裂隙岩体复合防渗堵水浆液试验及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现阶段地下工程建设发展的规模不断扩大和水利工程的不断兴起,注浆技术在国内外得到越来越广泛的应用。注浆的主要目的是将不符合工程要求的岩土改良为高品质的符合工程要求的岩土,使即有资源得到充分利用。由于注浆工程属于隐蔽工程,使得注浆技术的发展至今为止还很不成熟,在注浆实践运用过程中有时还存在着理论落后于实践的情况。注浆材料及浆液性能的研究是注浆技术中不可缺少的一个重要组成部分。注浆之所以能够起到防渗堵水或加固的作用,主要是由于注浆材料在注浆过程中发生由液相到固相的转变的结果。而注浆浆液的性能关系着浆液注入裂隙岩体后的注浆效果,对注浆工程来讲是至关重要的。
     论文通过采用收集前人资料、室内试验、理论分析以及现场工程应用等研究方法,对裂隙岩体注浆效果的影响因素作了归纳和总结,对裂隙岩体复合防渗堵水浆液的浆材成分、浆材配比、浆液性能、浆液固结机理、浆液防渗堵水机理及浆液渗透机理做了研究,并在此基础上探讨了该浆液在裂隙岩体防渗堵水工程中的运用。
     对于裂隙岩体防渗堵水注浆来说,不管使用的是何种注浆材料,其注浆效果最主要的影响因素是注浆材料本身的性质、裂隙岩体的工程力学性质、注浆设计参数及现场注浆工艺等。
     经过室内试验,初步确定裂隙岩体复合防渗堵水浆液由粘土、水泥、水玻璃、NH_4H_2PO_4、水等成分组成。该浆液配比经试验确定有一个大概最佳范围,但在应用于具体工程时还应根据工程现场的实际情况进行室内试验及现场试验,以确定该工程各注浆段的最优配方。浆液的性能测试结果表明,浆液具有良好的稳定性、可控性及可注性,其浆液注入岩层后形成的结石体具有很好的防渗堵水效果及耐久性,且浆液的性能与浆液各组份的含量有关。
     通过采用扫描电镜观察等试验方法对裂隙岩体复合防渗堵水浆液固结过程进行进一步研究,结果发现该浆液的固结过程即是浆液各组成成分之间互相发生一系列物理化学反应的过程,包括水泥的水化反应、粘土的水化、NH_4H_2PO_4对水泥水化反应的阻滞作用、水泥水化物与粘土颗粒之间的反应、水泥与水玻璃之间的反应及粘土与水玻璃之间的反应等。而浆液固结过程的热力学分析表明上述反应中晶体和胶体生成过程是新相形成、生长的过程,其推动力可以用自由能差来描述;浆液动力学分析则表明反应进行程度系数α_b有增大的趋势,说明上述反应具有自发性。
     裂隙岩体复合防渗堵水浆液的结构形成过程与水泥浆液的结构形成过程不一样。根据浆液塑性强度曲线的结构特征可将浆液的结构形成过程分为以下三个状态:液态、凝胶态及固态,在上述“三态”中浆液均能进入防渗堵水状态,只是其防渗堵水方式和能力有很大的不同。而浆液结石体在注浆孔内可沿裂隙方向分为三个区:密实区、稳定区及松散区。在裂隙岩体防渗堵水注浆过程中,松散区、稳定区及密实区等“三区”是随着注浆时间交互变化的。
     在裂隙岩体中采用注浆方法防渗堵水,浆液能够起防渗堵水的作用机理就是浆液对地下水的流动有一个与水流方向相反的阻挡作用,即浆液的流动应是水渗流的逆过程。若将浆材按与水类似的牛顿流体来考虑,裂隙渗流与注浆运动过程的本质是一致的,牛顿流体浆材的流动应当符合有关的裂隙水力学公式。论文根据国内外学者已推导出来的一些裂隙水力学公式,考虑裂隙岩体复合防渗堵水浆液属于宾汉流体,在浆液流动时具有流核,推导建立了该浆液在岩体平面裂隙及倾斜裂隙中的渗流规律模型。
     工程应用研究结果表明,裂隙岩体复合防渗堵水浆液在裂隙岩体中的注浆工艺与其它注浆浆液的工艺类似。但采用该浆液对裂隙岩体注浆时,应采用三级搅拌法及大循环注浆方式,注浆时还应根据工程现场地层实际情况进行控制和调节浆液注入量及配方,来获得最佳注浆效果。
Ground project enlarged and the water conservancy project prospered at present, grouting has been widely used at home and abroad. Grouting purposes most to reinforce the rocks which don't meet the requirement of the project into the high-qualitied rocks that meet the requirement so that it can make full usage of the resources. Due to grouting engineering belonging to hidden project, the development of it is un-mature so far and the cases of theory falling behind practice remains now and then during the process of applying grouting in practice. Study on grouting material and behavior of grout plays a significant role in the technology of grouting. Grouting can seal up to shut off water and reinforce stratum because the materials can change liquid phase into solid phase. The grouting effect relates to the behavior of grout after being injected into the fractured rock mass, which is significant to grouting engineering.
