠杆菌科噬菌体有很强的特异性,可以用于选择性增菌,消除特定的非目标宿主菌,也可用于食品生产加工过程,消除和控制特定的细菌,保障食品质量。
     本研究建立的沙门氏菌PCR检测方法快速、准确,具有很高的特异性,可用于肉类及其制品沙门氏菌的快速检测和质量控制,也可用于食品安全事故中快速溯源。所获得的Real-time PCR的较优参数,可以作为其他微生物Real-time PCR检测时的方法学参考。
Salmonella is an important pathogen, which is a leading course of a great part of food safety accidents happened worldwide. So it is of great significance to detect salmonella. In this research, specificity of Enterobacteriaceae bacteriophages is detected to estimate the effect of bacteriophages to eliminate some non-salmonella species in the enrichment step is tested, and distribution of Enterobacteriaceae within pork is analyzed. At the same time, Primers are devised according to salmonella genus-specific gene FimY to detect salmonella, specificity and wide-adaptability of the primers are confirmed, and parameters for general PCR and Real-time PCR are optimized to develop a quick, handy detection method for salmonella. Conclusions from this research are as follows:
     (1) Enterobacteriaceae bacteriophages are of high specificity to their host bacteria, and they can eliminate certain non-salmonella if applied in the enrichment step. Enterobacteriaceae bacteriophages can be used to detect salmonella and other Enterobacteriaceae.
     (2)Each Genera of Enterobacteriaceae can be detected in pork samples; detection rate of Enterobacteriaceae within pork samples from markets is higher than that from tiny slaughters.
     (3) A pair of primers devised according to salmonella FimY gene can be used to detect different salmonella serovars, which indicates that the primers are wide-adaptable within salmonella genus. This pair of primers is also of high specificity; non-salmonella bacteria, E.coli et al are not detectable when using these primers.
     (4) Optimal annealing temperature is 57℃when using iQ5 PCR instrument to amplify S.typhimurium DNA, with optimal primer concentration at 0.4-1.0nmol/mL. With the parameters above, melting curve of PCR product if of good quality, and amplification curves of fold-dilution S .typhimurium DNA are highly correlated.
     Enterobacteriaceae bacteriophages used in this study have high specificity, and can be used in selective enrichment to eliminate non-target host bacteria. These bacteriophages can also be used in food processing to control bacteria contamination, ensuring food quality.
     The PCR method established in this research is fast, accurate and specific to detect salmonella. This method can be used in detection of salmonella and quality control in meat or meat products, and it can also be applied for tracing salmonella contamination in food safety accidents. The Real-time PCR parameters to detect salmonella obtained in this study can be a reference for other microorganisms.
引文
[1] Le Minor, GenusⅢ. Salmonella, in Noel R. Kringand John G. Holt Ed Berge’s manual of systematic bacteriology[M]. Volume 1,Willams & Wilkines, Balyimore/London, 1994,427-458.
    [2]贾爱卿.猪沙门氏菌的临床分离鉴定及耐药性消除研究[D].武汉:华中农业大学,2006.
    [3] Henrik Chart, Henry R, Smith, Bernard Rowe. Antigenic cross-reactions between fimbriae expressed by Salmonella enteritidis, S. dublin and an 18 kDa outer membrane associated protein expressed by Escherichia coli O126: H27[J]. FEMS Microbiology Letters, 1994, 121(1): 19-23.
    [4] Kakoli Mitra, Daoguo Zhou, Jorge E. Galan. Biophysical characterization of SipA, anactin-binding protein from Salmonella enterica[J]. FEBS Letters, 2000, 482: 81-84.
    [5]张河战.沙门氏菌的分类、命名及中国沙门氏菌菌型分布[J].微生物学免疫学进展. 2002, 30(2): 74-76.
    [6] B White. Further studies of the group[M]. Med. Res. Salmonella Counc Spec Rep Ser1926, 103: 3-160.
    [7] F Kauffmann. The bacteriology of Enterobacteriaceae [J]. Munksagaard, Copenhagen. 1966
    [8] E K Borman, C A Stuart, and K Wheller. Taxonomy of the family of Enterobacteriaceae[J]. Bacterial 1944, 48:351-357.
    [9] F Kauffmann. The species definition in the Enterobacteriaceae[M]. Int Bull Bacterial Nomencl Taxon1961, 11: 5-6.
