几种大孔硅基超分子识别材料制备及其吸附铯的基础特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成了三种超分子识别试剂25,27-二(1-烷氧基)杯[4]芳烃-26,28-冠-6(Calix[4]arene-Crown)衍生物:25,27-二(1-丁氧基)杯[4]芳烃-26,28-冠-6(ButCalix[4]C6)、25,27-二(1-己氧基)杯[4]芳烃-26,28-冠-6(HexCalix[4]C6)和25,27-二(1-庚氧基)杯[4]芳烃-26,28-冠-6(HepCalix[4]C6),以元素分析、FT-IR、TG-DSC、ESI-MS和1H NMR对中间产物和目标产物进行了表征,对Calix[4]arene-Crown化合物的合成反应机理进行了分析。
     探讨了中间体5,11,17,23-四叔丁基-25,26,27,28-四羟基杯[4]芳烃(TBTHC4)的合成工艺条件,考察了各种因素对合成产率的影响,最佳工艺条件确定为:对叔丁基苯酚、NaOH和甲醛的摩尔比=1:0.1:1.5,在二苯醚用量1000mL,于260-C温度下回流5h,经乙酸乙酯重结晶,其产率为66.38%。对目标产物Calix[4]arene-Crown的重结晶工艺进行了研究,考察了不同极性溶剂及其用量对目标产物重结晶的影响。
     基于固定化和真空活化灌注技术,以大孔Si02-P为载体,合成了三种新型大孔硅基超分子识别材料(Calix[4]arene-Crown/SiO2-P):25,27-二(1-丁氧基)杯[4]芳烃-26,28-冠-6硅基材料(ButCalix[4]C6/SiO2-P)、25,27-二(1-己氧基)杯[4]芳烃-26,28-冠-6硅基材料(HexCalix[4]C6/SiO2-P)和25,27-二(1-庚氧基)杯[4]芳烃-26,28-冠-6硅基材料(HepCalix[4]C6/SiO2-P),以FT-IR、TG-DSC、XRD和BET等手段进行了表征,明确了新型超分子识别材料的复合机理和微观结构。
     在HN03溶液中,分别考察了酸度和接触时间等因素对大孔硅基超分子识别材料吸附Cs(Ⅰ)及十余种共存金属离子的影响。结果表明:HNO3浓度对Calix[4]arene-Crown/SiO2-P吸附Cs(Ⅰ)的性能有较大影响。随着HN03浓度的增加,Cs(Ⅰ)的分配系数Kd均明显增加,随后Kd又明显降低,说明在较低的酸度条件下,Calix[4]arene-Crown/SiO2-P对Cs(Ⅰ)的识别与配位作用占主导地位,在高酸度条件下,Calix[4]arene-Crown/SiO2-P与HN03之间以氢键方式相互缔合作用占主导地位,二者在0.4-5.0M HN03浓度研究范围内呈现竞争反应。ButCalix[4]C6/SiO2-P、HexCalix[4]C6/SiO2-P和HepCalix[4]C6/SiO2-P对Cs(Ⅰ)的最佳吸附酸度分别为2.OMHNO3、3.OMHNO3和2.OMHNO3,被试验的金属离子除Rb(Ⅰ)和Pd(Ⅱ)外,均表现为弱吸附或基本不被吸附。三种新型材料在3.0MHNO3对Cs(Ⅰ)的吸附能力为:
     HexCalix[4]C6/SiO2-P>HepCalix[4]C6/SiO2-P>ButCalix[4]C6/SiO2-P.与真实高放废液(HLLW)的酸度3.0M HNO3相比,HexCalix[4]C6/SiO2-P的最佳吸附酸度亦为3.OMHNO3,这对有效分离Cs(Ⅰ)是有利的,可不经稀释直接进行分离。故HexCalix[4]C6/SiO2-P有望用于从HLLW中吸附分离发热元素Cs(Ⅰ)。
It is known that the supramolecular recognition agents have high selectivity for Cs(Ⅰ), one of the main heat emitting nuclides. For effective partitioning of Cs(Ⅰ) from highly level liquid waste (HLLW), the derivatives of 25,27-bis(1-alkyloxy)calix[4]arene-26,28-crown-6(Calix[4]arene-Crown): 25,27-bis(1-butyloxy)calix[4]arene-26,28-crown-6(ButCalix[4]C6), 25,27-bis(1-hexyloxy)calix[4]arene-26,28-crown-6(HexCalix[4]C6), and 25,27-bis(1-hepxyloxy)calix[4]arene-26,28-crown-6(HepCalix[4]C6), were synthesized. The relevant intermediates and target products were characterized by elemental analysis, FT-IR, TG-DSC, ESI-MS and 1H NMR. The synthetic mechanism of Calix[4]arene-Crown was discussed.
