电力系统PMU优化配置及可行方案评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统的发展和对安全稳定性要求的不断提高,传统的以SCADA/EMS为代表的稳态监控系统难以满足电网动态监控的要求;基于同步相量测量单元(PMU)的广域测量系统(WAMS)可以较好地解决电力系统广域同步测量问题,为电网稳定监控提供了一种新的技术手段。大量研究表明,只需在系统部分节点安装PMU即可实现系统全局可观测。
     PMU优化配置是一个不连续高维非线性优化组合问题。本文首先对该问题的数学模型进行了研究,基于电网可观测性分析原则给出了系统可观测性分析的具体实现步骤,然后将PMU优化配置分为初步配置和可行性方案评估两个阶段。初步配置阶段,将二进制粒子群算法应用于PMU优化配置,针对普通二进制粒子群算法收敛慢的不足,引入概率偏移因子,根据出线度的不同,对不同节点设置不同的概率;分析普通优化方法在多解问题上的应用局限,进而提出改进措施;用Matlab编写程序,对新英格兰39节点系统、IEEE30节点系统和湖南长株潭42节点系统进行仿真,仿真结果验证所提方法的可行性。
     在可行解评估阶段,首先对系统进行连续潮流分析,找出薄弱母线;然后引入电压降落和系数,通过比较各方案该系数的不同,找出各方案中所监测到的电压降落和较大的方案,即为推荐方案;用Matlab编写程序,得出IEEE30节点系统的PMU推荐配置方案。
With the development of power system and the increasingly stricter requirement on security and stability, traditional monitoring systems based on steady state, such as SCADA/EMS, can not meet the needs of dynamic monitoring. Wide area measurement system (WAMS) based on phasor measurement unit (PMU) can effectively handle the problem of wide area synchronous mearsurement in power system, and offer a new approach for stable monitoring and control of power network. A lot of researches indicate that it can guarantee full network observability to place PMUs in certain buses in power grid.
     To place PMUs optimally is a discontinuous, high dimensinal, nonlinear, optimization grouping problem. Firstly, main steps for network observability analysis are proposed by studying the mathematical model of PMU optimal placement; secondly, the optimization is processed in two stage: preliminary placement and assessment for feasible scheme.
     In preliminary stage, the binary particle swarm optimization (BPSO) is applied to the issue of optimal PMUs placement. Considering the deficiency of convergence rate in conventional BPSO, a probability shifting factor is introduced to adjust the probability of value on 0 or 1 according to bus-outlet number so that the ability of convergence rate of solutions is improved based on analyzing. The limitation of general optimization algorithm on multiple solutions is analyzed, and then improving measures are presented. The effectiveness of proposed algorithm is verified by the numerical calculation results of New England 39-bus system ,IEEE 30-bus system and Hunan Chang-Zhu-Tan 42-bus system respectively.
