微动目标雷达特征提取技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从雷达目标微多普勒现象被发现,微动特性在雷达目标探测与识别中受到广泛的关注。一般把雷达目标除质心平动以外的小幅振动、转动和其它高阶运动统称为微动,微动目标电磁散射响应中包含了精细的微多普勒特征信息,因此,从雷达特征信号中可推断出微动目标独特的特性。
     本文研究了微动目标雷达特征提取技术,论文首先对国内外微动目标雷达特征分析与提取的研究现状、论文的研究背景、本文主要工作及创新进行了详细的阐述。
     论文首先介绍了微动现象和基本概念;然后推广了微动的概念,完善了微动目标雷达特征描述,包括微多普勒特征、RCS调制特征和高分辨特征;分析了微多普勒和多普勒谱的数学原理,并引入了微多普勒率的概念;分析了机动点目标、转动线形目标和进动锥形目标三类典型微动目标的微多普勒和多普勒谱;分析了微动目标特有的高分辨特征,包括微动中心、微动幅度和微动频率。
     使用时频分析和傅立叶分析技术研究了微动目标低分辨雷达特征提取。使用时频滤波和多普勒率滤波研究了基于微多普勒的典型微动目标运动参数估计方法,包括匀加速运动、三阶运动、正弦振动、匀速转动和翻滚运动;研究了基于多普勒谱的典型微动目标运动参数估计方法,包括机动点目标、转动线目标和进动锥目标;研究了目标微动分辨,提出了基于微多普勒的匀加速运动、振动和转动分辨;引入了多目标微多普勒的概念,研究了基于B-分布的微动目标分辨的技术。
     论文研究了微动目标成像技术,精炼并推广了目标模型、信号模型和运动模型,建立了微动目标距离像综合数学模型,以范数理论和DFT理论为基础,分析了微动目标合成距离像的多普勒效应和畸变度量问题;以调频步进信号为例,量化分析了合成宽带信号获取高分辨距离像的多普勒效应,得出了关于运动引起的相位误差及其造成的距离像畸变有用的结论;研究了刚体微动目标成像技术,设计了相位对消信号波形,提出了相位对消处理合成刚体微动目标距离像技术;研究了非刚体微动目标成像技术,设计了相位匹配处理信号波形,称为自适应频率步退信号,以此为基础提出了相位匹配处理微动目标距离像技术;建立了微动目标ISAR像离散模型,将相位匹配处理推广到ISAR成像,提出了相位匹配处理微动目标ISAR成像技术。
     作为理论研究的应用,论文研究了空中目标和空间目标微动雷达特征提取。首先分析了直升机目标的微动,以此为基础分析了旋翼转动激励的微多普勒和多普勒谱;提取了旋翼多普勒谱的对称性和能量分布特征,为空中目标识别提供了新的思路;提取了多普勒谱谱宽特征,并利用盲数理论提出了空中目标粗分类方法;研究了空间弹道导弹目标微动,分析了理想进动锥形目标的RCS调制特征,提出了基于RCS调制的进动参数估计方法;研究了弹道导弹目标微动分辨,提出了基于微多普勒率滤波的弹道导弹目标振动和锥动分辨技术。
     最后,对论文工作和研究方向的发展趋势、应用前景进行了总结,指出了需要进一步研究和解决的问题。
Since micro-Doppler phenomenon is observed in radar target detection, micro-motion, as one of significant target characteristics with promising applications in radar target feature extraction and recognition, incur increasing attentions and research interests. In usual cases, a radar target may have small vibrations or rotations or other high-order motions in addition to mass translation, which is called micro-motion. The backscatter of a target with micro-motions contains fine micro-Doppler features, which enables us to determine some unique properties of the target.
     The intent of this dissertation is to investigate radar signature extraction from targets with micro-motions. In the introduction, there are brief reviews and comments of the research background as well as the present situation of the subject, and then the main contributions of the dissertation are introduced, in which the innovations of the whole dissertation are particularly pointed out.
