复杂网络及其上的进化博弈研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Exploring Evolutionary Games on Complex Networks
  • 作者:吴枝喜
  • 论文级别:博士
  • 学科专业名称:理论物理
  • 学位年度:2007
  • 导师:汪映海
  • 学科代码:070201
  • 学位授予单位:兰州大学
  • 论文提交日期:2007-04-01
摘要
现实世界的生物系统、生态系统、社会系统、经济系统等,都是由大量具有相互作用的个体所组成的.这些复杂系统的宏观结构属性可以用复杂网络来描述.我们在阐述复杂网络基本理论及研究概况的基础上,研究了加权结构化网络,特别是以常用的进化囚徒困境博弈模型为例,考虑不同复杂网络模型上进化博弈的动力学演化,详细研究了网络的拓扑结构对合作行为演化的影响,同时探讨了其他一些支持合作现象涌现与稳定维持的动力学机制.本文的创新工作主要如下:
     一、提出一种普遍的加权结构化网络模型.基于真实复杂系统中个体具有的老化现象,我们提出了一种基于节点权重钝化机制的演化网络模型.应用主方程的解析分析方法对其度分布进行了解析分析,并做了相应的数值模拟.理论分析与模拟结果符合的相当好,其都证实所得到的网络具有非常强的结构效应(即节点间具有相当强的成团趋势).具体的,当对网络中的节点进行目标钝化时,得到具有无标度度分布的结构化网络;而当对网络中的节点进行随机钝化时,则得到具有指数度分布的结构化网络.
     二、研究了Newman-Watts小世界网络上个体自愿参加的空间囚徒困境博弈.每个博弈个体可以采取三种策略:合作、欺骗和单干。个体策略的转变既与其邻居和其自身在上一轮博弈中的收益有关,也与这些个体当时所采取的策略状态有关。为了模拟复杂系统的适应性能力,我们在博弈动力学中引入了随机的策略突变规则:当博弈个体陷入到局部共同态时,其以相应的规则进行策略转变.研究发现了丰富的动力学现象:在较弱的欺骗诱惑下,系统中的个体在小世界网络拓扑结构下都愿意参与到博弈中去;而在随机网络拓扑结构下,系统的演化出现了强烈的振荡现象.
     三、通过在博弈动力学中考虑个体间非对称的影响权重,我们发现了一个新的有利于合作行为产生的机制:动态(或静态)的优先选择机制.很多现实社会群体中存在非对称的异质影响效应,因此在博弈模型中我们对任意两个相互作用的博弈个体定义了他们之间的影响权重,并且这种影响权重随着博弈过程的演化而改变.博弈个体在策略更新时,其以正比于影响权重大小的概率选择一个邻居作为参考者.研究表明,策略更新结果与影响权重的协同演化,即动态(或静态)优先选择机制的存在,使得博弈个体间的影响权重具有一个非常宽广的分布形状,这有利于相互之间具有强影响力的合作者形成稳定的紧致集团结构,从而能够有效地抵御欺骗者的入侵,继而有助于合作行为的涌现与持续.
     四、为了研究群体中常常具有的异质连接属性对合作涌现的影响,我们运用三种不同的策略更新规则详细地研究了Barabási-Albert无标度网络上合作演化问题.结果表明相互作用网络基底的拓扑结构、具体的策略更新动力学规则、策略更新事件的同步性或异步性、博弈个体适合度的具体评价函数形式、欺骗诱惑量的大小,都对进化囚徒困境博弈模型的演化结果有着决定性的影响.当用个体的平均收益作为其适合度函数时,在欺骗诱惑量非常小的情况下,Barabási-Albert网络的无标度拓扑属性对于合作的形成是一个明显的抑制性因素;而当欺骗诱惑量较大时,网络的无标度拓扑属性则有利于合作者在系统中存活.
     五、我们研究了双层网络上的进化囚徒困境博弈.其中底层的网络为相互作用网络,即博弈个体在其上发生相互作用;顶层网络为信息获取网络,即每轮博弈过后,博弈个体通过此网络来获得其他个体在上轮中的收益与策略状态信息,并根据与这些策略学习邻居的比较结果来决定下轮中要采取的策略.通过Monte-Carlo模拟和对近似的解析分析,我们研究了两个子模型.在第一个模型中,所有的博弈个体具有相同大小的策略学习邻居;而在第二个模型中,我们赋予博弈个体异质的信息获取能力.研究发现,相互作用网络与策略学习网络之间的差异性能够实质性地促进群体合作行为的涌现.这种差异性对合作的促进方式类似于一种“相干共振”现象,即差异性太大或太小都不利于合作行为的涌现,对合作行为促进的最优效果出现在差异性为中等程度的时候.
Coupled biological and ecological systems, social interacting species, economic agents, are typical examples of systems composed by a large number of highly interconnected dynamical units. The global properties of such complex systems can be modeled by complex networks whose nodes represent the dynamical units, and whose links stand for the interactions between them. The emergence and abundance of cooperation in these systems poses a tenacious and challenging puzzle to evolution theory. In this thesis, we explore evolutionary prisoner's dilemma games on complex networks and address how the evolution of cooperation is affected by the network topology, and also search for new mechanisms supporting the emergence and persistence of cooperation.
     First, motivated by aging phenomenon of individuals of real complex systems, a weight-dependent deactivation model generating networks with high clustering coefficient is proposed to model evolving networks. We determine the degree distribution of the generated networks by master-equation approach complemented by Monte-Carlo simulation. Both analytical solutions and numerical simulations show that the generated networks possess strong structural effect. Weighted, structured scale-free networks are obtained as the deactivated vertex is target selected at each time step, and weighted, structured exponential networks are realized for the random-selected case.
     In the second, a modified spatial PDG with voluntary participation in Newman-Watts small-world networks is studied. Each agent in the network is a pure strategist and can only take one of three strategies: cooperate, defect and loner; its strategical transformation is associated with both the number of current strategical states and the magnitude of average profits of the involved players; a stochastic strategy mutation is applied when it gets into the trouble of local commons. In the case of very low temptation to defect, it is found that agents are willing to participate in the game in typical small-world region and intensive collective oscillations arise in more random region.
     Thirdly, we incorporate a dynamic (or static) preferential selection (DPS) mechanism into an evolutionary PDG and reveal a new mechanism for maintaining cooperation. By considering asymmetric and heterogeneous influential effects in many natural populations, we define impact weights for any pairs of neighboring individuals, which describes the influence of one player on another and evolves promptly. Based on this quantity, a DPS mechanism is introduced into the dynamics: the more influential a neighbor is, the greater probability it is picked as a reference. We find that the DPS gives rise to very large broad distributions of the impact weights, which favors the influential cooperators to form stable communities, and thereby prevents the invasion from defectors, hence contributes to the emergence and persistence of cooperation.
     Fourthly, in order to investigate the influence of heterogeneous interaction neighborhood on the evolution of cooperation, we study an evolutionary PDG with players located on Barabasi-Albert scale-free networks with different update rules that determine a player's future strategy. We find the overall result that cooperation is sometimes inhibited and sometimes enhanced by the scale-free topology. The differences depend on the detailed evaluation function of the players' success, the different update rules that determine a player's future strategy, the synchronous and asynchronous events of strategy-updating, and also on the magnitude of the temptation to defect.
     Finally, we study an evolutionary PDG with two layered graphs, where the lower layer is the physical infrastructure on which the interactions are taking place and the upper layer represents the connections for the strategy learning mechanism. This system is investigated by means of Monte Carlo simulations as well as an extended pair-approximation method. We consider the average density of cooperators in the stationary state for fixed interaction graph, while varying the number of edges in the learning graph. According to the Monte Carlo simulations, the cooperation is modified substantially in a way resembling a coherence-resonance-like behavior when the number of learning edges is increased. Too little learning information favors defection, but apparently so does too much information. The optimal enhancement is induced by moderate difference between the interaction and learning neighborhoods.
引文
[1] M.M. Waldrop, Complexity: the Emerging Science at the Edge of Order and Chao, (New York, Simon and Schuster, 1997).
    
