金属多层膜力学行为及其组元与尺寸效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属薄膜材料由于其优异的力/电学性能,已成为目前高性能微元器件、微机电系统以及互连结构的核心材料体系,其在复杂的微加工制备和随后的服役过程中的变形损伤,是导致系统失效的关键因素。作为其组成单元,多层膜及其组元材料介观服役特性研究具有重要的科学意义和工程实用价值。本论文选取微电子器件中典型应用的Cu薄膜及Cu/X (X=Cr、Nb、Zr)多层膜材料为研究对象,系统研究了其介观尺度下的力/电学行为及相关的物理机理。
     通过单轴拉伸和机械疲劳实验系统研究了介观尺度Cu薄膜的力学性能。结果表明,Cu薄膜的屈服强度以及疲劳行为(疲劳寿命与疲劳损伤)均表现出明显的尺寸依赖性。屈服强度以及疲劳寿命在某一临界尺寸下出现最大值。室温以及低应变速率下,纳米晶Cu薄膜呈现出变形孪晶的双反(晶粒)尺寸效应。根据经典的位错理论以及受激滑移模型,半定量解释了面心立方金属变形孪晶的双反(晶粒)尺寸效应。随着特征尺寸的减小,由于位错活动受到抑制以及可激活位错源的减少,疲劳损伤由位错滑移导致的挤出/侵入转变为与界面相关的损伤。
     在单轴拉伸实验过程中利用薄膜电阻实时测量法,初步探索了不同体系Cu/X纳米多层膜的变形与断裂行为及其尺寸效应。研究发现,Cu/X纳米多层膜的屈服强度强烈依赖于其特征结构参数(调制周期与调制比),随调制周期的减小或者调制比的增加(即硬相体积分数增加)而增加,并伴随着变形机制的变化。这与通过约束层滑移模型和复合材料混合强度法则理论计算的结果相一致。由于软/延性相(Cu)对硬/脆性相(X)的异质约束作用,导致Cu/X纳米多层膜的延性以及断裂韧性随特征尺寸变化表现出奇异性,并且出现由张开型向剪切型断裂的转变。通过微观断裂力学模型定量阐述了软/延性相对硬/脆性相的约束作用对断裂行为的影响。此外,调制周期恒定的Cu/X纳米多层膜的强度与延性存在线性关系。界面约束越强(界面数量越多),线性关系的斜率越大。
     纳米压痕实验揭示了界面结构对Cu/X (X=Cr、Nb)纳米多层膜的硬度及压入模量的影响。结果表明,Cu/X纳米多层膜的硬度呈现尺寸依赖性并随特征尺寸的减小达到饱和值,其变化趋势与屈服强度相同。与界面清晰的Cu/X多层膜单调变化的压入模量不同,界面混合(非晶)层导致Cu/X多层膜的压入模量出现最大值。通过考虑界面混合(非晶)层引起的组元层晶面间距压缩以及自由体积这两个竞争机制的相互作用,定性解释了压入模量的这种异常变化。
     采用金属薄膜原位电阻变化法,通过机械疲劳试验研究了Cu薄膜和Cu/X (X=Cr、Nb)纳米多层膜的疲劳性能。结果表明,与块体材料相似,Cu/X纳米多层膜的疲劳寿命与应变幅仍然遵循经典的Coffin-Mason疲劳关系式,这与Cu薄膜是一致的。合理的强度和延性匹配能够实现薄膜材料疲劳性能的最优化。由于层间异质界面对位错活动的强烈抑制,Cu/X纳米多层膜的疲劳损伤由晶界/界面主导。
     利用电阻四探针法系统研究了Cu/X (X=Cr、Nb)纳米多层膜的电输运行为及其尺寸效应。理论分析和实验结果均表明Cu/X纳米多层膜的电阻率均随着调制周期的减小而增加。界面结构可以显著影响纳米多层膜的电阻率。通过人工调控纳米多层膜的微观结构可以实现其力-电综合性能的最优化。
The single-/multi-layered films are widely used as essential components of high performancemicroelectronics, microelectromechanical systems and interconnect structures owing to theiroutstanding mechanical/electric properties. The deformation and fracture during themanufacture and service processes has been identified as an important factor influencingtheir reliability. The urgent demand for understanding the complex properties of thenanostructured multilayers and their constituent are both for scientific aspects and in theinterest of the engineering application. In this work, the mesoscaled mechanical/electronicproperties and the related physical mechanisms of nanocrystalline Cu films andnanostructured Cu/X (X=Cr, Nb, Zr) multilayers that typically used in microelectronicshave been investigated.
     Uniaxial tensile test and mechanical fatigue test was respectively performed on themesoscaled Cu thin films to systemically investigate their mechanical properties. It isrevealed from the results that the yield strength of Cu thin films as well as the fatiguebehavior (fatigue lifetime and fatigue damage) is length scale-dependent. Maxima areobserved for both the yield strength and fatigue lifetime in mesoscaled Cu thin films at somecritical dimension. At room temperature and low strain rates, the nanocrystalline Cu thinfilms exhibit the double-inverse deformation twinning behavior with respect to the normalHall-Petch grain size dependence, which is semiquantitatively explained by the classicdislocation theory and dislocation stimulated slip model.With reducing the characteristicdimensions of Cu thin films, the fatigue damage of mesoscaled Cu thin films show thetransition from dislocation glide-induced extrusions/intrusions to boundary related damagedue to the inhibition of dislocation mobility and the limited availability and activation ofdislocation sources.