     In this dissertation, firstly, there is a summary of radar signatures of targets with micro-motions, including basic concepts, classifications and typical examples. Then the meaning and the category of micro-motions are generalized. Also, radar signatures of targets with micro-motions are expounded with extended descriptions, which include micro-Doppler feature, RCS modulation feature and unique high resolution feature. Mathematics and computation technique involved in micro-Doppler and Doppler spectrum are examined, which brings about the introduction of a new concept—micro-Doppler rate. Radar features are investigated for three typical targets with micro-motions, i.e., maneuvering point-scattering target, rotating line-shaped target and precessing cone-shaped target. In addition, unique high range resolution feature is also studied for targets with micro-motions, including the center of micro-motion, the amplitude of micro-motion and the frequency of micro-motion.
     Low-resolution radar feature extraction is investigated for targets with micro-motions. Both time-frequency transform and FFT are used to analyze micro-Doppler signal due to its time-varying property. With time-frequency filter and Doppler filter, micro-Doppler-based approaches are proposed for parameter estimation of typical targets with micro-motions, which include acceleration motion, three-order motion, sinusoidal vibration, uniform rotation and tumbling motion. Besides, several approaches based on Doppler spectrum are also developed for parameter estimation of typical targets with micro-motions, which include maneuvering point-scattering target, rotating line-shaped target and precessing cone-shaped target. Target micro-motion resolution is examined and a micro-Doppler-based technique is proposed for resolving acceleration, vibration and rotation. Then B-distribution for resolving multiple targets with micro-motions is investigated by virtue of the introduction of a new concept—Multitarget Micro-Doppler.
     In addition to Low-resolution radar feature, radar imaging is explored for targets with micro-motions. First, there are discussions on the established comprehensive mathematics model of synthesizing high range resolution profile (HRRP) of targets with micro-motions, which include a refined and generalized target model, signal model and motion model. Then with the theory of DFT, Doppler Effect is detailed, and the distortion of synthetic range profile is examined by the theory of Norm, which give us a new mathematics implication and a new signal processing interpretation. As a typical example, Stepped Chirp waveform is used to examine Doppler Effect with some specific numerical simulations, which bring some interesting conclusions about phase shift and the distortion. Synthesizing range profile is investigated for rigid targets with micro-motions. A new waveform and corresponding technique, which are respectively referred to as Phase Cancellation waveform and Phase Cancellation processing, are proposed to reconstruct range profile of a rigid target with micro-motions. Synthesizing range profile is also investigated for a non-rigid target with micro-motions. A new waveform and corresponding technique, which are respectively referred to as Phase Matching waveform and Phase Matching processing, are proposed to reconstruct range profile of a non-rigid target with micro-motions. Phase matching waveform is in fact an adaptive step-down-frequency waveform. The ISAR imaging is primarily examined for targets with micro-motions. Discrete ISAR model is established for targets with micro-motions, and then Phase matching processing is used to generate ISAR image of targets with micro-motions.
     There are specific applications researches of radar feature extraction from air targets and space targets with micro-motions. Firstly,micro-motions of a helicopter is analyzed, and then radar feature extraction from rotating blades is investigated, including micro-Doppler and Doppler spectrum. Symmetry and power distribution feature of Doppler spectrum are analyzed, which provide a new probable means of air-target identification. The theory of Blind number is researched for dealing with the uncertainty of radar feature of helicopter. Then based on the theory of Blind number, the width of Doppler spectrum is used to estimate rotation parameters. Secondly, micro-motions are analyzed for ballistic missile target, and then radar feature extraction is investigated for ballistic missile target with micro-motions. RCS modulation induced by precession is investigated, and then with RCS modulation, an approach of precession parameter estimation is proposed. Last, micro-motion resolution is explored for ballistic missile target. Micro-Doppler-based motion resolution technique is proposed for resolving vibration and coning motion.
     The dissertation is concluded with current trends and future outlook in the subject. In particular, some significant and valuable problems are pointed out for further research.
引文
[1] Chen V.C., Li F.Y. and Ho S.S., Micro-Doppler effect in radar-phenomenon, model and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1):2-21.