    [2] S.A. Kauffman, The Origins of Order: Self-organizationi and Selection in Evolution, (New York: Oxford University Press, 1993).
    
    [3] P. Bak, How Nature Works: The Science of Self-Organized Criticality, (Copernicus, Springer, Berlin, New York, 1996).
    
    [4] D.J. Watts and S.H. Strogatz, Collective dynamics of 'small-world' networks, Nature 393, 440 (1998).
    
    [5] A.-L. Barabasi and R. Albert, Emergence of Scaling in Random Networks, Science 286, 509 (1999).
    [6] S.H. Strogatz, Exploring complex networks, Nature 410,268 (2001).
    
    [7] R. Albert and A.-L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys. 74,47 (2002).
    
    [8] S.N. Dorogovtsev and J.F.F. Mendes, Evolution of networks, Adv. Phys. 51,1079 (2002).
    
    [9] M.E.J. Newman, The structure and function of complex networks, SIAM Review 45,167 (2003).
    
    [10] S. Boccaletti, V. Latora, Y. Moreno, M.Chavez, and D.-U. Hwang, Complex networks: Structure and dynamics, Physics Reports 424,175 (2006).
    
    [11] M. E. J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA 98,404(2001).
    [12] M. E. J. Newman, Scientific collaboration networks. I. Network construction and fundamental results, Phys. Rev. E 64, 016131 (2001); Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality, Phys. Rev. E 64,016132 (2001).
    [13] L.A.N. Amaral, A. Scala, M. Barthelemy, and H.E. Stanley, Classes of small-world networks, Proc. Natl. Acad. Sci. USA 97,11149 (2000).
    [14] R.F. Cancho and R.V. Sole, The small world of human language, Proc. R. Soc. Lond. B 268, 2261 (2001).
    [15] M. Sigman and G.A. Cecchi, Global organization of the Wordnet lexicon, Proc. Natl. Acad. Sci. USA 99, 1742 (2002).
    