     Uniaxial tensile test with combination of in-situ measurement the change of electricalresistance method was carried out to investigate the deformation and fracture behavior ofnanostructured Cu/X (X=Cr, Nb, Zr) multilayers. It is found that the yield strength of Cu/Xmultilayers strongly depends on the characteristic parameters (modulation period, λ andmodulation ratio, η), i.e., it increases with decreasing the modulation period or increasing themodulation ratio (or increasing the volume fraction of hard phase), accompanied with thetransition of deformation mechanism. This consists with the prediction by the confined layer slip model and the rule of mixture. Due to the constraint effects of soft/ductile phase (Cu) onhard/brittle phase (X), the nanostructured Cu/X multilayers present singularity ductility aswell as fracture toughness, and also show the transition of fracture mode from shearing toopening related to the length scale. The fracture behavior in Cu/X multilayers isquantitatively assessed using a fracture mechanism-based micromechanical model. Moreover,at a constant modulation period, Cu/X multilayers exhibit ductility scaling linearly with yieldstrength that is varied with modulation ratio. The scaling slope for Cu/X multilayers withmore interfaces is much sharper than that of ones with fewer interfaces, owing to a strongerinterface constraint caused by more interfaces.
     The nanoindentation test was adopted to explore the effect of interface structure ofnanostructured Cu/X (X=Cr, Nb) multilayers on hardness and modulus. It is revealed thatthe hardness is also length scale-dependent, similar to that of yield strength. Different fromthe monotonic modulation period dependence known for Cu/X multilayers with clearinterface, a maximum indentation modulus is found in the Cu/X multilayers with theinterfacial intermixing (amorphous) layer. This unusual behavior is explained by consideringthe intermixing layer-induced competing effects of the compressed out-of-plane interplanarspacing of the constituent layers and free volume.
     By using mechanical fatigue test associated with the in-situ measurement the change ofelectrical resistance method, the fatigue behavior of nanostructured Cu/X (X=Cr, Nb)multilayers was studied. The results show that a similar Coffin-Manson fatigue relationshipobserved commonly in bulk materials is found to be still operative in the multilayers,consisting with the results of Cu thin films. The suitable synergy between strength andductility can be achieved the maximum fatigue lifetime of thin film materials. Because thenucleation and motion of dislocations within the multilayers are strongly suppressed byincreased layer-to-layer interfaces, the fatigue damage of nanostructured Cu/X multilayers isboundary/interface dominated.
     The length scale-dependent electric transport properties of nanostructured Cu/X (X=Cr, Nb)multilayers were measured using four-point probe technique. Both the theoretical analysisand experimental results show that the resistivity increases with decreasing the modulationperiod. The interface structure can remarkably influence the resistivity of nanostructuredCu/X multilayers. The best combination of mechanical-electrical properties can be achievedby artificially tailoring the microstructure of multilayers.
引文
[1] Moore GE. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE,1998,86(1):82-85.
    [2] Adams BL, Olson T. The mesostructure--properties linkage in polycrystals[J]. Progress inMaterials Science,1998,43(1):1-87.
    [3] Nix WD. Mechanical properties of thin films[J]. Metallurgical Transactions A,1989,20(11):2217-2245.
    [4] Arzt E. Size effects in materials due to microstructural and dimensional constraints: acomparative review[J]. Acta Materialia,1998,46(16):5611-5626.
    [5] Dehm G. Miniaturized single-crystalline fcc metals deformed in tension: New insights insize-dependent plasticity[J]. Progress in Materials Science,2009,54(6):664-688.
    [6] Fertig RS, Baker SP. Simulation of dislocations and strength in thin films: A review[J]. Progressin Materials Science,2009,54(6):874-908.
    [7] Gryaznov VG, Trusov LI. Size effects in micromechanics of nanocrystals[J]. Progress inMaterials Science,1993,37(4):289-401.
    [8] Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials[J].Progress in Materials Science,2006,51(4):427-556.
    [9] Zhu T, Li J. Ultra-strength materials[J]. Progress in Materials Science,2010,55(7):710-757.
    [10] Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystalplasticity[J]. Science,2004,305:986-989.
    [11] Romig Jr AD, Dugger MT, McWhorter PJ. Materials issues in microelectromechanical devices:science, engineering, manufacturability and reliability[J]. Acta Materialia,2003,51(19):5837-5866.
    [12] Tan CM, Roy A. Electromigration in ULSI interconnects[J]. Materials Science and Engineering:R: Reports,2007,56(1-2):1-75.
    [13] Ceric H, Selberherr S. Electromigration in submicron interconnect features of integratedcircuits[J]. Materials Science and Engineering: R: Reports,2011,71(5-6):53-86.
    [14] Kraft O, Arzt E. Current density and line width effects in electromigration: A new damage-basedlifetime model[J]. Acta Materialia,1998,46(11):3733-3743.
    [15] Wu Z-Y, Yang Y-T, Chai C-C, et al. Structure-dependent behavior of stress-induced voiding in Cuinterconnects[J]. Thin Solid Films,2010,518(14):3778-3781.
    [16] Shao W, Gan ZH, Mhaisalkar SG, et al. The effect of line width on stress-induced voiding in Cudual damascene interconnects[J]. Thin Solid Films,2006,504(1-2):298-301.
    [17] Gan Z, Shao W, Mhaisalkar SG, et al. The influence of temperature and dielectric materials onstress induced voiding in Cu dual damascene interconnects[J]. Thin Solid Films,2006,504(1-2):161-165.
    [18] Hwang SJ, Nix WD, Joo YC. A model for hillock growth in Al thin films controlled by plasticdeformation[J]. Acta Materialia,2007,55(15):5297-5301.