    [2] Chen V.C., Micro-Doppler effect of micro-motion dynamics: a review[J]. In: Proceedings of SPIE on Independent Component Analyses, Wavelets, and Neural Networks, Orlando, UAS, Apr. 2003, 5102: 240-249.
    [3] Chen V.C., Li F., Analysis of micro-Doppler signatures[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4): 271-276.
    [4] Gray J.E., Addison S.R., Effect of nonuniform target motion on radar backscattered waveforms[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003,150(4):262-270.
    [5] Setlur P., Amin M., Ahmad F. and Thayaparan T., Indoor imaging of targets enduring simple harmonic motion using Doppler radars[C]. In: Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, Dec. 2005, 1:141-146.
    [6] Sutler P., Ahmad F. and Amin M., Analysis of micro-Doppler signals using linear FM basis decomposition[C]. In: Proceedings of the SPIE Symposium on Defense and Security, Radar Sensor Technology X, Orlando, FL, April 2006.
    [7] Setlur P., Amin M. and Thayaparan T., Micro-Doppler signal estimation for vibrating and rotating targets[C]. In: Proceedings of the Eighth International Symposium on Signal Processing and its Applications, Sydney, Australia, August 28-31, 2005, 639-642.
    [8] Hertel F., Feiden W. and Bettag M., The value of micro-Doppler in stereotactic brain biopsy[J]. Minim Invasive Neurosurg, 2005, 48(3): 165-168.
    [9] Zhang Y.M., Amin M.G., Joint Doppler and polarization characterization of moving targets[C]. In: IEEE Antennas and Propagation Society Symposium, Monterey, CA, USA, June 2004, (3): 3083-3086.
    [10] Chen V.C., des Rosiers A.P., Micro-Doppler phenomenon and radar signature[C]. In: Proceedings of IEEE International Conference on Radar, Adelaide, Australia, Sept. 2003, 198-202.
    [11] Sparr T., Moving target motion estimation and focusing in SAR images[C]. In: Proceedings of IEEE International Conference on Radar, Washington, USA, May 2005, 290-294.
    [12] Silverstein S.D., Hawkins III C.E., Synthetic aperture radar image signature of rotating objects[C]. In: Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2004, 2:1663-1667.
    [13] Thayaparan T., Abrol S., Extraction of micro-Doppler from experimental SAR data[C]. In: Proceedings of the International Radar Symposium, Berlin, Germany, 2005.
    [14] Cai C.J., Liu W.X. and Fu J.S., Empirical mode decomposition of micro-Doppler signature[C]. In: Proceedings of IEEE International Conference on Radar, Washington, USA, May 2005, 895-899.
    [15] Lei J.J., Pattern recognition based on time-frequency distributions of radar micro-Doppler dynamics[C]. In: Proceedings of The Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Networks, Towson, Maryland, USA, 2005:14-18.
    [16] Lovett A., Shen C. and Otaguro W., Microdoppler: non-cooperative target classification/identification[R]. A420040, AD, Naval Air Warfare Center Aircraft Division, Maryland, USA, 2004.
    [17] Rajan B., Ling H., A fast algorithm for simulating doppler spectra of targets with rotating parts using the shooting and bouncing ray technique[J]. IEEE Transactions on antennas and propagation, 1998, 46(9): 1389-1391.
    [18] Lei J.J., Lu C., Target classification based on micro-Doppler signatures[C]. In: Proceedings of IEEE International Conference on Radar, Washington, USA, May 2005, 179-183.
    [19] Li J., Ling H., Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4): 284-291.
    [20] Thayaparan T., Abrol S. and Riseborough E., Micro-Doppler radar signatures for intelligent target recognition[R]. Technical Memorandum, TM 2004-170, Defence R&D Canada, Ottawa, September 2004.
    [21] 黄培康, 聚焦雷达“热点”——参加 2003 年国际雷达会议后感[J]. 系统工程与电子技术, 2003, 25(10): 1311-1312.
    [22] Chen, V.C., Advanced SAR imaging and feature analysis[C]. In: Proceedings of IEEEInternational Conference on Radar, Adelaide, Australia, Sept. 2003, 22-29.