     Base on collecting the past data, indoor test and theoretic analysis and appliance in the scene of projection, the affecting factors of the grouting effect has been concluded and summarized inhere. Furthermore, the paper has done research on the compound watertight grout components, proportion, behavior, consolidation mechanism, antiseepage mechanism and infiltration mechanism, and discusses the application in the project of fractured rock mass.
     For watertight and water shut-off grout in fractured rock mass, there is no matter that which material is used. The uppermost influential factor is the property of the material, the engineering mechanical property, design parameter for grouting and grouting technology.
     Through the laboratory test, it confirms preliminarily that the watertight and water shut-off grout in fractured rock mass is made up with clay, cement, water glass, NH_4H_2PO_4, water, etc.. The proportioning has a general best range through experiments, however, when applying it in the specified projection, the grout should be according to the practical case at spot as well as the practical experiment, so as to ensure the best formulation. The property of grout test has manifested that grout has excellent stability, controllability condition, grout-ability and the stone body formed after the grout has infused into the terrane has showed good effect and permanence, and the property of grout relates to the content of the components of it.
     The paper has maked further research on the process of consolidation of the grout by some test methods like SEM and found that the process is a series of physical chemical reaction among each component, which includes prehydration reaction of cement, prehydration of clay, inhibitory activate from NH_4H_2PO_4 to prehydration of cement, the reaction between cement hydrate and clay particle, the reaction between cement and water glass and the reaction between clay and water glass. The thermomechanical analysis for the process of consolidation shows that crystal and colloid created in the reaction is kainotyping and growing. Its propulsion can be described by free energy difference. And the analysis manifests that the reaction carrying-coefficient(a_b) has the trend to increase, which shows the reaction has autonomy.
     The forming process of the grout structure is different from the cement slurry's. In accordance to structural feature of it's plastic strength curve, the forming process of the grout structure can be divided into liquid state, gel state and solid state. And the grout can seal up and shut off water in the process. But there are big differences in the mode and the capability. The stone body is divided into three zones in grouting hole along the crack direction. They are consolidation zone, stability zone and porosity zone. And the three zones can interconvert in company with the grouting time in the grouting process.
     Grouting is adapted in fractured rock mass to seal up and shut off water, and the grout can do work because of the contrary resist function to direction of groundwater flowing. That is reverse process of water flow. If the grout material is considered as Newtonian fluid like water, the process of grouting moving is coherent with seepage in crack essentially. And the material flowing should accord with the relative hydraulics formula. Based on some hydraulics formula deduced by scholar at home and abroad, the thesis deduces and establishes the infiltrating model of grout in the plane and declining crack after considering that the grout is belong to Bingham fluid and has stream nucleus when it flows.
     The applied research of projection has manifested that the technics of grouting in fractured rock mass with grout is similar to others. But the grout is adapted the method of third class stirring and the method of major cycle in grouting. The injection rate and formulation should be controlled and adjusted in accordance with practical situation to obtain the optimal effect.