     The synthesis of an intermediate product,5,11,17,23-tetra-butyl-25,26,27,28-tetrahydroxycalix[4]arene(TBTHC4), was examined. The results showed that as the molar ratio of p-tert-buthypheno, NaOH, and formaldehyde solution was 1:0.1:1.5, refluxing for 5h in diphenyl ether at 260℃, and recrystallizing with ethyl acetate, the yield of the TBTHC4 product was 66.38%.
     The novel supramolecular recognition materials, ButCalix[4]C6/SiO2-P, HexCalix[4]C6/SiO2-P and HepCalix[4]C6/SiO2-P, were synthesized. It was done through impregnation and immobilization of the relevant supramolecular recognition agent into the pores of the macroporous SiO2-P particles support. The composite mechanism and micro-structures of the novel supramolecular recognition materials were understood by characterization using FT-IR, TG-DSC, XRD and BET.
     The adsorption of Cs(Ⅰ) and more than 10 typical elements onto the ButCalix[4]C6/SiO2-P, HexCalix[4]C6/SiO2-P and HepCalix[4]C6/SiO2-P materials were investigated at 25℃. It was carried out by examining the effects of contact time and the HNO3 concentration in the range of 0.4-5.0 M. ButCalix[4]C6/SiO2-P, HexCalix[4]C6/SiO2-P and HepCalix[4]C6/SiO2-P showed excellent adsorption ability and high selectivity for Cs(Ⅰ) over all the tested metals except Rb(Ⅰ) and Pd(Ⅰ Ⅰ). The complexation of Cs(Ⅰ) with the supramolecular recognition materials as well as the association of the supramolecular recognition materials with HNO3 through hydrogen bonding were two competitive reactions. The optimum HNO3 concentration in the adsorption of Cs(Ⅰ) was 2.0 M HNO3 for ButCalix[4]C6/SiO2-P and HepCalix[4]C6/SiO2-P as well as 3.0 M HNO3 for HexCalix[4]C6/SiO2-P. The adsorption ability of three novel materials for Cs(Ⅰ) in 3.0 M HNO3 was as follows: HexCalix[4]C6/SiO2-P>HepCalix[4]C6/SiO2-P>ButCalix[4]C6/SiO2-P. It is known that the HNO3 concentration in genuine HLLW is around 3.0 M, it is therefore of great beneficial to application of HexCalix[4]C6/SiO2-P in the separation of Cs(Ⅰ) from HLLW.
引文
[1]王玉荟.世界能源需求与核能.国外核新闻,2008,(12):1-4.
    [2]常冰.核电的过去、现在和未来.国外核新闻,2003,(8):1-3.
    [3]Jean P M. The Future of Nuclear Energy(OL). http://www.bastiat.net/en/cercle/meetings/ Future_of_nuclear_energy.htm,2003-06-14.
    [4]罗上庚.核废物的安全和环境影响.安全与环境学报,2001,1(2):16-19.
    [5]See L, John H. Spent nuclear fuel(OL). http://en.wikipedia.org/wiki/Spent_nuclear_fuel. 2006-01.
    [6]高建勋,朱晓文,王建晨等.杯芳冠醚对铯离子的配位作用及其在处理含铯废水中的应用.有机化学,2002,2:115-122.