    [19] Hwang S-J, Lee J-H, Jeong C-O, et al. Effect of film thickness and annealing temperature onhillock distributions in pure Al films[J]. Scripta Materialia,2007,56(1):17-20.
    [20] Berla LA, Joo Y-C, Nix WD. A model for power law creep controlled hillock growth[J].Materials Science and Engineering: A,2008,488(1-2):594-600.
    [21] Suo Z, Vlassak J, Wagner S. Micromechanics of macroelectronics[J]. China Particuology,2005,3(6):321-328.
    [22] Barnas J,Bruynseraede Y. Electronic transport in ultrathin magnetic multilayers[J]. PhysicalReview B,1996,53(9):5449-5460.
    [23] Kraft O, Hommel M, Arzt E. X-ray diffraction as a tool to study the mechanical behaviour of thinfilms[J]. Materials Science and Engineering A,2000,288(2):209-216.
    [24] Niu RM, Liu G, Wang C, et al. Thickness dependent critical strain in submicron Cu filmsadherent to polymer substrate[J]. Applied Physics Letters,2007,90(16):161907.
    [25] Yu DYW, Spaepen F. The yield strength of thin copper films on kapton[J]. Journal of AppliedPhysics,2004,95(6):2291-2297.
    [26] Gruber PA, B hm J, Onuseit F, et al. Size effects on yield strength and strain hardening forultra-thin Cu films with and without passivation: A study by synchrotron and bulge testtechniques[J]. Acta Materialia,2008,56(10):2318-2335.
    [27] Gruber PA, Solenthaler C, Arzt E, et al. Strong single-crystalline Au films tested by a newsynchrotron technique[J]. Acta Materialia,2008,56(8):1876-1889.
    [28] Oh SH, Legros M, Kiener D, et al. In situ TEM straining of single crystal Au films on polyimide:Change of deformation mechanisms at the nanoscale[J]. Acta Materialia,2007,55(16):5558-5571.
    [29] Thompson CV. The yield stress of polycrystalline thin films[J]. Journal of Materials Research,1993,8(2):237-238.
    [30] Consonni V, Feuillet G, Gergaud P. The flow stress in polycrystalline films: Dimensionalconstraints and strengthening effects[J]. Acta Materialia,2008,56(20):6087-6096.
    [31] Nix WD. Yielding and strain hardening of thin metal films on substrates[J]. Scripta Materialia,1998,39(4-5):545-554.
    [32] Pant P, Schwarz KW, Baker SP. Dislocation interactions in thin FCC metal films[J]. ActaMaterialia,2003,51(11):3243-3258.
    [33] Kraft O, Gruber PA, M nig R, et al. Plasticity in donfined dimensions[J]. Annual Review ofMaterials Research,2010,40:293-317.
    [34] von Blanckenhagen B, Gumbsch P, Arzt E. Dislocation sources in discrete dislocation simulationsof thin-film plasticity and the Hall-Petch relation[J]. Modelling and Simulation in MaterialsScience and Engineering2001,9(3):157–169.
    [35] Nicola L, Xiang Y, Vlassak JJ, et al. Plastic deformation of freestanding thin films: Experimentsand modeling[J]. Journal of the Mechanics and Physics of Solids,2006,54(10):2089-2110.
    [36] Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation[J].Physical Review B,2006,73(24):245410-245416.
    [37] Chen MW, Ma E, Hemker KJ, et al. Deformation twinning in nanocrystalline aluminum[J].Science,2003,300(5623):1275-1277.
    [38] Asaro RJ, Suresh S. Mechanistic models for the activation volume and rate sensitivity in metalswith nanocrystalline grains and nano-scale twins[J]. Acta Materialia,2005,53(12):3369-3382.
    [39] Yamakov V, Wolf D, Phillpot SR, et al. Deformation-mechanism map for nanocrystalline metalsby molecular-dynamics simulation[J]. Nature Materials,2004,3:43-47.
    [40] Huang CX, Wang K, Wu SD, et al. Deformation twinning in polycrystalline copper at roomtemperature and low strain rate[J]. Acta Materialia,2006,54(3):655-665.
    [41] Zhu YT, Narayan J, Hirth JP, et al. Formation of single and multiple deformation twins innanocrystalline fcc metals[J]. Acta Materialia,2009,57(13):3763-3770.
    [42] Wolf D, Yamakov V, Phillpot SR, et al. Deformation of nanocrystalline materials bymolecular-dynamics simulation: relationship to experiments?[J]. Acta Materialia,2005,53(1):1-40.
    [43] Liao XZ, Zhou F, Lavernia EJ, et al. Deformation twins in nanocrystalline Al[J]. Applied PhysicsLetters,2003,83(24):5062-5064.
    [44] Wu XL, Zhu YT. Inverse grain-size effect on twinning in nanocrystalline Ni[J]. Physical ReviewLetters,2008,101:025503.
    [45] Misra A, Kung H. Deformation behavior of nanostructured metallic multilayers[J]. AdvancedEngineering Materials,2001,3(4):217-222.
    [46] Fu EG, Li N, Misra A, et al. Mechanical properties of sputtered Cu/V and Al/Nb multilayerfilms[J]. Materials Science and Engineering: A,2008,493(1-2):283-287.
    [47] Misra A, Hirth JP, Hoagland RG. Length-scale-dependent deformation mechanisms in incoherentmetallic multilayered composites[J]. Acta Materialia,2005,53(18):4817-4824.
    [48] Misra A, Verdier M, Lu YC, et al. Structure and mechanical properties of Cu-X (X=Nb,Cr,Ni)nanolayered composites[J]. Scripta Materialia,1998,39(4-5):555-560.