    [10] J H Crosa, D H Brenner, W H Ewing. Molecular relationship among the Salmonella[J]. J Bacteriol 1973, 115: 307-315
    [11] LeMinor, M Veron and M Popoff. Taxonomic des Salmonella[J]. Ann Microbiol Paris 1982, 133B: 223-243.
    [12] M A Fank, L Manton, C E Mary, B Aroon, C Thongchai, S H Rene and C W Henrik. Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries. J. Antimicrob. Chemother., 2003, 52: 715-718
    [13] M Y Popoff, J Bockemuhl, F W Brenner. Supplement 2001 no. 44 to the Kauffmann-Whitescheme[J]. Res Microbiol, 2001, 152 10: 907-909
    [14]陆承平.兽医微生物学[M].北京:中国农业出版社, 2001
    [15]曾晓芳.畜产品中沙门氏菌污染的检测与控制[J].四川畜牧兽医,2003, (30)4: 28-29.
    [16]邢涛.家畜常见的沙门氏菌[J].养殖与饲料,2009, 1: 20-21.
    [17]焦新安,徐卫平,曹平军等.沙门氏菌鞭毛蛋白共同抗原的诊断价值探讨[J].扬州大学学报自然科学版, 1998, 11 :1-4.
    [18]焦新安,刘秀梵.沙门氏菌分类学进展[J].国外医学微生物学分册, 1999, 22 (1): 28-30.
    [19].刘佩红,屠益平,徐锋等.沙门氏菌检测技术研究进展[J].上海畜牧兽医通讯, 2005, 6: 2-3.
    [20]刘振湘.白鹭鼠伤寒沙门氏菌的分离与鉴定[J ].特产研究, 2007,1 :56-57.
    [21]李树民,李铁征,冯书章.沙门氏菌的研究进展.中国微生物学会兽医微生物专业委员会2003年学术年会, 53-58
    [22].邓雨修,李春梅,常孝勇等.猪瘟病毒、猪圆环病毒2型与猪伤寒沙门氏菌混合感染的诊治[J ].四川畜牧兽医,2008,7:29-30.
    [23] N Botteldoom, L Herman, N Rijpens. Phenotypic and molecular typing of Salmonella strains revealsdifferent contamination sources in two commercial pig slaughterhouses. Appl. Environ Microbiol.. 2004. 70: 5305-5314.
    [24]潘荞,邓治邦.仔猪副伤寒沙门菌致病性及耐药机制研究进展[J].动物医学进展,2009,30(2): 93-97
    [25]徐引弟,郭爱珍,陈焕春.猪霍乱沙门氏菌病的特征及防治[J ].畜牧市场,2008 9,36-38.
    [26]祁广仪,田原.马沙门氏菌病的诊断及防治[J].当代畜牧, 2006, 7: 18-19.
    [27]吴萍萍,潘玲,毛火云等.种鸡鸡白痢血清学调查[J].中国畜牧兽医,2008, 35 (12):132-133.
    [28] J Stan Bailey, J J Maurer. Salmonella species. In: Doyle M P, Beuchat L R, Montville T J Eds. Food Microbiology, Fundamentals and Frontiers[M]. ASM Press, Washington, 2001. 141-178.
    [29] L J V aura, Piddock, G W David, Q Karl. Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium[J]. Antimicrob. Agents. Chemother., 2000, 44(11): 3118-3121
    [30]刘中富.宜昌市40年细菌性食物中毒分析与控制的探[J].中国卫生监督杂志,2002, 1: 44-46.
    [31]王茂起,冉陆,王竹天.2001年中国食源性致病菌及其耐药性主动监测研究[J].卫生研究,2004, 33(1): 49-54.
    [32] P Y Cheung, C W Chan, W Wong. Evaluation of two real-time polymerase chain reaction pathogen detection kits for Salmonella spp. in food. Lett. Appl. Microbial., 2004, 39: 509-515.
    [33] T Humphrey. Salmonella, stress responses and food safety. Nat. Rev. Microbial, 2004, 2: 504-509.
    [34]李志培.食品安全需要快速检测技术[J].食品安全与检测,2003,7:59-59.
    [35]刘秀梅.食源性疾病监控技术的研究[J].中国食品卫生杂志,2004,16:3-9.
    [36] Erik Eriksson,Anna Aspan. Comparison of culture, ELISA and PCR techniques for salmonella detection in fecal samples for cattle, pig and poultry[J]. BMC Veterinary Research 2007, 3: 21.
    [37]张艳红,杜元钊,吴延功.肠炎沙门氏菌快速检测方法的建立[J].中国动物检疫,2002,19(7):25-28.