    [23] S. Lawrence Marple Jr., Sharpening and bandwidth extrapolation techniques for radar micro-Doppler feature extraction[C]. In: Proceedings of IEEE International Conference on Radar, Adelaide, Australia, Sept. 2003, 166-170.
    [24] Rüegg M., Meier E., Nüesch D., Constant motion, acceleration, vibration, and rotation of objects in SAR Data[C]. In: Proceedings of SPIE on SAR Image Analysis, Modeling, and Techniques VII, Orlando, USA, Apr. 2005, 5980: 1-12.
    [25] Tan R., Bender R., Analysis of Doppler measurements of people[C]. In: Proceedings of SPIE on Targets and Backgrounds XII: Characterization and Representation, Orlando, USA, Apr. 2006, 6239: 1-9.
    [26] Greneker E.F., Sylveste V.B., Use of the envelope detection method to detect micro-Doppler[C]. In: Proceedings of the SPIE on Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, Orlando, FL, USA, Apr. 2003, 5077: 167-174.
    [27] Thayaparan T., Micro-Doppler analysis of the rotation antenna in airborne SAR image collected by the APY-6 radar[C]. International Radar Symposium, Berlin, Germany, 2005.
    [28] Zhang Y.M., Amin M.G., Polarimetric time-frequency distributions and applications to radar imaging[C]. In: Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology, Darmstadt, Germany, Dec. 2003, 310-313.
    [29] Chen V.C., Ling H., Time-Frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston: Artech House, 2002, 93-104.
    [30] Chen V.C., Time-frequency analysis for radar imaging, target detection, and feature extraction[R]. 2004 IEEE Radar Conference -Workshop 2.3, 2004.
    [31] Moser R.L., Erwin R.S. and Schrader K.N., et al., Experimental control of microdynamic events observed during the testing of a large deployable optical Structure[C]. In: Proceedings of SPIE on UV, Optical, and IR Space Telescopes and Instruments, Munich, Germany, Mar. 2000, 4013: 715–726.
    [32] Otaguro W., Hayes C., Microdoppler ladar system[C]. In: Proceedings of SPIE on Imaging Technology and Telescopes, Orlando, UAS, Apr. 2000, 4091:268-277.
    [33] Eck J.A., Takacs J.F. and Pratt H.L., et al., MicroDoppler classification of non-cooperativetargets and its application to Forward Area Air Defense[C]. In: RTO Meeting Proceedings of North Atlantic Treaty Organization Symposium on Non-cooperative Air Target Identification Using Radar, Mannheim, Germany, Apr. 1998.
    [34] Gschwendtner A.B., Keicher W.E., Development of coherent laser radar at Lincoln Laboratory[J]. Lincoln Laboratory Journal, 2000, 12(2): 383-396.
    [35] Phillips M.W., Novel single frequency and broadly tunable laser sources developed at Coherent Technologies Inc. for remote sensing applications[C]. In: Proceedings of Material Research Society Symposium, 2005, 883.
    [36] Swirski Y., Wolowelsky K. and Adar R., et al., Detection and delineation of buildings from airborne ladar measurements [C]. In: Proceedings of SPIE on Applications of Digital Image Processing XXVII, Orlando, UAS, Apr. 2004, 5558:149-156.
    [37] Hanson F., Beaghler G., Discriminating Interceptor Technology Program (DITP) laser radar[C]. In: Proceedings of SPIE on Laser Radar Technology and ApplicatioIns, Orlando, Florida, Apr. 1999, 3707: 372-380.
    [38] Cesarotti W., Zuk D., Survey of ladar sensors for warhead fuzing[R]. A268558, AD, Environmental Research Institute of Michigan, June 1993.
    [39] Kenneth S., Davidson S. and Stein A., Range Doppler laser radar for midcourse discrimination-The Firefly experiments[R]. AIAA93-2653, AIAA, MIT Lincoln Laboratory, 1993.