    [7]张华明,李兴亮,杨玉山等.裂变放射性核素90Sr、”7Cs分离的研究进展.同位素,2009,22(4):237-243.
    [8]Schulz W W, Bray L A. Solvent extraction recovery of byproduct 137Cs and 90Sr from HNO3 solutions-A technology review and assessment. Separation Science and Technology,1987, 22(2-3):191-214.
    [9]刘正浩,刘伯里,张连水等.从动力堆元件1AW中分离和回收铯-137.北京师范大学学报(自然科学版),1980,2:63-72.
    [10]Mimura H, Akiba K. Adsorption behavior of cesium and strontium on synthetic zeolite. Journal of Nuclear Science and Technology,1993,30(5):436-443.
    [11]Baetsle L H. Technology and role of Cs and Sr separation in disposal strategy of high level waste. Proceedings of a technical committee meeting on inorganic ion exchangers and adsorbents for chemical processing in the nuclear fuel cycle, International Atomic Energy Agency, Vienna,1984:31-41.
    [12]Cunha I L, Andrade L G. Recovery of 137Cs from acidic fission products solutions. Journal of Radioanalytical and Nuclear Chemistry Letters,1986,104(5):293-300.
    [13]孙兆祥,申戍新.磷酸盐AMP新型无机复合交换剂的制备和性能研究.北京师范大学学报(自然科学版),1984,3:69-74.
    [14]孙兆祥,刘正浩,宋梅英.一种新型无机复合交换剂回收137Cs的研究.核科学与工程,1984,1:32-35.
    [15]孙兆祥,唐志刚,刘正浩等.新型复合无机离子交换剂磷钼酸钛-AMP回收”7Cs的研究.核化学与放射化学,1983,5(4):259-261.
    [16]李长和.从高放废液中除去(回收)137Cs和90Sr.核科学与工程,1994,14(1):86-92.
    [17]孙永霞,宋崇立.亚铁氰化钾钛从模拟高放废液中去除Cs+冷实验研究.核化学与放射化学,1996,18(2):100-104.
    [18]徐世平,姜长印,宋崇立.亚铁氰化钾钛对铯交换机理的研究.核化学与放射化学, 1996,18(2):111-116.
    [19]袁良本,黄钟.从高放废液分离锕系元素和长寿命裂变产物1995年度调研报告.核科学技术情报研究所,1996年1月.
    [20]Goutam D, Andrzei M T, Wachs I E, et al. Characterization of titania silicalites. Zeolites, 1993,13:365-373.
    [21]Clerici M G, Gellussi G, Romano U. Synthesis of propylene oxide from propylene and hydrogen peroside catalyzed by titanium silicate. Journal of Catalysis,1991,129:159-167.
    [22]Huybrechts D R C, Jacobs P A, De Bruydker L. Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature,1990,345:240-242.
    [23]Jentys A, Catlow C R A. Structural properties of titanium sites in Ti-ZSM5. Catalysis Letters,1993,22:251-257.
    [24]Chapman D M, Roe A L. Synthesis, characterization and crystal chemistry of microporous titanium-silicate materials. Zeolites,1990,10:730-737.
    [25]Behrens E A, Poojary D M, Clearfield A. Synthesis, crystal structures, and ion-exchange properties of porous titanosilicates, HM3Ti4O4(SiO4).4H2O(M=H+, K+, Cs+), structural analogues of the mineral pharmacosiderite. Chemistry of Materials,1996,8:1236-1244.
    [26]Anthony R G, Philip C V, Dosch R G. Selective adsorption and ion exchange of metal cations and anions with silico-titanates and layered titanates. Waste Management,1993,6, 13:503-512.
    [27]Anthony R G, Dosch R G, Gu D, et al. Use of silicotitanates for removing cesium and strontium from defense waste. Industrial & Engineering Chemistry Research,1994,33: 2702-2705.
    [28]Bray L A.Cesium recovery using savannah river laboratory resorcinol formaldehyde. Ion Exchange Resins, PNL-7273,1990.