引文
[1]《地基处理手册》编辑委员会.《地基处理手册》[M].北京:中国建筑工业出版社,1988
    [2]何修仁.注浆加固与堵水[M].沈阳:东北土学院出版社,1990
    [3]彭振斌.注浆工程设计计算与施工[M].武汉:中国地质大学出版社,1997
    [4]程良奎,张作媚.杨志银.岩土加固实用技术[M].北京:地震出版社,1994
    [5]吴理云.注浆理论基础[M]..沈阳:东北工学院出版社,1981
    [6]Glossop.R..The invention and development of injection processes [J] .Geotechnique(London), 5(1950): 91~101
    [7]Kutzner, C..Grouting of Rock and Soil. Balkema[M], Rotterdam, 1996
    [8]Houlsby .A.C..Construction and design of cement grouting -A guide to grouting in rock formation[J] .John Wiley&Sons, Inc., NY, 1990
    [9]E.Nonveiller,顾柏林译.灌浆的理论与实践[M].沈阳:东北工学院出版社,1991
    [10]E.Nonveiller.Grouting Theory and Pratice[J].New York USA, Elsevier Science Publishers B.V, 1989, 1~7
    [11]杜嘉鸿.化学灌浆在岩土加固和防渗堵漏工程中的应用及其发展趋向[J].1991年全国灌浆技术学术讨论会论文集,1991
    [12]李治国.六甲洞隧道病害整治注浆加固技术[J].西部探矿工程.1999,11(5)
    [13]张景秀.坝基防渗与灌浆技术[M].北京:水利电力出版社,1992
    [14]程晓,吴秋蓉.注浆技术在市政地下工程中的应用[J].地下工程与隧道,1991(1)
    [15]杜嘉鸿等.地下建筑注浆工程手册[M].北京:科学出版社,1992
    [16]王国明,靳毅斌.斜井淹井水下注浆技术[J].注浆堵水加固技术及应用—中国注浆技术43年论文集[M],北京:煤炭工业出版社,1998
    [17]黄树勋.我院注浆技术研究的26年[J].长沙矿山研究院季刊,1987(4)
    [18]滕杰.注浆锚索在中央泵房的应用[J].注浆堵水加固技术及应用-中国注浆技术43年论文集[M],北京:煤炭工业出版社,1998
    [19]王新杰,王元湘.注浆技术在我国地铁土程中的应用[J].国际岩土锚固与灌浆新进展,北京:中国建筑工业出版社,1996
    [20]张川,苏坚深,高岗荣.煤矿工作面注浆技术的发展[J].注浆堵水加固技术及应用.中国注浆技术43年论文集[M],北京:煤炭工业出版社,1998
    [21]王洪恩.堤坝地基劈裂灌浆防渗技术的研究[J].水利工程管理技术,1987(3)
    [22]刘斌.地下工程特殊施工[M].北京:冶金工业出版社,1994
    [23]李长洪,高永涛,任伍儿.双泵双液注浆堵水加固工艺在松散岩体中的应用[J].中国地质灾害与防治学报,1994(4)
    [24]高永涛,孙金海,李长洪.含高承压水黄土层中注浆堵水的理论与实践[J].有色金属(季刊),1997(2)
    [25]程鉴基.灌浆技术在软土地基处理中的综合应用[J].岩土工程学报,1994,16(5):89~93
    [26]Baker W H..以压密灌浆加固己建土石坝坝基[J],现代灌浆技术译文集[M],北京:水利电力出版社,1991,117~126
    [27]Ih-shalom. M., S.A. Greenberg. The Rheology of Fresh Portland Cement Pasters[J].Proceedings of 4~(th) International Symposium Chemistry Cement,721
    [28]吴超寰.清江隔河岩工程灌浆水泥的质量检测与控制[J].长江科学院院报,1994,11(2):27~33
    [29]Deandrade R. M..New techniques for the determination of the hydraulic properties offracture rock masses[J], Froc. of 6~(th) Int. Cong. On Rock Mechanics.Montreal, 1987
    [30]任卓群等.劈裂灌浆技术用于均质土坝病害整治[J].四川水利,1992,13(4):40~42
    [31]万姜林.大瑶山隧道堵水及加固的注浆技术[J].锚固与注浆工程实录选.北京:中国利学技术出版社,1995
    [32]王星华等.粘土固化浆液在广州地铁杨体区间含水沙层注浆堵水固沙开挖应用研究[J].成都:西南交通大学科研研究报告,1997
    [33]柳载舟,呈崇博.龙羊峡水电站不良地基的化学灌浆[J].1984~1988年中国水力发电年鉴,学术书刊出版社,1990
    [34]卢什尼科娃,吴理云译.注浆工程中最佳注浆压力状态的选择[J].国外金属矿采矿,1986(5)
    [35]杨晓东.水泥浆材灌入能力研究[J].水利水电科学研究院科学研究论文集第27集,1985
    [36]金德濂.GIN灌浆法介绍[J].湖南水利,1995(6):5~10
    [37]G.隆巴迪.灌浆强度的选择[J].水利水电快报,1997,18(2):1~6
    [38]李保平.GIN灌浆理论的意义及主要灌浆参数的确定[J].西部探矿工程,2002,76(3):10~11
    [39]郝永真.小浪底工程4号洞GIN法灌浆施工[J].西北水电,2000(2):31~33