    [16] R. Albert, H.Jeong, and A.-L. Barabasi, Diameter of theWorld-Wide Web, Nature 401,130 (1999).
    [17] B.A. Huberman and L.A. Adamic, Growth dynamics of the World-Wide Web, Nature 401, 131 (1999).
    [18] B.A. Huberman, P.L.T. Pirolli, J.E. Pitkow, and R.M. Lukose, Strong Regularities in World Wide Web Surfing, Science 280, 95 (1999).
    [19] G. Caldarelli, R. Marchetti, and L. Pietronero, The fractal properties of internet, Europhys. Lett. 52, 386 (2000).
    [20] K. McCann, A. Hastings, and G.R. Huxel, Ecology: Stability is woven by complex webs, Nature 395,794(1998).
    [21] R.J. Williams and N.D. Martinez, Simple rules yield complex foodwebs, Nature 404, 180 (2000).
    [22] U. Alon, M.G. Surette, N. Barkai, and S. Leibler, Robustness in bacterial hemotaxis, Nature 397, 168(1999).
    [23] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Barabasi, The large-scale organization of metabolic networks, Nature 407, 651 (2000).
    [24] H. Jeong, S.P. Mason, A.-L. Barabasi, and Z.N. Oltvai, Lethality and centrality in protein networks, Nature 411, 41 (2001).
    [25] P. Erdos and A. Renyi, On random graphs, Publications Mathematicae 6, 290 (1959).
    [26] P. Erdos and A. Renyi, On the evolution of random graphs, Publ. Math. Inst. Hung. acad. Sci. 5, 17(1960).
    [27] B. Bollobas, Random Graphs, (New York: Academic Press, 2nd ed., 2001).
    [28] S. Milgram, The small world problem, Psychology today 2,60 (1967).
    [29] M.E.J. Newman, C. Moore, and D.J. Watts, Mean-field solution of small-world networks, Phys. Rev. Lett. 84,3201 (2000).
    [30] M.E.J. Newman and D.J. Watts, Scaling and percolation in the small-world network model, Phys. Rev. E60,7332(1999).
    [31] M.E.J. Newman, Power laws, Pareto distributions and Zipf's law, Contemporary Physics 46, 323 (2005).
    [32] B. Bollobas and O. Riordan, Mathematical results on scale-free random graphs, Handbook of graphs and networks: from the genome to the internet, Berlin: Wiley-VCH, 1 (2003).
    [33] R. Cohen and S. Havlin, Scale-free networks are ultrasmall, Phys. Rev. Lett. 86, 3682 (2003).
    [34] A. Fronczak, P. Fronczak, and J. A. Holyst, Mean-field theory for clustering coefficients in Barabasi-Albert networks, Phys. Rev. E 68, 046126 (2003).
    [35] A.-L. Barabasi, R. Albert, and H. Jeong, Mean-field theory for scale-free random networks, Physica A 272,173 (1999).
    [36] P.L. Krapivsky, S. Redner, and F. Leyvraz, Connectivity of growing random networks, Phys. Rev. Lett. 85,4629 (2000).
    [37] S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin, Structure of growth networks with preferential linking, Phys. Rev. Lett. 85,4633 (2000).
    [38] P.L. Krapivsky and S. Redner, Organization of growing random networks, Phys. Rev. E 63,066123 (2001).
    [39] G. Bianconi and A.-L. Barabasi, Competition and multiscaling in evolving networks, EuroPhys. Lett. 54, 436 (2001).
    [40] G. Bianconi and A.-L. Barabasi, Bose-Einstein Condensation in Complex Networks, Phys. Rev. Lett. 86, 5632 (2001).
    [41] E. Ravasz and A.-L. Barabasi, Hierarchical organization in complex networks, Phys. Rev. E 67, (026112).
    [42] E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, and A.-L. Barabasi, Hierarchical Organization of Modularity in Metabolic Networks, Science 297, 1551 (2002).
    [43] S.N. Dorogovtsev, A.V. Goltsev, and J.F.F. Mendes, Pseudofractal scale-free web, Phys. Rev. E 65, 066122 (2002).
    [44] S. Jung, S. Kim, and B. Kahng, Geometric fractal growth model for scale-free networks, Phys. Rev. E 65, 056101 (2002).
    [45] J. Davidsen, H. Ebel, and S. Bornholdt, Emergence of a Small World from Local Interactions: Modeling Acquaintance Networks, Phys. Rev. Lett. 88,128701 (2002).
    [46] P. Holme and B.J. Kim, Growing scale-free networks with tunable clustering, Phys. Rev. E 65, 026107 (2002).
    [47] G. Szabo, M. Alava, and J. Kertesz, Structural transitions in scale-free networks, Phys. Rev. E 67, 056102 (2003).
    
    [48] K. Klemm and V.M. Eguiliz, Highly clustered scale-free networks, Phys. Rev. E 65, 036123 (2002).
    [49] K. Klemm and V.M. Egufliz, Growing scale-free networks with small-world behavior, Phys. Rev. E65,057102(2002).
    
    [50] A. Vazquez, M. Boguna, Y. Moreno, R. Pastor-Satorras, and A. Vespignani, Topology and correlations in structured scale-free networks, Phys. Rev. E 67,046111 (2003).
    [51] Z.-X. Wu, X.-J. Wu, and Y.-H. Wang, Generating structured networks based on a weight-dependent deactivation mechanism, Phys. Rev. E71, 066124 (2005).
    [52] Z.-X. Wu, X.-J. Wu, and Y.-H. Wang, Properties of weighted structured scale-free networks, Eur. Phys. J. B 45, 385 (2005).
    [53] M. Boguna and R. Pastor-Satorras, Epidemic spreading in correlated complex networks, Phys. Rev. E66,047104(2002).
    [54] R. Pastor-Satorras, A. Vazquez, and A. Vespignani, Dynamical and Correlation Properties of the Internet, Phys. Rev. Lett. 87,258701 (2001).
    
    [55] M.E.J. Newman, Assortative Mixing in Networks, Phys. Rev. Lett. 89, 208701 (2002).
    [56] M.E.J. Newman, Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003).
    [57] J.D. Han, N. Bertin, T. Hao et al., Evidence for dynamically organized modularity in the yeast protein-protein interaction network, Nature 430, 88 (2004).
    [58] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashan, D. Chklovskii, and U. Alon, Network Motifs: Simple Building Blocks of Complex Networks, Science 298, 824 (2002).
    [59] S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon, Subgraphs in random networks, Phys. Rev. E68,026127(2003).
    [60] S. Itzkovitz and U. Alon, Subgraphs and network motifs in geometric networks, Phys. Rev. E 71, 026117(2005).
    [61] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, Topological generalizations of network motifs, Phys. Rev. E70, 031909 (2004).
    [62] L. da F. Costa, F.A. Rodrigues, G. Travieso, and P.R. Villas Boas, Characterization of complex networks: A survey of measurements, Arxiv: cond-mat/0505185.
    
    [63] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, Defining and identifying communities in networks, Proc. Natl. Acad. Sci. USA 101, 2658 (2004).
    [64] J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Arxiv: cond- mat/0603718.
    [65] J. Reichardt and S. Bornholdt, Detecting fuzzy community structures in complex networks with a potts model, Phys. Rev. Lett. 93, 218701 (2004).
    [66] M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev.E 69,026113,(2004).
    
    [67] M.E.J. Newman, Detecting community structure in networks, Eur. Phys. J. B 38, 321 (2004).
    [68] L. Danon, J. Duch, A. Arenas, and A. Diaz-Guilera, Comparing community structure identification, J. Stat. Meck, P09008 (2005)
    [69] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E 63,066117 (2001).
    [70] M. Boguna, R. Pastor-Satorras, and A. Vespignani, Absence of epidemic threshold in scale-free networks with connectivity correlations, Phys. Rev. Lett. 90, 028701 (2003).
    [71] Y. Moreno, J.B. Gomez, and A.F. Pacheco, Epidemic incidence in correlated complex networks, Phys. Rev. E68, 035103 (2003).
    [72] R.M. May and A.L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E 64, 066112 (2001).
    [73] M. Barthelemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks, Phys. Rev. Lett. 92, 178701 (2004).
    [74] A. Barrat and M. Weigt, On the properties of small-world network models, Eur. Phys. J. B 13,547 (2000).
    