    [40] Jr. Stair A.T., Mill J.D., The Midcourse Space Experiment (MSX)[C]. In: Proceedings of International Conference on Aerospace, Snowmass at Aspen, CO, USA, 1997, 2:233-245.
    [41] Clark M.E., High range resolution techniques for ballistic missile targets[C]. In: Proceedings of Colloquium on High Resolution Radar and Sonar, London, UK, May 1999, 6: 1-13.
    [42] Stevens M.R., Snorrason M. and Petrovich D., Identifying vehicles using vibrometry signatures[C]. In: Proceedings of the16th International Conference on Pattern Recognition, Aug. 2002, 3: 253-256.
    [43] Mahalanobis A., Shah M., Automatic target detection and recognition approaches for unattended electo-optical sensors[C]. In: Proceedings of SPIE on Unmanned/Unattended Sensors and Sensor Networks, Orlando, UAS, Apr. 2004, 5611:12-23
    [44] Thomson J.A., Gatt P. and Henderson S.W., et al., Noise mechanisms impactingmicro-Doppler lidar signals: theory and experiment[C]. The Second IASTED International Conference on Antennas, Radar, and Wave Propagation, 2000.
    [45] Schultz K., Fisher S., Ground-based laser radar measurements of satellite vibration[J]. Appl. Opt. 1992, 31(36):7690-7695.
    [46] Hannon S.M., Thomson J.A.L. and Henderson S.W., et al., Agile multiple pulse coherent lidar for range and micro-Doppler measurement[J]. In: Proceedings of SPIE on Laser Radar Technology and Applications Ill, Orlando, FL, USA, Apr. 1998, 3380: 259-269.
    [47] Stevens M.R., Snorrason M. and Petrovich D., Laser vibrometry for target classification[C]. In: Proceedings of SPIE on Automatic Target Recognition XII, Orlando, USA, Apr. 2002, 4726:70-81.
    [48]Youmans D.G.., Cylindrical target Doppler and Doppler-spread feature estimation using coherant mode-locked pulse laser radars with long observation times[C]. In: Proceedings of SPIE on Laser Radar Technology and Applications VI, Orlando, USA, Sep. 2001, 4377: 272-283.
    [49] Acharekar M., Gatt P. and Mizerka L., Laser vibration sensor[C]. In: Proceedings of SPIE on Applied Laser Radar Technology II, Orlando, UAS, Apr. 1995, 2472: 2-11.
    [50]Gatt P., Johnson S.E., Henderson S.W., et al., Theoretical analysis of the impact of local oscillator frequency noise on a laser vibration sensor[C]. In: Proceedings of SPIE on Laser Radar Technology and Applications VII, Orlando, FL, Apr. 2002, 156-161.
    [51] Cuomo K.M., Piou J.E. and Mayhan J.T., Ultra-wideband coherent processing[J]. The Lincoln Laboratory Journal, 1997, 10(2): 203-222.
    [52] Camp W.W., Mayhan J.T. and O’Donnell R.M., Wideband radar for ballistic missile defense and range-Doppler imaging of satellites[J]. The Lincoln Laboratory Journal, 2000, 12(2): 267-280.
    [53] Baker B.D., Kendall W. B., TMR processing procedures for GSRS spin and attitude measurements[R]. A074947, AD, MARK RESOURCES Inc., Torrance, CA , 1979.
    [54] Nunn E.C., The US army white sands missile range development of target motion resolution[J]. In: Record of IEEE Electronics and Aerospace Systems Conventions, Arlington, VA, USA, Sep. 1980: 346-352.
    [55] Rihaczek A.W., Hershkowitz S.J., Theory and Practice of Radar Target Identification[M]. Boston: Artech House, 2000, 581-626.
    [56] Rihaczek A.W., Hershkowitz S.J., Radar Resolution and Complex-Image Analysis[M]. Boston: Artech House, 1996.
    [57] Nunn E.C., Target motion resolution and its impact on the USA Army White Sands Missile Range[C]. In: Record of Asilomar Conference on Circuits, Systems & Computers, Pacific Grove, CA, USA, Nov. 1979, 589-593.