    [40]刘锋.GIN法在小浪底帷幕灌浆第六子标工程中的应用[J].探矿工程,2003增刊:136~139
    [41]于兰芳.白石水库GIN帷幕灌浆技术分析[J].水利水电技术,2000(5):22~24
    [42]张志良.对GIN灌浆法的看法[J].水利水电工程设计,1997(1):50~53
    [43]林栋材.GIN灌浆法在百色水利枢纽帷幕灌浆试验中的应用[J].广西水利水电,2000(4):8~10
    [44]杜晓刚.灌浆强度值(GIN)法灌浆试验研究[J].郑州工业大学学报,1997,18(2):47~53
    [45]《煤炭科研参考资料组编》.国外注浆技术概况[J].1972
    [46]《大坝化学灌浆技术经验汇编》小组编.《大坝化学灌浆技术经验汇编》[M].北京:水利电力出版社,1977
    [47]葛家良.注浆技术的现状与发展趋向综述[J].首届全国岩石锚固与灌浆技术学术讨论会,北京,1995
    [48]Yonekura R...Recent chemical grouting engineering for underground construction . Proc.Of the International Symposium on Anchoring and Grouting Techniques. Dec., Guangzhou, 1994, 97~113
    [49]白俊平.GIN法灌浆技术试验研究[D].太原理工大学硕士学位论文,2003
    [50]孙钊.大坝岩石基础灌浆施工[M].北京:水利电力出版社,1987
    [51]梁仁友.国内外工程灌浆的发展概况[J].勘察科学技术,1987(1)
    [52]葛家良.注浆技术的现状与发展趋势[J].矿业世界,1995(1)
    [53]吴兆兴.欧美注浆近况[J].隧道工程,1983(3)
    [54]Shimoda .M. and Ohmori.H..Ultra fine grouting material. Proc. Conf.on Grouting inGeotech. Engrg.[J] .ASCE , New Orleans, La., 1982:77~91
    [55]Nose.M.,郭玉花译.日本大坝灌浆新技术[J].现代灌浆技术译文集.北京:水力电力出版社,1991
    [56]N.Matsumoto..Development of Grouting Material for Cement Powder Grouting.Proceedings of IS-TOKYO 96/the Second International Conference on Ground Improvement Geosystems, 1996:59~64
    [57]Hakansson.Rheological properties of microfine cement grouts.Tunnelling and Undergrounding space Technology, 1992, 7(4): 59~64
    [58]Association Francaise des Travaus en Souervain.Recommendations on grouting for underground works .Tunnelling and Undergrounding space Technology, 1991, 6(4): 383~481
    [59]杨米加.随机裂隙岩体注浆渗流机理及其加固后稳定性分析[D].中国矿业大学 博士学位论文,1999
    [60]郝哲.岩体注浆行为研究及其计算机模拟[D].东北大学,1998
    [61]葛家良.软岩巷道注浆加固机理及注浆技术若干问题的研究[D].中国矿业大学博士学位论文,1995年
    [62]马建民.软土地基注浆加固的理论和实践[J].建筑施工,1992(2):35~38
    [63]刘嘉材.裂缝灌浆扩散半径研究[[J].中国水利水电科学院科学研究论文集(第8期).北京:水利出版社,1982:186~195
    [64]熊厚金.中国化学灌浆的过去、现在与未来[J].1991年全国灌浆技术学术讨论会论文集[C],1991
    [65]潘家铮,包银鸿.中国坝土灌浆的成就[J].国际岩土锚固与灌浆新进展.北京:中国建筑工业出版社,1996
    [66]熊厚金,中国化学灌浆的成就[J],国际岩土锚固与灌浆新进展.北京:中国建筑工业出版社,1996
    [67]杨米加.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001,20(6):839~841
    [68]王民寿.湿磨超细水泥高深度灌浆技术[J].四川水利,1994,15(4):18~20
    [69]韦汉道.化学灌浆材料的现状与未来[J].广州:91全国灌浆技术学术讨论会论文集,1991:1~10
    [70]广州化学编辑部.丙烯酞胺灌浆材料.广州化学,1991(4)
    [71]盛苹湘,杨殿文.丙烯酸盐注浆材料的研究[J].广州:91全国灌浆技术学术讨论会论文集,1991:195~201
    [72]付竹芳.非碱性水玻璃灌浆材料的研究及其在工程中的应用[J].1993基础处理技术交流会论文集[C].水利部建设开发司,中国水利水电基础工程局,1993
    [73]广州化学研究所.铬木质素化学灌浆浆液的性能与应用[J].大坝化学灌浆技术经验选编.北京:水利电力出版社,1997:187~199
    [74]杜嘉鸿,秦明武,肖荣久.国外化学注浆教程[M].北京:水利电力出版社,1987
    [75]坪井直道著,吴永宽译.化学注浆法的实际应用[M].北京:煤炭工业出版社,1980
    [76]华东勘测设计研究院等三单位.化学灌浆技术[M].北京:水利出版社,1980