    [49] Was GS,Foecke T. Deformation and fracture in microlaminates[J]. Thin Solid Films,1996,286(1-2):1-31.
    [50] Hoagland RG, Kurtz RJ, Henager CH. Slip resistance of interfaces and the strength of metallicmultilayer composites[J]. Scripta Materialia,2004,50(6):775-779.
    [51] McKeown J, Misra A, Kung H, et al. Microstructures and strength of nanoscale Cu-Agmultilayers[J]. Scripta Materialia,2002,46(8):593-598.
    [52] Liu Y, Bufford D, Wang H, et al. Mechanical properties of highly textured Cu/Ni multilayers[J].Acta Materialia,2011,59(5):1924-1933.
    [53] Embury JD, Hirth JP. On dislocation storage and the mechanical response of fine scalemicrostructures [J]. Acta Metallurgica et Materialia,1994,42(6):2051-2056.
    [54] Phillips MA, Clemens BM, Nix WD. A model for dislocation behavior during deformation ofAl/Al3Sc (fcc/L12) metallic multilayers[J]. Acta Materialia,2003,51(11):3157-3170.
    [55] Anderson PM, Li C. Hall-Petch relations for multilayered materials[J]. Nanostructured Materials,1995,5(3):349-362.
    [56] Koehler JS. Attempt to design a strong solid[J]. Physical Review B,1970,2(2):547–551
    [57] Rao SI, Hazzledine PM. Atomistic simulations of dislocation-interface interactions in the Cu-Nimultilayer system[J]. Philisophical Magazine A,2000,80(9):2011-2040.
    [58] Li YP, Zhang GP, Wang W, et al. On interface strengthening ability in metallic multilayers[J].Scripta Materialia,2007,57(2):117-120.
    [59] Dietiker M, Nyilas RD, Solenthaler C, et al. Nanoindentation of single-crystalline gold thin films:Correlating hardness and the onset of plasticity[J]. Acta Materialia,2008,56(15):3887-3899.
    [60] Gouldstone A, Chollacoop N, Dao M, et al. Indentation across size scales and disciplines: Recentdevelopments in experimentation and modeling[J]. Acta Materialia,2007,55(12):4015-4039.
    [61] Barabash RI, Bei H, Gao YF, et al. Indentation-induced localized deformation and elastic strainpartitioning in composites at submicron length scale[J]. Acta Materialia,2010,58(20):6784-6789.
    [62] Saha R, Nix WD. Effects of the substrate on the determination of thin film mechanical propertiesby nanoindentation[J]. Acta Materialia,2002,50(1):23-38.
    [63] Cheng Y-T, Cheng C-M. Scaling, dimensional analysis, and indentation measurements[J].Materials Science and Engineering: R: Reports,2004,44(4-5):91-149.
    [64] Cao Y, Allameh S, Nankivil D, et al. Nanoindentation measurements of the mechanical propertiesof polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and filmthickness[J]. Materials Science and Engineering: A,2006,427(1-2):232-240.
    [65] Jen SU, Wu TC. Young's modulus and hardness of Pd thin films[J]. Thin Solid Films,2005,492(1-2):166-172.
    [66] Clemens BM, Eesley GL. Relationship between interfacial strain and the elastic response ofmultilayer metal films[J]. Physical Review Letteters,1988,61(20):2356–2359
    [67] Wolf D, Lutsko JF. Structurally induced supermodulus effect in superlattices[J]. Physical ReviewLetteters,1988,60(12):1170–1173.
    [68] Abadias G, Jaouen C, Martin F, et al. Experimental evidence for the role of supersaturatedinterfacial alloys on the shear elastic softening of Ni/Mo superlattices[J]. Physical Review B,2002,65(21):212105.
    [69] Wen SP, Zong RL, Zeng F, et al. Evaluating modulus and hardness enhancement in evaporatedCu/W multilayers[J]. Acta Materialia,2007,55(1):345-351.
    [70] Huang H, Spaepen F. Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cumultilayers[J]. Acta Materialia,2000,48(12):3261-3269.
    [71] Wang YM, Li J, Hamza AV, et al. Ductile crystalline-amorphous nanolaminates[J]. Proceedingsof the National Academy of Sciences of the United States of America,2007,104(27):11155-11160.
    [72] Mara NA, Bhattacharyya D, Hoagland RG, et al. Tensile behavior of40nm Cu/Nb nanoscalemultilayers[J]. Scripta Materialia,2008,58(10):874-877.
    [73] Lu N, Suo Z, Vlassak JJ. The effect of film thickness on the failure strain of polymer-supportedmetal films[J]. Acta Materialia,2010,58(5):1679-1687.
    [74] Xiang Y, Li T, Suo Z, et al. High ductility of a metal film adherent on a polymer substrate[J].Applied Physics Letters,2005,87(16):161910.
    [75] Ye T, Suo Z, Evans AG. Thin film cracking and the roles of substrate and interface[J].International Journal of Solids and Structures,1992,29(21):2639-2648.
    [76] Xu W, Lu TJ, Wang F. Effects of interfacial properties on the ductility of polymer-supportedmetal films for flexible electronics[J]. International Journal of Solids and Structures,2010,47(14-15):1830-1837.
    [77] Lu N, Wang X, Suo Z, et al. Metal films on polymer substrates stretched beyond50%[J]. AppliedPhysics Letters,2007,91(22):221909.
    [78] Li T, Suo Z. Ductility of thin metal films on polymer substrates modulated by interfacialadhesion[J]. International Journal of Solids and Structures,2007,44(6):1696-1705.