    [58] Jaenisch H., Discrimination via Phased Derived Range[R]. MDA-02-003, Missile Defense Agency Small Business Innovation Research Program, 2002. http://www.dodsbir.net/selections/abs021/mdaabs021.htm
    [59] Holzrichter J.F., S-band radar micro-Doppler signatures for BMD discrimination[R]. MDA-04-137, Missile Defense Agency Small Business Innovation Research Program, 2004. http://www.dodsbir.net/sitis/archives_display_topic.asp?Bookmark=19463
    [60] Committee for Naval Forces' Capability for Theater Missile Defense, et al., Naval Forces' Capability for Theater Missile Defense[M]. Washington, D.C.: National Academy Press, 2001, 98-100.
    [61] Ballistic Missile Defense Organization, 1994 report to the congress on ballistic missile defense[R]. Washington, D.C., July, 1994. http://www.acq.osd.mil/bmdo/bmdolink.mil/pdf/rtc1994.pdf
    [62] Lemnios W.Z., Grometstein A.A., Overview of the Lincoln Laboratory ballistic missile defense program[J]. The Lincoln Laboratory Journal, 2002, 3(1): 9-32.
    [63] Upton L.O., Thurman L.A., Radars for the detection and tracking of cruise missiles[J]. The Lincoln Laboratory Journal, 2000, 12(2):355-366.
    [64] Wright D., Gronlund L., Decoys and discrimination in intercept test IFT-8[J]. 863 先进防御技术通讯, 2004, A 类(4):1-13.
    [65] Leon A., Tracking and Classification of Boost Phase Ballistic Missile[D]. MIT Lincoln Laboratory, Master Degree Thesis, Cambridge, MA, USA 1995.
    [66] 戴征坚, 空间目标的雷达特性预估与识别[D]. 博士学位论文, 中国长沙: 国防科技大学, 2000 年 4 月.
    [67] Office of the Director of Defense Research and Engineering Washington, D.C., Defense technology objectives of the Joint warfighting science and technology and defense technology area plan[R]. A310991, AD, May 1996.
    [68] O'Neill Lt. Gen. M.R., Ballistic missile defense: 12 years of achievement[J]. Defense Issues, 1995, 10(37):1-10.
    [69]Gray J.E., Brastrom P., The problem of kill assessment Ⅱ: The Doppler effect and exo-atmospheric kill assessment[C]. In: Proceedings of the IEEE International Radar Conference, Edinburgh, UK, 2002, 85- 91.
    [70] Kouemou G., Opitz F., Wavelet-based radar signal processing in target classification[C]. International Radar Symposium, Berlin, Germany, 2005.
    [71] Misiurewicz J., Kulpa K. and Czekala Z., Analysis of recorded helicopter echo[C]. In: Proceedings of IEE International Conference on Radar Systems, Edinburgh, UK, Oct. 1997, 449-453.
    [72] Wellman R.J., Silvious J.L., Doppler signature measurements of a Mi-24 Hind-D helicopter at 92 GHz[R]. ARL-TR-1637, AD, Air Research Laboratory, Adelphi, Maryland, July 1998.
    [73] S. Lawrence Marple Jr., Large dynamic range time-frequency signal to helicopter doppler radar data[C]. ISSPA Conference, 2001, 1: 260-263.
    [74] Lavielle M., Lévy-Leduc Céline, Semiparametric estimation of the frequency of unknown periodic functions and its application to laser vibrometry signals[J]. IEEE Transactions on signal processing, 2005, 53(7): 2306-2314.
    [75] Nalecz M., Rytel-Andrianik R. and Wojtkiewicz A., Micro-Doppler analysis of signal received by FMCW radar[C]. International Radar Symposium, Dresden, Germany, 2003.
    [76] Greneker E.F., Geisheimer J.L. and Asbell D., Extraction of micro-Doppler data from vehicle targets at x-band frequencies[C]. In: Proceedings of SPIE on Radar Sensor Technique, Orlando, USA, Apr. 2001, 4374: 1-9.