    [77]刘嘉材.水土聚氨酯灌浆.水利电力科学研究院科学研究论文集(第8集)[M],北京:水利电力出版社,1982:169~176
    [78]王星华.粘土固化浆液在地下工程中的应用[M],北京:中国铁道出版社,1998
    [79]张可能.粘土固化浆液的结构形成过程及其注浆堵水研究[D],长沙:中南工业大学,1994
    [80]曾祥熹等.地下水防治技术—江西铜业公司城门山铜硫矿湖泥注浆技术研究[M],中国有色总公司科技项目鉴定技术报告,1993
    [81]杨米加,张农.破裂岩体加固后的本构模型研究[J].金属矿山,1998(5):11~14
    [82]韩立军,贺永年.破裂岩体注浆加锚特性模拟数值试验研究[J].中国矿业大学学报,2005,34(4):418~422
    [83]Baker C.. Comments on paper Rock Stabilization in Rock Mechanics [J].Muler, Springer-Verlag NY,1974
    [84]张良辉.岩土灌浆渗流机理及渗流力学[D].北京:北方交通大学,1996
    [85]石达民,吴理百.关于注浆参数研究的一点探索[J].矿山技术,1986(2)
    [86]G.Lombardi..水泥灌浆浆液是稠好还是稀好[J].现代灌浆技术译文集,北京:水利电力出版社,1991:76~81
    [87]基帕科等,剑万禧译.大喀斯特溶洞的注浆堵水[J].世界煤炭技术,1986(2)
    [88]Wittke,采用膏状稠水泥浆灌浆新技术[J].现代灌浆技术译文集,北京:水利电力出版社,1991:48~58
    [89]卢什尼科娃,贺江秋译.根据钻孔流量仪测定资料确定岩石的裂隙性质[J].国外煤田地质,1987(2)
    [90]Hassler. Simulation of grouting in Jointed rock. Proc[J]. 6~(th) lnt. Conf. On Rock Mech., V.Z. , 1987
    [91]Hassler.Computer — simulated flow of grouts in jointed rock[J].Tunnelling&under-ground Space Technology, 1992
    [92]Janson. Grouting of jointed rock-A case study .Grouting in Rock and Concrete Widmann(ed)[J].Balkema, Rotterdam, 1993
    [93]郑长成.裂隙岩体灌浆的模拟研究[D].长沙:中南工业大学,1999
    [94]葛家良.基岩结构面特征及其注浆浆液扩散的GJL二维模型[J].广州化学增刊,2002,27
    [95]阮文军.浆液基本性能与岩体裂隙注浆扩散研究[D].吉林:吉林大学,2003
    [96]郑玉辉.裂隙岩体注浆浆液与注浆控制方法研究[D].吉林:吉林大学,2005
    [97]胡继承.裂隙岩体中的现场注浆试验研究[D].长沙:中南大学,2005
    [98]陆璇.应用统计[M],北京:清华大学出版社,1999
    [99]方开泰,王元.均匀设计与均匀设计表[M],北京:科学技术出版社,1994
    [100]Lomize G M. Flow in Fractured Rocks[M] .Gesenergoizdat, Moscow, 1951
    [101]Louis C. A study of groundwater flow in jointed rock and its influence on the stability ofrock masses[J] .Rock Mech Res Rep 10 , Imp Coil London 1969: 91~98
    [102]速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究[J].岩土工程学报,1995,17(5):19~24
    [103]Amadei.B&Illangasekare T..A Mathematical Model for Flow and Solute Transport in Non-homogeneous Rock Fracture.Int.J.Rock Mech. Min, Sci.&Geomech Absr., 1994, 18 (1): 719~731
    [104]Neuzil C. E. and Tracy J. V..Flow through fractures.Water Resour Resear[J],1981, 17 (1): 191~194
    [105]Iwai, K..Fundamental Studies of Fluid Flow Through a Single Fracture[D].Univ.of Calif.Berkely, 1976
    [106]Amadei.B.Effect of Turbalence on Fracture Flow and Advective Transport of Solutes[J]. Int. J. Rock Mech, Min Sci&GeomechAbstr 1995, 32 (4): 343~356
    [107]速宝玉,居美礼,张祝添.充填裂隙渗流特性实验研究[J].岩土力学,1994(4)
    [108]张良辉.岩土灌浆渗流机理及渗流力学[M].北京:北方交通大学,1996
    [109]赵学端.粘性流体力学[M].北京:机械工业出版社,1983
    [110]曾祥熹,陈志超.钻孔护壁堵漏原理[M].北京:地质出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700