    [29]Valeriy N R, Igor V S, Vasily A B, et al. The universal solvent extraction (UNEX) process. I.Development of the UNEX process solvent for the separation of cesium,strontium and the actinides from acidic radioactive waste. Solvent Extraction and Ion Exchange,2001,19(1):1-21.
    [30]Jack D L, Terry A T, Valeriy N R, et al. The universal solvent extraction(UNEX) process. Ⅱ.Flowsheet development and demonstration of the UNEX process for the separation of cesium,strontium and the actinides from acidic radioactive waste. Solvent Extraction and Ion Exchange,2001,19(1):23-36.
    [31]Scott H R, Jack D L, Terry A T, et al. Universal solvent extraction(UNEX) flowsheet testing for the removal of cesium,strontium and the actinide elements from radioactive,acidic dissolved calcine waste. Solvent Extraction and Ion Exchange,2002,20(4,5):429-445.
    [32]吴成泰.冠醚化学.北京:科学出版社,1992.
    [33]McDowell W J, Case G N, McDonough J A. Selective ixtraction of cesium from acidic nitrate solution with didodecylnaphthalenesulfonic acid synergized with bis(tert-butylbenzo)-21-crown-7. Analytical Chemistry,1992,64:3013-3017.
    [34]Dietz M L, Horwitz E P, Jensen M P, et al. Substi-tuent Effects in the Extraction of Cesium from Acidic Nitrate Media With Macrocyclic Polyethers Solvent Extraction and Ion Exchange,1996,14(3):357-384.
    [35]Luigi M, Rocco U. Calixarenes In Action. London:Imperial College Press,2000:1-30.
    [36]Simon N, Eymard S, Tokurnois B, et al. Cesium Extraction From Acidic High Level Liquid Waste With Functionalized Calixarenes. ATALANTE 2000:Paper 02-06. Avinon, France: ATALANTE,2000:24-26.
    [37]Simon N, Tournois B, Eymard S, et al. Cs Selective Extraction from High Level Liquid Wastes with Crown Calixarenes:Where are we today? ATALANTE 2004. Avinon, France: ATALANTE,2004.
    [38]Peter V B, Latitia H D, Tamar J H, et al. Alkaline-side extraction of cesium from Savannah river tank waste using a calixarene-crown ethers extractant. Oak Ridge National Laboratory Report ORNL/TM-13704, Oak Ridge, Tennessee, December 1998.
    [39]Joseph F B, Jr, Robert L. Cummings.Irradiation effects on phase-separation performance using a centrifugal contactor in a caustic-side solvent extraction process.Oak Ridge National Laboratory Report ORNL/TM-2001/91, Oak Ridge, Tennessee,2001.
    [40]Latitia H D, Tamara J H, Bruce A M. Caustic-side solvent extraction:Anti-caking surfactants found to be cause of apparent effect of high nitrite concentration on cesium stripping. Oak Ridge National Laboratory Report ORNL/TM-2002/104, Oak Ridge, Tennessee,2002.
    [41]Peter V B, Latitia H D, Bruce A M, et al. Lumetta.Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste. Solvent Extraction and Ion Exchange,2003,21(2):141-170.
    [42]Nancy L E, Peter V B, Bruce A T, et al. Synthesis and properties of calix[4]arene-bis[4-(2-ethylhexyl)benzo-crown-6]:A cesium extractant with improved solubility. Solvent Extraction and Ion Exchange,2004,22(4):611-636.
    [43]Eve B, Maryna G G, Peter V B, et al. pH-switchable cesium nitrate extraction with calix[4]arene mono and bis(benzo-crown-6)ethers bearing amino functionalities. Solvent Extraction and Ion Exchange,2004,22(4):637-661.
    [44]Walker D D, Norato M A, Campbell S G, et al. Cesium removal from Savannah River site radioactive waste using the caustic side solvent extraction(CSSX) process. WSRC-MS-2003-00317, Rev.0.
    [45]Lehn J M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices., Angewandte Chemie International Edition,1988,27:89-112.