     In the assessment stage, the weak voltage buses are identified after network analysis with continuation power flow firstly, and then a coefficient is introduced to compare the sum of voltage drops of every scheme, finally the scheme with larger coefficients are recommended. The test program is designed in Matlab and the recommended schemes of IEEE 30-bus system are proposed
引文
[1]《电力工业“十五”规划》,国家经贸委,2002, 1-11
    [2]郑宝森,郭日彩.中国互联电网的发展.电网技术,2003,27(2):1-3
    [3] Phadke A G. Synchronized phasor measurements in power systems. IEEE Computer Applications in Power, 1993, 6(2):10-15
    [4] Rurnett R O J, Butts M M, Cease T W, et al. Synchronized phasor measurements of power systems event. IEEE Trans on Power Systems, 1994,9(3):1643-1650
    [5] Phadke A G. Synchronized phasor measurements- A historical overview, In: Proceedings of IEEE/PES Transmission and Distribution Conference and Exhibition. Japan, 2002, 476-479
    [6]彭疆南,孙玉章,王海风.考虑系统完全可观测性的PMU最优配置方法.电力系统自动化, 2003, 27(4): 10-16
    [7]李强,于尓铿,吕世超等.一种改进的相量测量装置最优配置方法.电网技术, 2005, 29(12): 57-61
    [8]黄姝雅,刘天琪,陈绩.动态状态估计中PMU配置的离散粒子群优化算法.电网技术, 2006, 30(24): 68-72
    [9]王克英,穆钢.使潮流方程直接可解的PMU配置方案研究.中国电机工程学报, 1999,19(10): 14-16
    [10]李大虎,江全元,曹一家.基于发电机组同调分群的相量测量单元优化配置方法.电网技术, 2006, 30(5): 49-55
    [11]罗毅,赵冬梅.电力系统PMU最优配置数字规划算法.电力系统自动化,2006,30(9): 20-24
    [12]卢志刚,郝玉山,康庆平,等.启发式遗传算法在优化电力系统相角测量装置安装地点中的应用.电网技术, 1998,22(8) :14-17
    [13] Ki Seon Cho, Joong Rin Shin, Seung Ho Hyun. Optimal placement of phasor measurement unit with GPS receive. In: IEEE Power Engineering Society Winter Meeting. Columbus, OH, USA, 2001, 258-262
    [14] Baldwin T L, Mili L, et al. Power system observability with minimal phasor measurement placement. IEEE Trans on power system, 1993,8(2): 707-715
    [15] Zhao Hongshan, Li Ying, Mi Zengqing, et al. Sensitivity constrained PMU placement for complete observability of power systems. In: 2005 IEEE transand distribution conference and exhibition, Dalian, China, 2005,1-5
    [16]沙智明,郝育黔,郝玉山等.基于改进自适应遗传算法的电力系统相量测量装置安装地点选择优化.电工技术学报, 2004, 19(8): 107-112
    [17]李大虎,曹一家,江全元等.基于多目标进化算法的相量测量单元优化配置.电网技术, 2005, 29(22): 45-49
    [18] Milosevic B. Nondominated sorting genetic algorithm for optimal phasor measurement placement. IEEE Trans on power systems, 2003,18(1): 69-75
    [19]马勇,陈赤培,王林等.基于遗传禁忌搜索算法的PMU布点配置.继电器, 2008, 36(2): 22-25
    [20]房大中,王建明,钟德成. PMU最优配置问题的混合优化算法.电力系统及其自动化学报, 2008, 20(1): 96-99
    [21]蔡田田,艾芊.电力系统中PMU最优配置的研究.电网技术, 2006, 30(13): 33-37
    [22]张作鹏,陈刚,白茂金.基于动态规划算法的PMU优化配置.电网技术, 2007, 31(S1): 52-56
    [23]李大虎,曹一家.基于SCADA/PMU混合量测的广域动态实时状态估计方法.电网技术,2007, 31(6): 72-78
    [24]毛安家,郭志忠.与SCADA互补的WAMS中PMU的配置及数据处理方法.电网技术,2005, 29(8): 71-74
    [25]王克英,穆钢,陈学允.计及PMU的状态估计精度分析及配置研究.中国电机工程学报,2001,21(8): 29-33
    [26]张鹏飞,薛禹胜,张启平,等.基于PMU实时摇摆曲线的暂态稳定量化分析.电力系统自动化,2004,28(20): 17-20
    [27]许剑冰,薛禹胜,张启平,等.基于系统同调性的PMU最优布点.电力系统自动化,2004,28(19): 22-26
    [28]卫志农,常宝立,孙国强,等.一种新的考虑电力系统潮流直接可解的PMU最优配置.继电器,2005, 33(21): 36-40
    [29] Phadke A. Synchronized phasor measurements in power system. IEEE Computer Applications in power, 1993, 6(2): 10-15
    [30]傅周兴,郭颖娜,何文林.基于GPS同步时钟的相量测量在电力系统中的应用研究.继电器, 2001, 29(7): 31-34
    [31]许树凯,谢小荣,辛耀中.基于同步相量测量技术的广域测量系统应用现状及发展前景.电网技术, 2005, 29(2): 44-49.