    [38] L P MANSFIELD,S J FORSYTHE. The detection of Salmonella serovars from animal feed and raw chicken using a combined immunomagnetic separation and ELISA method[J]. Food Microbiology,2001,18(4): 361-366.
    [39]孙洋,王云翔,柳增善.吖啶橙免疫荧光菌团培养法对沙门氏菌的快速检测[J].吉林畜牧兽医,1994, 6: 14-16.
    [40]刘佩红,屠益平,徐锋等.沙门氏菌检测技术研究进展[J].上海畜牧兽医通讯,2005,6:2-4.
    [41] O M Cloak, G Duffy, J J Sheridan. Development of a surface adhesion immunofluorescent technique for the rapid detection of Salmonella spp from meat and poultry[J]. Journal of Applied Microbiology, 1999, 4:583-590.
    [42]申浩俊.沙门氏菌快速诊断新的荧光方法[J].国外医学—临床生物化学与检验学分册, 1997, 3: 12.
    [43]黄玲,孟冬丽.利用mini-VIDAS和GB方法检测食品中沙门氏菌的比较试验[J].新疆师范大学学报自然科学版,2003,22(1): 50-52.
    [44]陶军,张树宏,吴仲梁.“自动荧光酶标免疫测试仪”与常规培养法对冻禽肉中沙门氏菌的检测效果的比较[J].现代科学仪器,2001, 3: 50-52.
    [45] J L Epler, A Jennifer. Young, A A Hardigree, T K Rao, M R Guerin, I B Rubin. Analytical and biological analyses of test materials from the synthetic fuel technologies I. Mutagenicity of crude oils determined by the Salmonella typhimurium microsomal activation system[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1978, 57(3): 265-276.
    [46] Anonymous. Bacteriophage Therapy[J]. The Biotech Journal, 2003, 2(3): 12-14.
    [47]何晓青,胡小鸿,王丽艳. 14个省市区鼠伤寒沙门氏菌噬菌体型的动态分析[J].中国公共卫生学报,1998, 17(3): 179-181.
    [48]潘若男,魏旭兰,罗明.我国部分省市区鼠伤寒沙门菌的质粒谱分型及其分布[J].中华预防医学杂志, 1998, 32(4): 214-218.
    [49]何晓青,王丽艳,胡小鸿.鼠伤寒沙门氏菌噬菌体型的相变异[J].微生物学报,1998, 39(1): 75-79.
    [50]张碧波,秦贞奎,侯艳梅.应用噬菌体快速检测沙门氏菌[J]. 1994,11(1): 13-14.
    [51] Kazuhiko Miyanaga, Tomonori Hijikata, Chiaki Furukawa. Detection of Escherichia coli in the sewage infuent by fuorescent labeled T4 phage[J]. Biochemical Engineering Journal, 2006, 29:119-124.
    [52] Ramji S.Lakshmanan, Rajesh Guntupalli, Jing Hu. Phage immobilized magnetoelastic sensor for the Detection of Salmonella typhimurium[J]. Journal of Microbiological Methods, 2007, 71: 55-60.
    [53] J Chen, M W Griffths, Salmonella detection in eggs using Lux Bacteriophages[J]. Journal of Food Protection, 1996, 59: 508-514.
    [54] M J Loessner, C E D Rees, G S A B Stewart, S Scherer. Construction o fluciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells[J]. Applied and Environmental Microbiology, 1996, 62: 2961-2965.
    [55] M J Loessner, M Rudolf & S Scherer. Evaluation of luciferase reporter bacteriophage A511::luxAB for detection of Listeria monocytogenes in contaminated foods. Applied and Environmental Microbiology, 1997, 63: 2961-2965.
    [56] F Pagotto, L Brovko & M W Griffiths. Phage-mediated detection of Staphylococcus aureus and Escherichia coli O157:H7 using bioluminescence, bacteriological quality of raw milk[J]. IDF Special Issue, 1996, 9601: 152-156.
    [57] Mark T Muldoon, George Teaney, Jingkun Li. Bacteriophage-Based Enrichment Coupled to Immunochromatographic Striped-Based Detection for the Determination of Salmonella in Meat and Poultry[J]. Journal of Food Protection, 2007, 70(10): 2235-2242.
    [58] J H Miller. Experiments in molecular genetics[M]. Cold Spring Harbor Laboratory Press, 1972, p433.