    [75] M. Gitterman, Small-world phenomena in physics: the Ising model, J. Phys. A 33, 8373 (2000).
    [76] B.J. Kim, H. Hong, P. Holme, G.S. Jeon, P. Minnhagen, and M.Y. Choi, XY model in small-world networks, Phys. Rev. E 64, 056135 (2001).
    
    [77] C.P. Herrero, Ising model in small-world networks, Phys. Rev. E 65,066110 (2002).
    [78] H. Hong, B.J. Kim, and M.Y. Choi, Comment on "Ising model on a small world network", Phys. Rev. E66,018101(2002).
    [79] J. Viana Lopes, Yu.G. Pogorelov, J.M.B. Lopes dos Santos, and R. Toral, Exact solution of Ising model on a small-world network, Phys. Rev. E 70, 026112 (2004).
    [80] K. Medvedyeva, P. Holme, P. Minnhagen, and B.J. Kim, Dynamic critical behavior of the XY model in small-world networks, Phys. Rev. E 67, 036118 (2002).
    [81] P. Svenson and D.A. Johnston, Damage spreading in small world Ising models, Phys. Rev. E 65, 036105 (2002).
    
    [82] A. Chatterjee and P. Sen, Phase transitions in an Ising model on a Euclidean network, Phys. Rev. E74 036109(2006).
    
    [83] A. Aleksiejuk, J.A. Holyst, and D. Stauffer, Ferromagnetic phase transition in Barabasi-Albert networks, Physica A 310, 260 (2002).
    
    [84] S.N. Dorogovtsev, A.V. Goltsev, and J.F.F. Mendes, Ising model on networks with an arbitrary distribution of connections, Phys. Rev. E 66,016104 (2002).
    [85] S.H. Lee, H. Jeong, and J.D Noh, Random field Ising model on networks with inhomogeneous connections, Phys. Rev. E 74,031118 (2006).
    
    [86] C.V. Giuraniuc, J.P.L. Hatchett, and J.O. Indekeu et al., Trading Interactions for Topology in Scale- Free Networks, Phys. Rev. Lett. 95,098701 (2005).
    
    [87] C.V. Giuraniuc, J.P.L. Hatchett, and J.O. Indekeu et al., Criticality on networks with topology- dependent interactions, Phys. Rev. E 74 036118 (2006).
    
    [88] A.D. Sanchez, J.M. Lopez, and M.A. Rodriguez, Nonequilibrium Phase Transitions in Directed Small-World Networks, Phys. Rev. Lett. 88,048701 (2002).
    
    [89] J.D. Noh, G.M. Shim, and H. Lee, Complete Condensation in a Zero Range Process on Scale-Free Networks, Phys. Rev. Lett. 94,198701 (2005).
    
    [90] J.D. Noh, Stationary and dynamical properties of a zero-range process on scale-free networks, Phys. Rev. E72,056123 (2005).
    
    [91] M. Tang, Z. Liu, and J. Zhou, Condensation in a zero range process on weighted scale-free net- works, Phys. Rev. E 74, 036101 (2006).
    
    [92] M. J. de Oliveira, Isotropic Majority-Vote Model on a Square Lattice, J. Stat. Phys. 66, 273 (1992).
    
    [93] P.R.A. Campos and V.M. de Oliveira, Small-world effects in the majority-vote model, Phys. Rev. E67,026104(2003).
    
    [94] L.F.C. Pereira and F.G.B. Moreira, Majority-vote model on random graphs, Phys. Rev. E 71, 016123 (2005).
    
    [95] F.W.S. Lima, U.L. Fulco, and R. N. Costa Filho, Majority-vote model on a random lattice, Phys. Rev.E 71,036105 (2005).
    
    [96] V. Sood and S. Redner, Voter Model on Heterogeneous Graphs, Phys. Rev. Lett. 94,178701 (2005).
    
    [97] R. Albert, H. Jeong, and A.-L. Barabasi, Error and attack tolerance of complex networks, Nature 406, 378 (2000).
    [98] D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Network Robustness and Fragility: Percolation on Random Graphs, Phys. Rev. Lett. 85, 5468 (2000).
    
    [99] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Resilience of the Internet to Random Break- downs, Phys. Rev. Lett. 85, 4626 (2000).
    
    [100] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Breakdown of the Internet under Intentional Attack, Phys. Rev. Lett. 86, 3682 (2001).
    
    [101] S.N. Dorogovtsev and J.F.F. Mendes, Comment on "Breakdown of the Internet under Intentional Attack", Phys. Rev. Lett 87, 219801 (2001).
    
    [102] M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E 64, 026118 (2001).
    
    [103] K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Sandpile on Scale-Free Networks , Phys. Rev. Lett. 91, 148701 (2003).
    [104] S. Lee and Y. Kim Coevolutionary dynamics on scale-free networks, Phys. Rev. E 71, 057102 (2005).
    
    [105] N. Masuda, K.-I. Goh, and B. Kahng, Extremal dynamics on complex networks: Analytic solutions, Phys. Rev. E72, 066106 (2005).
    
    [106] P. Fronczak, A. Fronczak, and J.A. Holyst, Self-organized criticality and coevolution of network structure and dynamics , Phys. Rev. E 73,046117 (2006).
    [107] S.-Y. Huang, X.-W. Zou, Z.-G. Shao, Z.-J. Tan, and Z.-Z. Jin, Particle-cluster aggregation on a small-world network, Phys. Rev. E 69, 067104 (2004).
    [108] L.G. Morelli and H.A. Cerdeira, Aggregation process on complex networks, Phys. Rev. E 69, 051107(2004).
    [109] J. Ke, Z. Lin, Y. Zheng, X. Chen, and W. Lu, Migration-Driven Aggregate Growth on Scale-Free Networks, Phys. Rev. Lett. 97,028301 (2006).
    [110] J. Ke, X. Chen, Z. Lin, Y. Zheng, and W. Lu, Kinetics of migration-driven aggregation processes on scale-free networks, Phys. Rev. E74,056102 (2006).
    