    [32]苗世洪,王少荣,刘沛等.基于GPS的电网状态监测系统的设计与实现.电力系统自动化, 2000, 24(12): 52-54
    [33]鞠平,郑世宇,徐群等.广域测量系统研究综述.电力自动化设备,2004,24(7): 37-40
    [34]卢志刚,郝玉山,康庆平等.电力系统相角测量与应用.电力系统自动化,1997,21(4): 41-43
    [35] T W Cease, Butch Feldhaus. Real-time monitoring of the TVA power system. IEEE Computer Applications in Power, 1994, 7(3): 47-51
    [36] Denys P, Counan C, Hossenlopp L, Holweck C. Measurement of voltage phase for the French future defence plan against losses of synchronism. IEEE Transactions on Power delivery, 1992, 7(1): 62-69
    [37]韩英铎,王仲鸿,林孔兴等.电力系统中的三项前沿课题——柔性输电技术,智能控制,基于GPS的动态安全分析与监测系统.清华大学学报(自然科学版). 1997, 37(7): 1-6
    [38] Qixun Yang, Bi Tianshu. WAMS Implementation in China and the Challenges for Bulk Power System Protection. In: IEEE 2007 General Meeting. Tampa, FL, USA, 2007, 24-28
    [39] I W, Slutsker, Sasan Mokhtari, et al. Implementation of phasor measurements in state estimator at Sevillana. In: Proceeding of the 1995 IEEE Power Industry Computer Application Conference, Salt City, UT, USA, 392-398
    [40]张文涛,秋宇锋. GPS及其在电力系统中的应用.电网技术,1996, 20(5): 38-40
    [41] R E Wilson, P S Sterlina. Verification of measured transmission system phase angles. IEEE Trans on PD, 1996,11(4): 1743-1747
    [42]卢志刚,许世范等.部分电压和电流相量可测量时电压相量的状态估计.电力系统自动化, 2000, 24(1): 42-44
    [43]于尓铿.电力系统状态估计.北京:水利电力出版社,1985, 13-47
    [44] Clements K A, Krumpholz G R, Davis P W. Power system state estimation residual analysis: An algorithm using network topology. IEEE Transactions on power apparatus and systems, 1981, PAS-100(4): 1779-1787
    [45] Krumpholz G R, Clements K A, Davis P W. Power system observability: A practical algorithm using network topology. IEEE Transactions on Power Apparatus and Systems, 1980, PAS-99(4): 1534-1542
    [46]曾建潮,介婧,崔志华.微粒群算法.北京:科学出版社, 2004, 13-25
    [47] Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of IEEE Conference on Neural Networks, Perth, Australia, 1995, 1942-1948
    [48] Shi Y H, Eberhart R C. A Modified particle swarm optimizer. In: Proceedingsof the IEEE International conference on Evolutionary Computation. IEEE Press, Piscataway, NJ, 1998, 69-73
    [49] Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. In: Proc of the Congress on Evolutionary Computation, Washington DC, 1999, 1951-1957
    [50] Angeline P J. Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. In: The 7th Annual Conf. on Evolutionary Programming. San Diego, CA, 1998, 601-610
    [51] Lvbjerg M, Rasmussen, Krink T. Hybrid particle swarm optimizer with breeding and subpopulat. In: Proceedings of the 3th Genetic and Evolutionary Computation Conference, San Francisco, California, 2001, 469-476