    [46]郑企雨,黄志镗.一类新型主体分子——杯冠化合物.化学进展,1997,9(2):151—159.
    [47]Vogtle F. Supramoclecular Chemistry. England:John Wiley& Sons,1991.
    [48]Charles J P. Cyclic polyethers and their complexes with metal salts. Journal of the American Chemical Society,1967,89(10):2495-2496.
    [49]King R B, Heckley P R. Lanthanide Nitrate Complexes of Some Macrocyclic Polyethers. Journal of the American Chemical Society,1974,96:3118-3123.
    [50]Danesi P R, Heider G H, Chiarizia R, et al. Extraction selectivity of organic solutions of a cyclic polyether with respect to the alkali cations. Journal of Inorganic and Nuclear Chemistry,1975,37:1479-1483.
    [51]Yakshin V V Y, Abashkin V M, Zhukova N G, et al. Dokl. Akad. Nauk SSSR,1980,373: 252-253.
    [52]Jawaid M, Ingman F. Ion-pair extraction of Na+, K+and Ca2+with some organic counter-ions and dicyclohexyl-18-crown-6 as adduct-forming reagent. Talanta,1978,25: 91-95.
    [53]Grootenhuis P D J. Computational Study of the Structural, Energetical, and Acid-Base Properties of Calix[41arenes. Journal of the American Chemical Society,1990, 112:4165-4176.
    [54]Iwamoto K, Araki K, Shinkai S. Conformations and Structures of Tetra-0-alkyl-p-tert-butylcalixarenes.How Is the Conformation of Calix[4]larenes Immobilized. Journal of Organic Chemistry,1991,56:4955-4962.
    [55]David C G, Lee L G. Calixarenes 12:The synthesis of functionalized calixarenes. Tetrahedron,1986,42(6):1633-1640.
    [56]Gutsche C D, Iqbal M. P-tert-butylcalix[4]arene. Organic Syntheses,1993,8:75.
    [57]C. David G, Jeffrey A. Calixarenes 6. Synthesis of a functionalizable calix[4]arene in a conformationally rigid cone conformation. Journal of the American Chemical Society,1982, 104 (9):2652-2653.
    [58]Volker B, Linda M, Ulrike K. Asymmetrically-substituted calix(4)arenes. Chemical Commumnications,1987,12:896-897.
    [59]Jiansen L, Yuanyin C, Xueran L. Selective bridging of p-tert-butylcalix[6]arene with polyethylene glycol ditosylates. Tetrahedron,1999,55:10365-10374.
    [60]Yuanyin C,Fafu Y,Xueran L. Synthesis of p-t-butylcalix[6]-1,4-2,5-biscrowns. Tetrahedron Letters,2000,41:1571-1574.
    [61]Kumar M, Hundal G, Bhalla V, et al. Crystal structure of a calix[4]crown ether-ester and molecular recognition of alkyl-and arylalkylamines. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2000,36:461-472.
    [62]Li J S, Chen Y Y, Zhong Z L, et al. Convenient preparation of novel calix[n]cryp-tands. Chemistry Letters,1999:881-882.
    [63]Asfari Z, Theuery P, Nierlich M, et al. Synthesis and characterization of p-t-butyl-calix[4]crown-4 and its double calyx[4]arene dimmer. Australian Joural of Chemistry,1999, 52:343-349.
    [64]Asfari Z, Wenger S, Vicens J. Calixcrowns and related molecules. Journal of Pure and Applied Sciences,1995,67(7):1037-1043.
    [65]Alfieri C, Dradi E, Pochini A, et al. Synthesis and X-ray crystal and molecular structure of a novel macrobicyclic ligand:Crown p-t-butylcalix[4]arene. Journal of the Chemical Society, Chemical Communications,1983(19):1075-1077.
    [66]Linnane P, Shinkai S. "Calix-aza-crowns"a novel class of calixcrown binds cooperatively to metal cations and diammonium cations. Tetrahedron Letters,1995,36(22):3865-3866.