    [111] H. Wang, Z. Lin, and J. Ke, Competition between the catalyzed birth and death in the exchange- driven growth, Phys. Rev. E75, 046108 (2007).
    
    [112] J. G6mez-Gardefies, Y. Moreno, and A. Arenas, Paths to Synchronization on Complex Networks, Phys. Rev. Lett. 98, 034101 (2007).
    
    [113] M. Chavez, D.-U. Hwang, A. Amann, H.G.E. Hentschel, and S. Boccaletti, Synchronization is Enhanced in Weighted Complex Networks, Phys. Rev. Lett. 94,028701 (2005).
    
    [114] C. Zhou and J. Kurths, Dynamical Weights and Enhanced Synchronization in Adaptive Complex Networks, Phys. Rev. Lett. 96, 164102 (2006).
    
    [115] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, (Princeton University Press, Princeton, NJ, 1953).
    [116] G. Szab6 and G. Fath, Evolutionary games on graphs, Arxiv: cond-mat/0607344 (2006).
    
    [117] H. Ohtsuki, C. Hauert, E. Lieberman, and M.A. Nowak, A simple rule for the evolution of cooperation on graphs and social networks, Nature 441, 502 (2006).
    
    [118] M.A. Nowak and K. Sigmund, Evolution of indirect reciprocity, Nature 437, 1291 (2006).
    
    [119] M.A. Nowak, Five Rules for the Evolution, Science 314, 1560 (2006).
    
    [120] S. Bowles, Group Competition, Reproductive Leveling, and the Evolution of Human Altruism, Science 314, 1569(2006).
    
    [121] R. Boyd, The Puzzle of Human Sociality, science 314, 1555 (2006).
    
    [122] A. Traulsen and M.A. Nowak, Evolution of cooperation by multilevel selection, Proc. Natl. Acad. Sci. U.S.A. 103, 10952 (2006).
    
    [123] J.M. Smith, Evolution and the Theory of Games, (Cambridge University Press, Cambridge, 1982).
    
    [124] R. Axelrod and W.D. Hamilton, The evolution of cooperation, Science 211,1390 (1981).
    
    [125] R. Axelrod, The evolution of cooperation, (Basic Books, New York, 1984).
    
    [126] J.M. Smith and E. Szathmary, The Major Transitions in Evolution, (W.H. Freeman and Co., Oxford, 1995).
    
    [127] J.W. Weibull, Evolutionary Game Theory, (MIT Press, Cambridge, MA, 1995).
    [128] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, (Cambridge Uni versity Press, Cambridge, 1998).
    [129] R. Cressman, Evolutionary Dynamics and Extensive Form Games, (MIT Press, Cambridge, MA, 2003).
    [130] L.A. Dugatkin, Cooperation among Animals: An Evolutionary Perspective, (Oxford University Press, Oxford, 1997).
    
    [131] H. Gintis, Game Theory Evolving, (Princeton University, Princeton, NJ, 2000).
    [132] A.M. Colman, Game Theory and Its Applications in the Social and Biological Sciences, (Butterworth-Heinemann, Oxford, 1995).
    [133] B. Skyrms, The Stag Hunt and the Evolution of Social Structure, (Cambridge University Press, Cambridge, England, 2004).
    [134] K.G. Binmore, Playing Fair: Game Theory and the Social Contract, (MIT Press, Cambridge, 1994).
    
    [135] R.C. Lewontin, Evolution and the theory of games, J. Theor. Biol. 1, 382 (1961).
    [136] J.M. Smith, and G.R. Price, The logic of animal conflict Nature 246, 15 (1973).
    [137] P.E. Turner and L. Chao, Prisoner's dilemma in an RNA virus, Nature 398 441 (1999).
    [138] L.M. Moller, L.B. Beheregaray, R.G. Harcourt, and M. Kriitzen, Alliance membership and kinship in wild male bottlenose dolphins (Tursiops aduncus) of southeastern Australia, Proc. R. Soc. Lond. B 268,1941(2001).
    [139] R. Dawkins, The Selfish Gene, (Oxford University Press, Oxford, 1989)
    [140] W.D. Hamilton, The genetical evolution of social behaviour. II, J. Theor. Biol. 7, 17 (1964).
    [141] M.A. Nowak, A. Sasaki, C. Taylor and D. Fudenberg, Emergence of cooperation and evolutionary stability in finite populations, Nature 428, 646 (2004).
    [142] M.A. Nowak and K. Sigmund, Evolutionary Dynamics of Biological Games, Science 303, 793 (2004).
    
    [143] M.A. Nowak and R.M. May, Evolutionary games and spatial chaos, Nature 359, 826 (1992).
    [144] M.A. Nowak and R.M. May, The spatial dilemmas of evolution, Int. J. Bifurcation Chaos 3, 35 (1993).
    [145] M.A. Nowak, S. Bonhoeffer, and R.M. May, More spatial games, Int. J. Bifurcation Chaos 4, 33 (1994).
    [146] A.V.M. Herz, Collective phenomena in spatially extended evolutionary games, J. Theor. Biol. 169,65(1994).
    
    [147] M.A. Nowak and K. Sigmund, Tit-for-Tat in heterogeneous populations, Nature 355, 250 (1992).
    [ 148] H. Fort, Exploring the cooperative regimes in an agent-based model: indirect reciprocity vs. selfish incentives, Physica A 326, 286 (2003).
    [149] M.A. Nowak and K. Sigmund, A strategy of win-stay, lose-shift taht outperforms tit-for-tat in the Prisoner's dilemma game, Nature 364,56 (1993).
    