    [52] Suganthan P N, Particle swarm optimizer with Neighbourhood operator. In:Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ, 1999, 1958-1962
    [53] Ven Den Bergh, Engelhrecht A. A new locally convergent particle swarm optimizer. In: IEEE International Conf on Systems, Tunisia, 2002, 1317-1322
    [54] Sensarma P S, Rahmani M. A comprehensive method for optimal expansion planning using particle swarm optimization. In: Proc of the IEEE Power Engineering Society Trans and Distribution Conf. New York, 2002, 1317-1322
    [55]金义雄,程浩忠,严健勇,等.计及阻塞管理及剩余容量的并行粒子群电网规划方法.电网技术,2005,29 (13):18-23
    [56]蒋秀洁,熊信艮,吴耀武.基于改进PSO算法的短期发电计划研究.电力自动化设备,2005,25(3):34-37
    [57] Chin Aik Koay, Dipti Srinivasan. Particle swarm optimization based approach for generator maint-enance scheduling. In: Proceedings of the IEEE Swarm Intelligence Symposium 2003. Indiana, USA, 2003, 167-173
    [58]马飞,陈雪波,李小华.改进的粒子群算法在电力系统AGC中应用.控制工程,2005,12(S1):52-55
    [59] El-Gallad A, El-Hawary M. Particle swarm optimizer for constrained economic dispatch with prohibited operating zones. In: Canadian Conference on Electrical and Computer Engineering. Manitoba, Canada, 2002,78-81
    [60]俞俊霞,赵波.基于改进粒子群优化算法的最优潮流计算.电力系统及其自动化学报,2005,17(4):83-88
    [61]刘自发,葛少云,余贻鑫.基于混沌粒子群优化方法的电力系统无功最优潮流.电力系统自动化,2005,29(7):53-57
    [62]余欣梅,李研,熊信银,等.基于PSO考虑谐波影响的补偿电容器优化配置.中国电机工程学报,2003,23(2):26-31
    [63]高尚,杨静宇.群智能算法及其应用.北京:中国水利水电出版社, 2006, 6-10
    [64] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Orlando, FL, USA, IEEE, 1997, 4104-4108
    [65] Eberhart R C, Kennedy J. Swarm intelligence. Morgan Kaufmanns, 2001, 115-117
    [66]兰华,万旺经,王韵然等.基于模拟退火混合遗传算法的电力系统相量测量装置优化配置.电网技术, 2007, 31(2): 115-117
    [67]孙东华,汤涌,马世英.电力系统稳定的定义与分类述评.电网技术, 2006, 30(17): 31-35
    [68] DL 755-2001,电力系统安全稳定导则, 1-6
    [69]苏永春,程时杰,文劲宇等.电力系统电压稳定性及其研究现状(一).电力自动化设备,2006, 26(6): 97-101
    [70]苏永春,程时杰,文劲宇等.电力系统电压稳定性及其研究现状(二).电力自动化设备,2006, 26(7): 97-100
    [71] Sobierajski M. Steady state voltage stability in the vicinity of two chose multiple load flow solutions. In: Proceedings of IEEE/NTUA Joint International Power Conference. Athens, Greece: IEEE, 1993, 547-552
    [72]段献忠,袁骏,何仰赞等.电力系统电压稳定灵敏度分析方法.电力系统自动化, 1997,21(4):9-12
    [73]赵晋泉,张伯明.连续潮流及其在电力系统静态稳定分析中的应用.电力系统自动化,2005,29(11):91-97
    [74]赵兴勇,张秀彬,苏小林.电力系统电压稳定性研究与分岔理论.电工技术学报,2008, 23(2): 87-95
    [75]王秀婕,李华强,李波.基于内点法的交直流系统电压稳定性评估.电力系统及其自动化学报,2007,19(6):72-77
    [76]祝达康,程浩忠.求取电力系统PV曲线的改进连续潮流法.电网技术,1999,23(4):37-40
    [77] Ajjrupu V, Christy C. The continuation power flow: A tool for steady state voltage stability analysis. IEEE Trans on Power systems, 1992, 7(1): 416-423
    [78]安天瑜,周苏荃,于继来.基于电压薄弱区域监视的PMU非完全观测配置.电网技术, 2006,30(16): 24-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700