    [77] Stankovic L., Djurovic I. and Thayaparan1 T., Separation of target rigid body and micro-Doppler effects in ISAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4):1496-1506.
    [78] Thayaparan1 T., Abrol S. and Riseborough E., Micro-Doppler feature extraction of experimental helicopter data using wavelet and time-frequency analysis[C]. In: Proceedings of International Conference on Radar Systems, Brest, France, 2004.
    [79] Kleinman R., Mack R., Scattering by linearly vibrating objects[J]. IEEE Transactions on Antennas and Propagation, 1979, 27(3): 344-352.
    [80]Subotic N.S., Thelen B.J. and Carrara D.A., Cyclostationary signal models for the detection and characterization of vibrating objects in SAR data[C]. In: Record of the Thirty-Second Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 1998.
    [81] 贺治华,机载毫米波雷达目标识别关键技术研究[D]. 中国长沙:国防科技大学博士学位论文,2005 年 12 月.
    [82] Shen C.N., Waeber B. and Girata L., et al., Project Radiant Outlaw[C]. In: Proceedings of SPIE on Airborne Reconnaissance XVIII, San Diego, CA, USA, Jul. 1994, 2272: 63-74.
    [83] Lovett A., Shen C.N., Radiant Outlaw technology for non-cooperative identification[C]. Proceedings of TECOM Test Technology Symposium' 97, March 1997.
    [84] Kulpa K., Continuous wave radars-monostatic, multistatic and network[C]. International Radar Symposium, Berlin, Germany, 2005.
    [85] Ling H., Exploitation of microdoppler and multiple scattering phenomena for radar target recognition[R]. A375771, AD, The University of Texas at Austin, Austin, USA, 2004.
    [86] Stove A.G., Sykes S.R., A Doppler-based automatic target classifier for a battlefield surveillance radar[J]. In: Proceedings of IEEE International Conference on Radar, Edinburgh, UK, October 2002, 419-423.
    [87] Frazer G.J., Anderson S.J., Wigner-Ville analysis of HF radar measurement of an accelerating target[C]. In: Proceedings of the Fifth International Symposium on Signal Processing and its Applications, Brisbane, Australia, 1999.
    [88] 王永龙. 非匀速径向运动目标建模与信号处理方法的研究[D]. 中国哈尔滨:哈尔滨工业大学硕士学位论文,2002 年 6 月.
    [89] Crosson E.L., Brent Romine J. and Willner D., Boost-phase acceleration estimation [C]. In: Proceedings of IEEE International Conference on Radar, Alexandria, USA, 2000, 210-214.
    [90] Xia W.G., Root X.G. and Chen B.T., et al., Maneuvering target detection in over-the-horizon radar using adaptive clutter rejection and adaptive chirplet transform[J], IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4):292-298.
    [91] Thayaparan T., Stankovi′c LJ. and Dakovi′c M., A new time-frequency signal decomposition approach for the detection of accelerating air targets in sea-clutter using high-frequency surface-wave radar[C]. International Radar Symposium, Berlin, Germany, 2005.
    [92] Boashash B., Time-Frequency Signal Analysis and Processing[M]. Amsterdam: ELSEVIER Ltd., 2003, 577-626.
    [93] Zhang Y., Qian S.E. and Thayaparan T., Two new approaches for detecting a maneuvering air target in strong sea-clutter[C]. In: Proceedings of IEEE International Conference on Radar, Washington, USA, May 2005, 83-88.
    [94] Yasotharan A., Thayaparan T., Strengths and limitations of the Fourier method for detecting accelerating targets by pulse Doppler radar[J]. IEE Proceedings on Radar, Sonar and Navigation, 2002, 149(2): 83-88.
    [95] Gray J.E., The Doppler spectrum for accelerating objects[C]. In: Proceedings of IEEE International Radar Conference, Arlington, VA, USA, May 1990, 385-90.
    [96]Gray J.E., Addison S.R., The effect of nonuniform motion on the Doppler spectrum of scattered continuous-wave waveforms[C]. In: Proceedings of SPIE on Independent Component Analyses, Wavelets, and Neural Networks, Orlando, UAS, April 2003, 5102: 226-239.