    [150] M.A. Nowak and K. Sigmund, The alternating prisoner's dilemma, J. Theor. Biol. 168, 219 (1994).
    [151] M.A. Nowak and K. Sigmund, Evolution of indirect reciprocity by image scoring, Nature 393, 573 (1998b).
    [152] H. Ohtsuki and Y. Iwasa, How should we define goodness? Reputation dynamics in indirect reciprocity, J. Theor. Biol. 231, 107 (2004).
    [153] H. Brandt and K. Sigmund, The logic of reprobation: Assessment and action rules for indirect reciprocation, J. Theor. Biol. 231,475 (2004).
    [154] R.L. Riolo, M.D.Cohen, and R. Axelrod, Evolution of cooperation without reciprocity, Nature 414,441(2001).
    
    [155] G. Roberts and T.N. Sherratt, Does similarity breed cooperation?, Nature 418,499 (2002).
    [156] R. Axelrod, R.A. Hammond, and A. Grafen, Altruism via kin-selection strategies that rely on arbitrary tags with which they coevolve, Evolution 58, 1833 (2004).
    [157] A. Traulsen and J.C. Claussen, Similarity based cooperation and spatial segregation, Phys. Rev. E 70,046128 (2004).
    [158] A. Traulsen and H.G. Schuster, Minimal model for tag-based cooperation, Phys. Rev. E 68, 046129(2003).
    [159] C. Hauert and M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature 428, 643 (2004).
    [160] M.A. Nowak, S. Bonhoeffer, and R.M. May, Spatial games and the maintenance of cooperation, Proc. Natl. Acad. Sci. USA 91, 4877 (1994).
    
    [161] B.A. Hubermann and N.S. Glance, Evolutionary games and computer simulationis, Proc. Natl. Acad. Sci. USA 90, 7716 (1994).
    
    [162] M.A. Nowak, R.M. May, and K. sigmund, The arithmetics of mutual help, Scient. Am. 272, 76 (1995).
    
    [163] M.A. Nowak, S. Bonhoeffer, and R.M. May, Nowak et al. reply to "Robustness of cooperation", Nature 379, 126(1996).
    
    [164] G.S. Wilkinson, Reciprocal food sharing in the vampire bat, Nature 308, 181 (1984).
    
    [165] M. Doebeli and C. Hauert, Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game, Ecology Letters 8,748 (2005).
    
    [166] C. Hauert, S.D. Monte, J. Hofbauer, and K. Sigmund, Volunteering as Red Queen Mechanism for Cooperation in Public Goods Games, Science 296,1129 (2002).
    [167] C. Hauert, S.D. Monte, J. Hofbauer, and K. Sigmund, Replicator Dynamics for Optional Public Good Games, J. Theor. Biol. 218, 187 (2002).
    
    [168] C. Hauert and G. Szabo, Prisoner's dilemma and public goods games in different geometries: compulsory versus voluntary interactions, Complexity 8,31 (2003).
    [169] G. Szab6 and C. Hauert, Phase Transitions and Volunteering in Spatial Public Goods Games, Phys. Rev. Lett. 89,118101 (2002).
    [170] K. Sigmund, C. Hauert, and M.A. Nowak, Reward and punishment, Proc. Natl. Acad. Sci. U.S.A. 98,10757 (2001).
    [171] B. Sinervo and CM. Lively, The rock-scissors-paper game and the evolution of alternative male strategies, Nature 340,240 (1996).
    
    [172] J.M. Smith, The games lizards play, Nature 380,198 (1996).
    [173] B. Kerr, M.A. Riley, M.W. Feldman, and B.J.M. Bohannan, Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature 418,171 (2002).
    [174] G. Szab6 and C. Toke, Evolutionary prisoner's dilemma game on a square lattice, Phys. Rev. E 58,69 (1998).
    [175] J.R.N. Chiappin and M.J. de Oliveira, Emergence of cooperation among interacting individuals, Phys. Rev. E59,6419(1998).
    [176] G. Szab6, T. Antal, P. Szabo, and M. Droz, Spatial evolutionary prisoner's dilemma game with three strategies and external constraints, Phys. Rev. E 62,1095 (2000).
    [177] G. Abramson and M. Kuperman, Social games in a social network, Phys. Rev. E 63, 030901(R) (2001).
    [178] M.H. Vainstein and J.J. Arenzon, Disordered environments in spatial games, Phys. Rev. E 64, 051905(2001).
    [179] M. Tomochi and M. Kono, Spatial prisoner's dilemma games with dynamic payoff matrices, Phys. Rev. E65,026112(2002).
    [180] B.J. Kim, A. Trusina, P. Holme, P. Minnhagen, J.S. Chung, and M.Y Choi, Dynamic instabilities induced by asymmetric influence: Prisoner's dilemma game in small-world networks, Phys. Rev. E 66,021907(2002).
    
    [181] H. Ebel and S. Bornholdt, Coevolutionary games on networks, Phys Rev. E66, 056118 (2002).
    [182] H. Ebel and S. Bornholdt, Evolutionary games and the emergence of complex networks, Arxiv: cond-mat/0211666.
    [183] G. Szabo and C. Hauert, Evolutionary prisoner's dilemma games with voluntary participation, Phys. Rev. E66, 062903 (2002).
    
    [184] P. Holme, A. Trusina, B.J. Kim, and P. Minnhagen, Prisoners ' dilemma in real-world acquaintance networks: Spikes and quasiequilibria induced by the interplay between structure and dynamics, Phys. Rev. E68,030901(R) (2003).
    
    [185] G. Szabo and J. Vukov, Cooperation for volunteering and partially random partnerships, Phys. Rev. E69,036107(2004).
    
    [186] G. Szabo, J. Vulov, and A. Szolnoki, Phase diagrams for an evolutionary prisoner's dilemma game on two-dimensional lattices, Phys. Rev. E 72, 047107 (2005).
    
    [187] J. Vukov and G. Szabo, Evolutionary prisoner's dilemma game on hierarchical lattices, Phys. Rev. E 71,036133(2005).
    
    [188] J. Vukov, G. Szabo, and A. Szolnoki, Cooperation in the noisy case: Prisoner's dilemma game on two types of regular random graphs, Phys. Rev. E 73, 067103 (2006).
    