    [79] Li T, Suo Z. Deformability of thin metal films on elastomer substrates[J]. International Journal ofSolids and Structures,2006,43(7-8):2351-2363.
    [80] Li T, Huang ZY, Xi ZC, et al. Delocalizing strain in a thin metal film on a polymer substrate[J].Mechanics of Materials,2005,37(2-3):261-273.
    [81] Pinyol A, Meylan B, Gilliéron D, et al. Electro-fragmentation analysis of dielectric thin films onflexible polymer substrates[J]. Thin Solid Films,2009,517(6):2000-2006.
    [82] Leterrier Y, Mottet A, Bouquet N, et al. Mechanical integrity of thin inorganic coatings onpolymer substrates under quasi-static, thermal and fatigue loadings[J]. Thin Solid Films,2010,519(5):1729-1737.
    [83] Grego S, Lewis J, Vick E, et al. A method to evaluate mechanical performance of thin transparentfilms for flexible displays[J]. Thin Solid Films,2007,515(11):4745-4752.
    [84] Chen Z, Gan Z. Fracture toughness measurement of thin films on compliant substrate usingcontrolled buckling test[J]. Thin Solid Films,2007,515(6):3305-3309.
    [85] Chen Z, Cotterell B, Wang W. The fracture of brittle thin films on compliant substrates in flexibledisplays[J]. Engineering Fracture Mechanics,2002,69(5):597-603.
    [86] Howells DG, Henry BM, Leterrier Y, et al. Mechanical properties of SiOx gas barrier coatings onpolyester films[J]. Surface and Coatings Technology,2008,202(15):3529-3537.
    [87] Leterrier Y. Durability of nanosized oxygen-barrier coatings on polymers[J]. Progress inMaterials Science,2003,48(1):1-55.
    [88] Frank S, Handge UA, Olliges S, et al. The relationship between thin film fragmentation andbuckle formation: Synchrotron-based in situ studies and two-dimensional stress analysis[J]. ActaMaterialia,2009,57(5):1442-1453.
    [89] Cordill MJ, Fischer FD, Rammerstorfer FG, et al. Adhesion energies of Cr thin films onpolyimide determined from buckling: Experiment and model[J]. Acta Materialia,2010,58(16):5520-5531.
    [90] Heinrich M, Gruber P, Orso S, et al. Dimensional control of brittle nanoplatelets. A statisticalanalysis of a thin film cracking approach[J]. Nano Letters,2006,6(9):2026–2030.
    [91] Handge UA, Sokolov IM, Blumen A. Universal scaling and nonlinearity in surface layerfragmentation[J]. Physical Review E,2000,61(3):3216–3219
    [92] Handge UA, Leterrier Y, Rochat G, et al. Two scaling domains in multiple cracking phenomena[J].Physical Review E,2000,62(6):7807–7810
    [93] Begley MR, Bart-Smith H, Scott ON, et al. The electro-mechanical response of elastomermembranes coated with ultra-thin metal electrodes[J]. Journal of the Mechanics and Physics ofSolids,2005,53(11):2557-2578.
    [94] Begley MR, Bart-Smith H. The electro-mechanical response of highly compliant substrates andthin stiff films with periodic cracks[J]. International Journal of Solids and Structures,2005,42(18-19):5259-5273.
    [95] Beuth Jr JL. Cracking of thin bonded films in residual tension[J]. International Journal of Solidsand Structures,1992,29(13):1657-1675.
    [96] Gruber PA, Arzt E, Spolenak R. Brittle-to-ductile transition in ultrathin Ta/Cu film systems[J].Journal of Materials Research,2009,24(6):1906-1918.
    [97] Zhu XF, Li YP, Zhang GP, et al. Understanding nanoscale damage at a crack tip of multilayeredmetallic composites[J]. Applied Physics Letters,2008,92(16):161905.
    [98] Misra A, Hoagland RG. Plastic flow stability of metallic nanolaminate composites[J]. Journal ofMaterials Science,2007,42(5):1765–1771.
    [99] Mara NA, Bhattacharyya D, Dickerson P, et al. Deformability of ultrahigh strength5nm Cu/Nbnanolayered composites[J]. Applied Physics Letters,2008,92(23):231901.
    [100] Mara NA, Bhattacharyya D, Hirth JP, et al. Mechanism for shear banding in nanolayeredcomposites[J]. Applied Physics Letters,2010,97(2):021909
    [101] Zhang ZF, Wang ZG. Grain boundary effects on cyclic deformation and fatigue damage[J].Progress in Materials Science,2008,53(7):1025-1099.
    [102] Kraft O, Schwaiger R, Wellner P. Fatigue in thin films: lifetime and damage formation[J].Materials Science and Engineering: A,2001,319-321:919-923.
    [103] Zhang GP, Sun KH, Zhang B, et al. Tensile and fatigue strength of ultrathin copper films[J].Materials Science and Engineering: A,2008,483-484:387-390.
    [104] Wang D, Volkert CA, Kraft O. Effect of length scale on fatigue life and damage formation in thinCu films[J]. Materials Science and Engineering: A,2008,493(1-2):267-273.
    [105] Sun XJ, Wang CC, Zhang J, et al. Thickness dependent fatigue life at microcrack nucleation formetal thin films on flexible substrates[J]. Journal of Physics D: Applied Physics,2008,41(19):195404.
    [106] Schwaiger R, Kraft O. Size effects in the fatigue behavior of thin Ag films[J]. Acta Materialia,2003,51(1):195-206.
    [107] Schwaiger R, Dehm G, Kraft O. Cyclic deformation of polycrystalline Cu film[J]. PhilosophicalMagazine,2003,83(6):693-710.