    [67]Geraci C, Piattelli M, Neri P. Regioselective synthesis of calix[8]crowns by direct alkylation of p-t-butylcalix[8]arene. Tetrahedron Letters,1996,37(22):3899-3902.
    [68]Arnecke R, Bohmer V, Ferguson G, et al. Inherently chiral derivatives of calix[5]-crowns. Tetrahedron Letters,1996,37(9):1497-1500.
    [69]Asfari Z, Weiss J, Pappalardo S, el al. Sythesis and properties of donble-calix[4]-arenes, doubly-crowned calix[4]arenas, and double-calix-crowns. Pure and Applied Chemistry,1993, 65:585-590.
    [70]Asfari Z, Wenger S, Vicens J. New complexing marocycles:the calixcrowns. Supramolecular Science,1994,1:103-118.
    [71]Yamamoto H, Sakaki T, Shenkai S. Regioselective synthesis of 1,2-and 1,3-bridged calyx[4]crowns:what are the factors controlling the regioselectivity. Chemistry Letters,1994: 469-472.
    [72]Dozol J F, Asfari Z, Hill C, et al. Calix[4]-bis-crown Cpds. used in the selective separation of caesium and actinides. France:FR-0014245,1992.
    [73]Asfari Z, Bressot C, Vicens J, et al. Doubly crowned calix[4]arenas in the 1,3-alternate conformation as cesium-selective carriers in supported liquid membranes. Analytical Chemistry,1995,67:3133-3139.
    [74]Kim J S, Lee K W, Sim W, et al. Calix[4]arenas bridged with two different crown ether loops: Influence of crown size on metal ion recognition. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2000,37:359-370.
    [75]Asfari Z, Nicolle X, Vicens J, et al. Ditopic calixcrowns with inequivalent crown loops: Synthesis and structural characterization of an unsymmetrical calix[4]arene-biscrown-6. Journal of Inclusion Phenomena and Macrocyclic Chemistry,1999,33(3):251-262.
    [76]Mathieu A, Asfari Z, Thuery P, et al. Water-soluble para-sulfonated l,2,3,4-calix[4] arene-biscrowns in the 1,2-alternate conformation. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2001,40(3):173-181.
    [77]Verboom W, Datta S, Asfari Z, et al. Tetra-o-alkylated calix[4]arenas in the 1,3-alterate conformation. Journal of Organic Chemistry,1992,57:5394-5398.
    [78]Dozol J F, Rouquetle H, Ungaro R, et al. Calix[4]arene crown ether and preparation used as extractant for caesium and actinide.France:FR-004566,1993.
    [79]Casnati A, Pochini A, Ungaro R, et al. Sythesis, complexation, and membrane transport studies of 1,3-alterate calix[4]arene-crown-6 conformers:A new class of cesium selective ionophores. Journal of the American Chemical Society,1995,117:2767-2777.
    [80]朱晓文,童利斌,王建晨等.新型萃取剂杯[4]冠-6的合成与表征.有机化学,2003,23(7):662-665.
    [81]朱晓文,王建晨,童利斌等.杯冠化合物在处理高放废液中的应用(Ⅰ).原子能科学技术,2003,37(5):428-433.
    [82]高建勋,王建晨,宋崇立.杯芳冠醚合成方法的改进.核化学与放射化学,2003,25(3):185-187.
    [83]Dhawan B, Chen Shou-I, Gutsche C D. Studies of the formation of calixarenes via condensation of p-alkylphenols and formaldehyde. Makromolekulare Chemie,1987,188(5): 921-950.
    [84]Gutsche C D, Dhawan B, Hyun No K, et al. Calixarenes 4. The Synthesis, Characterization, and Properties of the calixarenes from p-tert-Butylphenol. Journal of the American Chemical Society,1981,103(13):3782-3792.
    [85]朱振峰,李晖,朱敏.微乳液法制备无定形纳米二氧化硅.无机盐工业,2006,38(6):14-16.
    [86]格雷格S J著,高敬宗等译.吸附、比表面与孔隙率.北京:化学工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700