    [189] F.C. Santos and J.M. Pacheco, Scale-Free Networks Provide a Unifying Framework for the Emergence of Cooperation, Phys. Rev. Lett. 95, 098104 (2005).
    
    [190] F.C. Santos, J.F. Rodrigues, and J.M. Pacheco, Epidemic spreading and cooperation dynamics on homogeneous small-world networks, Phys. Rev. E 72, 056128 (2005).
    
    [191] F.C. Santos, J.F. Rodrigues, and J.M. Pacheco, Graph topology plays a determinant role in the evolution of cooperation, Proc. R. Soc. Lond. B 273, 51 (2006).
    
    [192] F.C. Santos, J.M. Pacheco, and Tom Lenaerts, Evolutionary dynamics of social dilemmas in structured heterogeneous populations, Proc. Natl Acad. Sci. U.S.A. 103, 3490 (2006).
    
    [193] M.G. Zimmermann, V.M. Eguiluz, and M.S. Miguel, Coevolution of dynamical states and interactions in dynamic networks, Phys. Rev. E 69, 065102(R) (2004).
    
    [194] M.G. Zimmermann and V.M. Eguiluz, Cooperation, social networks, and the emergence of leadership in a prisoner's dilemma with adaptive local interactions, Phys. Rev. E 72, 056118 (2005).
    
    [195] C. Hauert and G. Szabo, Game theory and physics, Am. J. Phys. 73, 405 (2005).
    
    [196] Z.-X. Wu, X.-J Xu, Y. Chen, and Y.-H. Wang, Spatial prisoner' s dilemma game with volunteering in Newman-Watts small-world networks, Phys. Rev. E 71, 037103 (2005).
    [197] Z.-X. Wu, X.-J Xu, and Y.-H. Wang, Prisoner's dilemma game with heterogeneous influential effect on regular small-world networks, Chin. Phys. Lett. 23, 531 (2006).
    [198] Z.-X. Wu, X.-J Xu, Z.-G. Huang, S.-J. Wang, and Y.-H. Wang, Evolutionary prisoner's dilemma game with dynamic preferential selection, Phys. Rev. E 74, 021107 (2006).
    [199] Z.-X. Wu, J.-Y. Guan, X.-J. Xu, and Y.-H. Wang, Evolutionary prisoner's dilemma game on Barabasi-Albert scale-free networks, Physica A 379, 672 (2007).
    [200] Z.-X. Wu and Y.-H. Wang, Cooperation enhanced by the difference between interaction and learning neighborhoods for evolutionary spatial prisoner's dilemma games, Phys. Rev. E75,041114 (2007).
    [201] E. Lieberman, C. Hauert, and M.A. Nowak, Evolutionary dynamics on graphs, Nature 433, 312 (2005).
    [202] D. Semmann, H.J. Krambeck, and M. Milinski, Volunteering leads to rock-paper-scissors dynamics in a public goods game, Nature 425, 390 (2003).
    [203] M. Doebeli, C. Hauert, and T. Killingback, The Evolutionary Origin of Cooperators and Defectors, Science 306, 859 (2004).
    [204] O. Duran and R. Mulet, Evolutionary prisoner's dilemma in random graphs, Physica D 208, 257 (2005).
    [205] J.-Y. Guan, Z.-X. Wu, Z.-G. Huang, X.-J. Xu, and Y.-H. Wang, Promotion of cooperation induced by nonlinear attractive effect in spatial Prisoner's Dilemma game, Europhys. Lett. 76,1214 (2006).
    [206] A. Szolnoki and G. Szabo, Cooperation enhanced by inhomogeneous activity of teaching for evolutionary Prisoner's Dilemma games, Europhys. Lett. 77, 30004 (2007).
    [207] H. Ohtsuki and M.A. Nowak, Evolutionary games on cycles, Proc. R. Soc. B 273, 2249 (2006).
    [208] H. Ohtsuki, M.A. Nowak, and J.M. Pacheco, Breaking the Symmetry between Interaction and Replacement in Evolutionary Dynamics on Graphs, Phys. Rev. Lett. 98, 108106 (2007).
    [209] H. Ohtsuki, J.M. Pacheco, and M.A. Nowak, Evolutionary graph theory: Breaking the symmetry between interaction and replacement, http://dx.doi.Org/10.1016/j.jtbi.2007.01.024..
    [210] A.F. Rozenfeld, R. Cohen, D. ben-Avraham, and S. Havlin, Scale-Free Networks on Lattices, Phys. Rev. Lett. 89,218701 (2002).
    [211] A. Traulsen, T. Rohl, and H.G. Schuster, Stochastic Gain in Population Dynamics, Phys. Rev. Lett. 93,028701 (2004).
    [212] M. Perc, Transition from Gaussian to Levy distributions of stochastic payoff variations in the spatial prisoner's dilemma game, Phys. Rev. E 75,022101 (2007).
    [213] M. Perc, Coherence resonance in a spatial prisoner's dilemma game, New J. Phys. 8, 22 (2006).
    [214] M. Perc and M. Marhl, Evolutionary and dynamical coherence resonances in the pair approximated prisoner's dilemma game, New J. Phys. 8,142 (2006).
    [215] M. Perc, Double resonance in cooperation induced by noise and network variation for an evolutionary prisoner's dilemma, New J. Phys. 8,183 (2006).
    [216] C.-L. Tang, W.-X. Wang, X. Wu, and B.-H. Wang, Effects of average degree on cooperation in networked evolutionary game, Eur. Phys. J. B 53,411 (2006).
    
    [217] J. Ren, W.-X. Wang, and F. Qi, Randomness enhances cooperation: A resonance-type phenomenon in evolutionary games, Phys. Rev. E75, 045101(R) (2007).
    [218] M. Ifti, T. Killingback, and M. Doebeli, Effects of neighbourhoodsize andconnectivity on the spatial Continuous Prisoner's Dilemma, J. Theor. Biol. 231, 97 (2004).
    [219] L.M. Wahl and M.A. Nowak, The Continuous Prisoner's Dilemma: I. Linear Reactive Strategies, J. Theor. Biol. 200,307(1999).
    [220] L.M. Wahl and M.A. Nowak, The Continuous Prisoner's Dilemma: I]. Linear Reactive Strategies with Noise, J. Theor. Biol. 200, 323 (1999).
    