    [108] Zhang GP, Volkert CA, Schwaiger R, et al. Length-scale-controlled fatigue mechanisms in thincopper films[J]. Acta Materialia,2006,54(11):3127-3139.
    [109] Zhang GP, Schwaiger R, Volkert CA, et al. Effect of film thickness and grain size onfatigue-induced dislocation structures in Cu thin films[J]. Philosophical Magazine Letters,2003,83(8):477-483.
    [110] Zhang GP, Volkert CA, Schwaiger R, et al. Damage behavior of200-nm thin copper films undercyclic loading[J]. Journal of Mateials Research,2005,20(1):201-207.
    [111] Judelewicz M. Cyclic deformation of100-μm thin polycrystalline copper foils[J]. ScriptaMetallurgica et Materialia,1993,29(11):1463-1466.
    [112] Judelewicz M, Kunzi HU, Merk N, et al. Microstructural development during fatigue of copperfoils20-100-μm thick[J]. Materials Science and Engineering: A,1994,186(1-2):135-142.
    [113] Schroder K, Hollander J. Electrical resistance of ultra thin Ag-, Cu-and Mn-films onGe-substrates[J]. Thin Solid Films,2004,458(1-2):322-324.
    [114] Liu HD, Zhao YP, Ramanath G, et al. Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films[J]. Thin Solid Films,2001,384(1):151-156.
    [115] Liu MX, Xu KW. Anomalous electronic transport in metallic nanomultilayer at all length scales:Influence of grain boundary and interface boundary[J]. Journal of Materials Research,2008,23(6):1658-1666.
    [116] Fuchs K. The conductivity of thin metallic films according to the electron theory of metals[J].Mathematical Proceedings of the Cambridge Philosophical Society1938,34(1936):100-108.
    [117] Sondheimer EH. The mean free path of electrons in metals[J]. Advances in Physics,2001,50(6):499-537.
    [118] Mayadas AF, Shatzkes M. Electrical-resistivity model for polycrystalline films: the case ofarbitrary reflection at external surfaces[J]. Physical Review B,1970,1(4):1382–1389.
    [119] Camacho JM, Oliva AI. Surface and grain boundary contributions in the electrical resistivity ofmetallic nanofilms[J]. Thin Solid Films,2006,515(4):1881-1885.
    [120] Durkan C, Welland ME. Size effects in the electrical resistivity of polycrystalline nanowires[J].Physical Review B,2000,61(20):14215–14218.
    [121] Jin X, Zhou Y, Kim CO, et al. Microstructure and electrical transport property of Fe/Cu nanoscalemultilayered materials[J]. Journal of Applied Physics2002,91(9):6071-6076
    [122] Namba Y. Resistivity and temperature coefficient of thin metal films with rough surface[J].Japanese Journal of Applied Physics,1970,9(11):1326-1329.
    [123] Michez LA, Hickey BJ, Shatz S, et al. Direct evidence for mean-free-path effects in themagnetoresistance of magnetic multilayers with the current perpendicular to the planes[J].Physical Review B,2004,70(5):052402.
    [124] Goudeau P, Boubeker B, Eymery JP, et al. X-ray diffraction study of the sub-structuremodification induced by residual stresses during the deposition process of304L stainless steelfilms[J]. Thin Solid Films,1996,275(1-2):188-190.
    [125] Ma C-H, Huangb J-H, Chen H. Residual stress measurement in textured thin film bygrazing-incidence X-ray diffraction[J]. Thin Solid Films,2002,418(2):73-78.
    [126] Goudeau P, Badawi KF, Naudon A, et al. Determination of the residual stress tensor in Cu/Wmultilayers by x‐ray diffraction[J]. Applied Physics Letters,1993,62(4):246-248.
    [127] Patterson AL. The Scherrer formula for X-ray particle size determination[J]. Physical Review B,1939,56(10):978-982
    [128] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulususing load and displacement sensing indentation experiments[J]. Journal of Materials Research,1992,7(6):1564-1583
    [129] Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique andits applications[J]. Materials Characterization,2002,48(1):11-36.
    [130] Zhang GP, Sun KH, Zhang B, et al. Tensile and fatigue strength of ultrathin copper films[J].Materials Science and Engineering: A,2008,483:387-390.
    [131] Strehle S, Bartha JW, Wetzig K. Electrical properties of electroplated Cu(Ag) thin films[J]. ThinSolid Films,2009,517(11):3320–3325.
    [132] Sinha MK, Mukherjee SK, Pathak B, et al. Effect of deposition process parameters on resistivityof metal and alloy films deposited using anodic vacuum arc technique[J]. Thin Solid Films,2006,515(4):1753-1757.
    [133] Zhang GP, Volkert CA, Schwaiger R, et al. Damage behavior of200-nm thin copper films undercyclic loading[J]. Journal of Materials Research,2005,20(1):201-207.
    [134] Wu XL, Liao XZ, Srinivasan SG, et al. New deformation twinning mechanism generates zeromacroscopic strain in nanocrystalline metals[J]. Physical Review Letters,2008,100(9):095701.
    [135] Wu XL, Ma E. Dislocations and twins in nanocrystalline Ni after severe plastic deformation: theeffects of grain size[J]. Materials Science and Engineering: A,2008,483-484:84-86.
    [136] Wu X, Zhu YT, Chen MW, et al. Twinning and stacking fault formation during tensiledeformation of nanocrystalline Ni[J]. Scripta Materialia,2006,54(9):1685-1690.
    [137] Shan ZW, Stach EA, Wiezorek JMK, et al. Grain boundary-mediated plasticity in nanocrystallinenickel[J]. Science,2004,305:654-657.