    [59]刘华伟,郭蔼光,马立农. PCR技术在沙门氏菌快速检测中的应用[J].动物医学进展, 2004, 25(6): 55-58.
    [60] N D Cohen,H L Neibergs, E D Mc Gruder. Genus-specific detection of Salmonellae using the polymerase chain reaction[J]. J Vet Diagn Invest, 1993, 5(3): 368-371.
    [61]章新生,臧富妍.应用PCR技术检测沙门氏菌[J].中国兽医学报,1999,19(2): 147-151.
    [62] K Rahn, S A De Grandis, Clarke R C. Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella[J]. Mol Cell Probes, 1992, 6(4): 271-279.
    [63] Stone G G, Oberst R D & Hays M P. Detection of Salmonella serovars from clinical samples by enrichment broth cultivation-PCR procedure[J]. Clin Microbiol, 1994, 32(7): 1472-1479.
    [64]卢强,陈贵连,林万明.应用PCR-ECL技术检测食品中的沙门氏菌[J].中国公共卫生, 1995, 11(4): 189.
    [65] Guo Xuan, Chen Jinru, L R Beuchat. PCR Dectection of Salmonella enterica serotype Montevideo in and on raw tomatoes using primes derived from hilA[J]. Appl Environ Microbiol, 2000, 66(12): 5248-5252.
    [66] H J Cohen, S M Mechanda, W Lin. PCR amplification of the fimA gene sequence of Salmonella typhimurium, a specific method for detection of Salmonella spp[J]. Applied and Envivomenntal Microbiology, 1996, 62(12): 4303-4308.
    [67] D D Jones, R Law, A K Bej. Detection of Salmonella spp. In contaminated oysters using polymerase chain reaction and gene probes[J]. J Food Sci,1993, 58(6): 1191-1197.
    [68] J Mahon, A J Lax. A quantitative polymerase chain reaction method for the detection in avian faeces of Salmonella scarrying the spvR gene[J]. E pidemoil Infect, 1993, 111(3): 455-464.
    [69] John M C Luk, K Urirat, R R Peter. Selective amplification of abequose and paratose synthase genes rfb by polymerase chain reaction fo ridentification of Salmonella major serovars( A, B, C2 and D)[J]. Clin Microbiol, 1993, 31(8): 2118-2123.
    [70] M A Echeita, M A Usera. Rapid identification of Salmonella spp. phase2 antigens of the H1 antigenic complex using“multiplex-PCR”[J]. Res Microbiol, 1998, 149: 757 -761.
    [71] M A Echeita, S Herrera, J Garaizar. Multiplex PCR-based detection and identification of the most common Salmonella second-phase flagellar antigens[J]. Res Micriobiol, 2002, 153: 107-113.
    [72] M Griffiths, C Larkin, C T Yamashiro, R Behari, C Paszko-Kolva, K Rahn,and S A De Grandis. The evaluation of fluorogenic polymerase chain reaction assay for the detection of Salmonella species in food commodities[J]. Food Microbiol, 1997, 35: 239-250.
    [73] J Hoorfar, P Ahrens. Automated 5’nuclease PCR assay for identification of Salmonella enterica[J]. Clin. Microbiol. 2000, 38: 3429-3435.
    [74] B Kimura, S Kawasaki, T Fujii, J Kusunoki, T Itoh, and S J Flood. Evaluation of Taq Man PCR assay for detecting Salmonella in raw meat and shrimp[J]. Food Prot, 1999, 62: 329-335.
    [75] R Knutsson, H Grage, J Hoorfar. Modeling of 5’nuclease real-time responses for optimization of a high-throughput enrichment PCR procedure for Salmonella enterica[J]. Clin. Mi-crobiol, 2002, 40: 52-60.
    [76] P B Kurowski, J L Traub-Dargatz, P S Morley, and C R Gentry-Weeks. Detection of Salmonella spp. in fecal specimens by use of real-time polymerase chain reaction assay. Am[J]. Vet.Res, 2002, 63: 1265-1268.
    [77] Burkhard Malorny, Elisa Paccassoni, Patrick Fach. Diagnostic Real-Time PCR for Detection of Salmonella in Food[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70(12): 7046-7052.
    [78] Luke T Daum, William J Barnes, James C Mc Avin. Real-Time PCR Detection of Salmonella in Suspect Foods from a Gastroenteritis Outbreak in Kerr County, Texas[J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2002, 40(8): 3050-3052.