    [221] J. Gomez-Gardenes, M. Campillo, L.M. Floria, and Y. Moreno, Dynamical Organization of Cooperation in Complex Topologies, Phys. Rev. Lett. 98, 108103 (2007).
    [222] D. Ariosa and H. Fort, Extended estimator approach for 2×2 games and its mapping to the Ising Hamiltonian, Phys. Rev. E 71, 016132 (2005).
    
    [223] J. Miekisz, Stochastic Stability in Spatial Games, J. Stat. Phys. 117,99 (2004).
    [224] C.P. Roca, J.A. Cuesta, and A. Sanchez, Time Scales in Evolutionary Dynamics, Phys. Rev. Lett. 97, 158701 (2006).
    [225] P. Holme and G. Ghoshal, Dynamics of Networking Agents Competing for High Centrality and Low Degree, Phys. Rev. Lett. 96,098701 (2006).
    [226] T. Antal, S. Redner, and V. Sood, Evolutionary Dynamics on Degree-Heterogeneous Graphs, Phys. Rev. Lett. 96, 188104 (2006).
    [227] C.J. Paley, S.N. Taraskin, and S.R. Elliott, Temporal and Dimensional Effects in Evolutionary Graph Theory, Phys. Rev. Lett. 98, 098103 (2007).
    [228] J.M. Pacheco, A. Traulsen, and M.A. Nowak, Coevolution of Strategy and Structure in Complex Networks with Dynamical Linking, Phys. Rev. Lett. 97, 258103 (2006).
    [229] J.M. Pacheco, A. Traulsen, and M.A. Nowak, Active linking in evolutionary games, J. Theor. Biol. 243,437 (2006).
    [230] N. Masuda, Participation Costs Dismiss the Advantage of Heterogeneous Networks in Evolution of Cooperation, Arxiv: physics/0702017v2.
    [231] B.J. Kim, J Liu, J. Um, and S.-I. Lee, Instability of defensive alliances in the predator-prey model on complex networks, Phys. Rev. E72, 041906 (2005).
    [232] G. Szabo and T. Czaran, Defensive alliances in spatial models of cyclical population interactions, Phys. Rev. E 64, 042902 (2001).
    [233] G. Szabo and T. Czaran, Phase transition in a spatial Lotka-Volterra model, Phys. Rev. E 63, 061904 (2001).
    [234] G. Szabo, A. Szolnoki, and R. Izsak, Rock-scissors-paper game on regular small-world networks, J. Phys. A: Math. Gen. 37, 2599 (2004).
    [235] A. Szolnoki and G. Szab6, Phase transitions for rock-scissors-paper game on different networks, Phys. Rev. E70, 37102 (2004).
    [236] M. Perc, A. Szolnoki, and G. Szab6, Cyclical interactions with alliance-specific heterogeneous invasion rates, Arxiv: cond-mat/0612316v1.
    
    [237] A. Traulsen, J.C. Claussen, and C. Hauert, Coevolutionary dynamics in large, but finite populations, Phys. Rev. E74, 011901 (2006).
    [238] A. Traulsen, M.A. Nowak, and J.M. Pacheco, Stochastic dynamics of invasion and fixation, Phys. Rev. E74, 011909 (2006).
    [239] A. Traulsen, J.M. Pacheco, and L.A. Imhof, Stochasticity and evolutionary stability, Phys. Rev. E 74, 021905 (2006).
    [240] J.C. Claussen and A. Traulsen, Non-Gaussian fluctuations arising from finite populations: Exact results for the evolutionary Moran process, Phys. Rev. E71, 025101(R) (2005).
    [241] A. Traulsen, J.C. Claussen, and C. Hauert, Coevolutionary Dynamics: From Finite to Infinite Populations, Phys. Rev. Lett. 95,238701 (2005).
    [242] M.R. Frean and E.R. Abraham, Adaptation and enslavement in endosymbiont-host associations, Phys. Rev.E 69,051913 (2004).
    
    [243] G. Hardin, The Tragedy of the Commons, Science 162,1243 (1968).
    
    [244] B. Russell, Common Sense of Nuclear Warfare, (George Allen and Unwin Ltd., London, 1959).
    [245] M.A. Nowak, K.M. Page, and K. Sigmund, Fairness Versus Reason in the Ultimatum Game, Science 289, 1773(2000).
    
    [246] K.M. Page and M.A. Nowak, A generalized adaptive dynamics framework can describe the evolutionary Ultimatum Game, J. Theor. Biol. 209,173 (2000).
    [247] K.M. Page, M.A. Nowak, and K. Sigmund, The spatial ultimatum game, Proc. R. Soc. Lond. B 266,1723 (2000).
    [248] A. Sanchez and J.A. Cuesta, Altruism may arise from individual selection, J. Theor. Biol. 235, 233 (2005).
    
    [249] E.L. Thorndike, Animal Intelligence, (Macmillan, New York, 1911).
    [250] M.A. Nowak and K. Sigmund, Oscillations in the evolution of reciprocity, J. Theor. Biol. 137, 21 (1989).
    [251] M.A. Nowak and K. Sigmund, Game-Dynamical Aspects of the Prisoner's Dilemma, Appl. Math. Comp. 30,191 (1989).
    [252] H. Fort, Cooperation and self-regulation in a model of agents playing different games, Phys. Rev. E68,026118(2003).
    [253] H. Fort and S. Viola, Self-organization in a simple model of adaptive agents playing 2×2 games with arbitrary payoff matrices, Phys. Rev. E 69,036110 (2004).
    [254] M.A. Nowak and K. Sigmund, Invasion dynamics of the finitely repeated Prisoner's dilemma, Games Econ. Behav. 11, 364 (1995).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700