    [138] Yip S. Nanocrystals [mdash] the strongest size[J]. Nature,1998,391:532-533.
    [139] Schiotz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper[J]. Science,2003,301:1357-1359.
    [140] Christian JW, Mahajan S. Deformation twinning[J]. Progress in Materials Science,1995,39(1-2):1-157.
    [141] Meyers MA, Andrade UR, Chokshi AH. The dffect of grain size on the high-strain,high-strain-rate behavior of copper[J]. Metallurgical and Materials Transactions A1995,26(11):2881-2893.
    [142] Yu Q, Shan Z, Li J, et al. Strong crystal size effect on deformation twinning[J]. Nature,2010,463:335-338.
    [143] Meyers MA, V hringer O, Lubarda VA. The onset of twinning in metals: a constitutivedescription[J]. Acta Materialia,2001,49(19):4025-4039.
    [144] Cottrell AH, Bilby B. A mechanism for the growth of deformation twins in crystals[J].Philosophical Magazine,1951,42(7):573-581.
    [145] Niewczas M, Saada G. Twinning nucleation in Cu-8at.%Al single crystals[J]. PhilosophicalMagazine A,2002,82(1):167-191.
    [146] Song SG, Gray GT. Double dislocation pole model for deformation twinning in fcc lattices[J].Philosophical Magazine A,1995,71:661-670.
    [147] Yamakov V, Wolf D, Phillpot SR, et al. Deformation twinning in nanocrystalline Al bymolecular-dynamics simulation[J]. Acta Materialia,2002,50(20):5005-5020.
    [148] Yamakov V, Wolf D, Phillpot SR, et al. Dislocation processes in the deformation ofnanocrystalline aluminium by molecular-dynamics simulation[J]. Nature Materials,2002,1(1):45-48.
    [149] Ogata S, Li J, Yip S. Energy landscape of deformation twinning in bcc and fcc metals[J]. PhysicalReview B,2005,71:224102.
    [150] Zhu YT, Wu XL, Liao XZ, et al. Twinning partial multiplication at grain boundary innanocrystalline fcc metals[J]. Applied Physics Letters,2009,95(3):031909.
    [151] Wei X, Lee D, Shim S, et al. Plane-strain bulge test for nanocrystalline copper thin films[J].Scripta Materialia,2007,57(6):541-544.
    [152] Li X, Wei Y, Yang W, et al. Competing grain-boundary-and dislocation-mediated mechanism inplastic strain recovery[J]. Proceedings of the National Academy of Sciences of the United Statesof America,2009,106:16108-16113.
    [153] Schiotz J, DiTolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grainsizes[J]. Nature,1998,391:561-563.
    [154] Shimokawa T, Nakatani A, Kitagawa H. Grain-size dependence of the relationship betweenintergranular and intragranular deformation of nanocrystalline Al by molecular dynamicssimulations[J]. Physical Review B,2005,71(22):224110.
    [155] Bakonyi I, Péter L. Electrodeposited multilayer films with giant magnetoresistance (GMR):Progress and problems[J]. Progress in Materials Science,2010,55(3):107-245.
    [156] Lai WS, Yang MJ. Observation of largely enhanced hardness in nanomultilayers of the Ag-Nbsystem with positive enthalpy of formation[J]. Applied Physics Letters,2007,90(18):181917.
    [157] Jiang H, Klemmer TJ, Barnard JA, et al. Epitaxial growth of Cu(111) films on Si(110) bymagnetron sputtering: orientation and twin growth[J]. Thin Solid Films,1998,315(1-2):13-16.
    [158] Gleiter H. The formation of annealing twins [J]. Acta Metallurgica,1969,17(12):1421-1428
    [159] Fullman RL, Fisher JC. Formation of annealing twins during grain growth[J]. Journal of AppliedPhysics,1951,22(11):1350-1355.
    [160] Pande CS, Imam MA, Rath BB. Study of annealing twins in fcc metals and alloys[J].Metallurgical and Materials Transactions A1990,21(11):2891-2896.
    [161] Nielsen JP. The origin of annealing twins [J]. Acta Metallurgica,1967,15(6):1083-1085.
    [162] King AH. Evidence of the formation of twins by deformation and "growth-accidents" inevaporated thin films of gold[J]. Physica Status Solidi (a),1983,76(2):629-636.
    [163] Meinel K, Klaua M, Bethge H. On twin and stacking fault formation during the epitaxial filmgrowth of f.c.c. materials on (111) substrates[J]. Physica Status Solidi (a),1988,110(1):189-196.
    [164] Varin RA, Kruszynska J. Control of annealing twins in type316austenitic stainless steel[J]. ActaMetallurgica,1987,35(7):1767-1774.
    [165] Chakraborty J, Kumar K, Ranjan R, et al. Thickness-dependent fcc–hcp phase transformation inpolycrystalline titanium thin films [J]. Acta Materialia,2011,59(7):2615-2623.
    [166] Marcus RB, Quigley S. Formation of f.c.c., b.c.c. and β-tantalum films by evaporation[J]. ThinSolid Films,1968,2(5-6,):467-477.
    [167] Thompson GB, Banerjee R, Dregia SA, et al. Phase stability of bcc Zr in Nb/Zr thin filmmultilayers [J]. Acta Materialia,2003,51(18):5285-5294.
    [168] Banerjee R, Zhang XD, Dregia SA, et al. Phase stability in Al/Ti multilayers[J]. Acta Materialia,1999,47(4):1153-1161.