    [79] Petra F G Wolffs, Kari Glencross, Mansel W. Griffiths. Simultaneous quantification of pathogenic Campylobacter and Salmonella in chicken rinse fluid by a flotation and real-time multiplex PCR procedure[J]. International Journal of Food Microbiology, 2007, 117: 50-54.
    [80]张丽生,孙旭,徐艳丽.应用肠杆菌科诊断噬菌体快速诊断志贺氏菌[J].安徽预防医学杂志,1999,5(4): 404-406.
    [81] R Schuch, D Nelson, V A Fischetti. A Bacteriolytic agent that Detects and Kills Bacillus anthracis. Nature 2002, 6900: 884-889.
    [82] Steven Hagens, Martin J Loessner. Application of bacteriophages for detection and control of foodborn epathogens. Appl Microbiol Biotechnol 2007, 76: 513-519.
    [83] N Figueroa-Bossi, S Uzzau, D Maloriol, L Bossi. Variable assortment of prophages provide satrans ferable repertoire of pathogenic determinantsin Salmonella. Mol Microbiol 2001, 39: 260-271.
    [84] W C Fuqua, S C Winans, E P Greenberg. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Bacteriol, 1994, 176: 269-275.
    [85] S K Anand, Mansel W Griffiths. Quorum sensing and expression of virulence in Escherichia coli O157:H7 [J]. International Journal of Food Microbiology, 2003 (85): 1-9.
    [86] K S Yeh, T H Chen, C W Liao, C S Chang, H C Lo. PCR amplification of the Salmonella typhimurium fimY gene sequence to detect the Salmonella species [J]. International Journal of Food Microbiology 2002, 78: 227– 234.
    [87]邵碧英,陈彬,汤敏英.沙门氏菌DNA提取及PCR反应条件的优化[J].食品科学,2007, 28(7): 331-334.
    [88]何水渊,罗学辉. 134株沙门氏菌噬菌体裂解试验[J].浙江预防医学,2000, 12(7)64-64.
    [89]陈宏.基因工程原理与应用[M].中国农业出版社,2004
    [90]邓捷,庄广伦,彭文林,等.应用荧光PCR技术检测单细胞β地中海贫血基因[J].中山大学学报(医学科学版),2004,25(2): 131-134.
    [91]马万山,吴镇,李田.单细胞PCR用于HLA分型的研究[J].临床检验杂志,2008,26(1): 40-41.
    [92] Charlotta Lofstrom, Rickard Knutsson. Rapid and Specific Detection of Salmonella spp. in Animal Feed Samples by PCR after Culture Enrichment [J]. Applied and Environmental Microbiology, 2004, 70(1): 69-75.
    [93] C Tirado, K Schimidt. WHO surveillance programme for control of foodborne infections and intoxications: results and trends across greater Europe[J]. Infect, 2001, 43: 80-84.
    [94] A Bangtrakulnonth, S Pornruangwong, M Kusum. Prevalence of Salmonella in humans during1988-1993. Southeast Asian[J]. Trop. Med. Public Health, 1995, 26: 52-53
    [95] Y H Chen, C F Peng, J J Tsai. Epidemiological study of human salmonellosis during 1991-1996 in southern Taiwan, Kaohsiung[J]. Med. Sci., 1999, 15: 127-136.
    [96] C H Chiu, T Y Lin, J T Qu. Predictors for extraintestinal infections of non-typhoidal Salmonella in patients without AIDS[J]. Clin. Pract, 1999, 53: 161-164.
    [97] D Duckworth and P Gulig. Bacteriophage: Potential Treatment for Bacterial Infections[J]. Biodrugs, 2002, 16(1): 57-62.
    [98] L Goodridge, A Gallaccio & M W Griffiths. Morpho-logical, hostrange, and genetic characterization of two coliphages. Appl Environ Microbiol, 2003, 69: 5364-5371.
    [99] Harald Brussow. Phagetherapy: the Escherichiacoli experience[J]. Microbiology, 2005, 151: 2133-2140.
    [100] S Chibani-Chennoufi, A Bruttin, M L Dillmann & H Brussow. Phage-host interaction: an ecological perspective[J]. Bacteriol, 2004, 186: 3677-3686.
    [101] K E Wommack & R R Colwell. Virioplankton: viruses in aquatic ecosystems[J]. Microbiol MolBiol Rev, 2000, 64: 69-114.
    [102] Steven Hagens & J Martin Loessner. Application of bacteriophages for detection and control of foodborne pathogens[J]. Microbiol Biotechnol, 2007, 76: 513-519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700