    [169] Banerjee R, Ahuja R, Fraser HL. Dimensionally induced structural transformations intitanium-aluminum multilayers[J]. Physical Review Letters,1996,76(20):3778–3781.
    [170] Redfield AC, Zangwill AM. Stacking sequences in close-packed metallic superlattices[J].Physical Review B,1986,34(2):1378-1380.
    [171] Bruinsma R, Zangwill AM. Structural transitions in epitaxial overlayers[J]. Journal de Physique1986,47(12):2055-2073.
    [172] Dregia SA, Banerjee R, Fraser HL. Polymorphic phase stability in thin multilayers[J]. ScriptaMaterialia,1998,39(2):217-223.
    [173] Li JC, Liu W, Jiang Q. Bi-phase transition diagrams of metallic thin multilayers[J]. ActaMaterialia,2005,53(4):1067-1071.
    [174] Zhu T, Li J, Samanta A, et al. Temperature and strain-rate dependence of surface dislocationnucleation[J]. Physical Review Letters,2008,100(2):025502.
    [175] Zhu T, Li J, Samanta A, et al. Interfacial plasticity governs strain rate sensitivity and ductility innanostructured metals[J]. Proceedings of the National Academy of Sciences of the United Statesof America,2007,104:3031-3036.
    [176] Lund AC, Schuh CA. Strength asymmetry in nanocrystalline metals under multiaxial loading[J].Acta Materialia2005,53,(11):3193-3205.
    [177] Cheng S, Spencer JA, Milligan WW. Strength and tension/compression asymmetry innanostructured and ultrafine-grain metals[J]. Acta Materialia,2003,51(15):4505-4518.
    [178] Monk J, Farkas D. Tension-compression asymmetry and size effects in nanocrystalline Ninanowires[J]. Philosophical Magazine,2007,87(14-15):2233-2244
    [179] Lund AC, Nieh TG, Schuh CA. Tension/compression strength asymmetry in a simulatednanocrystalline metal[J]. Physical Review B,2004,69(1):012101.
    [180] Misra A, Verdier M, Kung H, et al. Deformation mechanism maps for polycrystalline metallicmultiplayers[J]. Scripta Materialia,1999,41(9):973-979.
    [181] Anderson PM, Foecke T, Hazzledine PM. Dislocation-based deformation mechanisms in metallicnanolaminates[J]. Materials Research Society Bulletin,1999,24(2):27-33
    [182] Li YP, Zhang GP. On plasticity and fracture of nanostructured Cu/X (X=Au, Cr) multilayers:The effects of length scale and interface/boundary[J]. Acta Materialia,2010,58(11):3877-3887.
    [183] Arsenault RJ, Fishman S, Taya M. Deformation and fracture behavior of metal-ceramic matrixcomposite materials[J]. Progress in Materials Science,1994,38:1-157.
    [184] Hsia KJ, Suo Z, Yang W. Cleavage due to dislocation confinement in layered materials[J]. Journalof the Mechanics and Physics of Solids,1994,42(6):877-896
    [185] Low Jr JR. The fracture of metals[J]. Progress in Materials Science,1963,12:3-96.
    [186] Lloyd DJ. The scaling of the tensile ductile fracture strain with yield strength in Al alloys [J].Scripta Materialia,2003,48(4):341-344.
    [187] Jain M, Allin J, Lloyd DJ. Fracture limit prediction using ductile fracture criteria for forming ofan automotive aluminum sheet[J]. International Journal of Mechanical Sciences,1999,41(10):1273-1288
    [188] Cockcroft MG, Latham DJ. Ductility and the workability of metals[J]. Journal of the Institute ofMetals,1968,96:33-39.
    [189] Li YP, Tan J, Zhang GP. Interface instability within shear bands in nanoscale Au/Cumultilayers[J]. Scripta Materialia,2008,59(11):1226-1229.
    [190] Li YP, Zhu XF, Tan J, et al. Comparative investigation of strength and plastic instability in Cu/Auand Cu/Cr multilayers by indentation[J]. Journal of Mateials Research,2009,24(3):728-735.
    [191] Li YP, Zhang GP, Wang ZG. Strength and plastic deformation behavior of nano-scale Au/Cu andCr/Cu multilayers[J]. Advanced Materials Research,2008,41-42:3-8.
    [192] Phan M-H, Peng H-X. Giant magnetoimpedance materials: Fundamentals and applications[J].Progress in Materials Science,2008,53(2):323-420.
    [193] Palasantzas G. Surface roughness and grain boundary scattering effects on the electricalconductivity of thin films[J]. Physical Review B,1998,58(15):9685-9688.
    [194] Gurvitch M. Resistivities and mean free paths in individual layers of a metallic multilayeredstructure[J]. Physical Review B,1986,34(2):540–546.
    [195] Leung KM. Electrical resistivity of metallic thin films with rough surfaces[J]. Physical Review B,1984,30(2):647–658.
    [196] Nallamshetty K, Angadi MA. Transport properties of Cu/Mn multilayer films at lowtemperatures[J]. Journal of Applied Physics1992,72(10):4732-4735.
    [197] Clemens BM, Nix WD, Ramaswamy V. Surface-energy-driven intermixing and its effect on themeasurement of interface stress[J]. Journal of Applied Physics,2000,87(6):2816-2820.
    [198] Misra A, Hundley MF, Hristova D, et al. Electrical resistivity of sputtered Cu/Cr multilayeredthin films [J]. Journal of Applied Physics1999,85(1):302-309.
    [199] Lima A, Zhang X, Misra A, et al. Length scale effects on the electronic transport properties ofnanometric Cu/Nb multilayers[J]. Thin Solid Films2007,515(7-8):3574-3579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700