    [97] L·科恩, 时-频分析:理论与应用[M]. 中国西安:西安交通大学出版社, 1998, 77-93.
    [98] Boashash B., Sucic V., Resolution measure criteria for the objective assessment of the performance of quadratic time-frequency distributions[J]. IEEE Transactions on signal processing, 2003, 51(5):1253-1263.
    [99] Kootsookos P.J., Lovell B.C. and Boashash B., A unified approach to the STFT, TFDs, and instantaneous frequency[J]. IEEE Transactions on Signal Processing, 1992, 40(8): 1971-1982.
    [100] Lovell B.C., Williamson R.C. and Boashash B., The relationship between instantaneous frequency and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1993, 41(3):1458-1461.
    [101] Williams W. J., Zalubas E. J., Invariant classification of time-frequency representations: applications to Doppler radar target identification[C]. In Proceedings of DSTO/DOD Workshop, Adelaide, Australia. 1997.
    [102] Mallat S.G., Zhang Z.F., Matching pursuits with time frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
    [103] Choi H.I., Williams W.J., Improved time-frequency representation of multicomponent signals using exponential kernels[J]. IEEE Transactions on Signal Processing, 1989, 37(6): 862-871.
    [104] Cirillo L., Zoubir A. and Amin M., Direction finding of nonstationary signals using a TFHough transform[C]. ICASSP, Philadelphia, PA, USA, March 2005.
    [105] Li J.F., Model-based Signal Processing for Radar Imaging of Targets with Complex Motions [D]. Doctor Degree Thesis, University of Texas at Austin, Austin, USA, August 2002.
    [106] Thayaparan T., Lampropoulos G. and Wong S.K. et al., Applications of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulated and measured radar data[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4):213-220.
    [107] Thayaparan T., Lampropoulos G. and Wong S.K., Distortion in the inverse Synthetic Aperture Radar (ISAR) images of a target with time-varying perturbed motion[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4):221-227.
    [108] Berizzi F., Dalle Mese E. and Martorella M., Performance analysis of a contrast-based ISAR autofocusing algorithm[C]. In: Proceedings of the IEEE International Conference on Radar, Calif, USA, April 2002.
    [109] Chen V.C., Miceli W., Simulation of ISAR imaging of moving targets[J]. IEE Proceedings of Radar, Sonar and Navigation, 2001, 148(3):160–166.
    [110] Martorella M., Homer J. and Palmer J., et al, Inverse Synthetic Aperture Radar[J]. EURASIP Journal on Applied Signal Processing, 2006, Article ID: 63465.
    [111] Nagel D., Purchla M., Correlation of ISAR and high range resolution signals of helicopters with modelled data[C]. International Radar Symposium, Berlin, Germany, 2005.
    [112] Wong S.K., Riseborough E. and Duff G.., An analysis of ISAR image distortion based on the phase modulation effect[J]. EURASIP Journal on Applied Signal Processing, 2006, Article ID: 83727.
    [113] Djurovi? I., Thayaparan T. and Stankovi? L., Adaptive Local Polynomial Fourier transform in ISAR[J]. EURASIP Journal on Applied Signal Processing, 2006, Article ID: 36093.
    [114] Boutros J., Barrie G., Ultra-wideband Synthetic Aperture Radar imaging—effect of off-track motion on resolution[R]. Technical Memorandum, TM 2003-177, Defence R&D Canada, Ottawa, 2003.
    [115] Chen V.C., Miceli W., Time-varying spectral analysis for radar imaging of maneuvering targets[J]. IEE Proceedings on Radar, Sonar and Navigation, 1998, 145(5): 262-268.
    [116] Yau D., Berry P.E. and Haywood B., Eigenspace-based motion compensation for ISAR target imaging[J]. EURASIP Journal on Applied Signal Processing, 2006, Article ID: 90716.
    [117] Borden B., Cheney M., Synthetic-aperture imaging from high-Doppler-resolution measurements[J]. Inverse Problems, 2005, 21(1): 1-11.
    [118] Chen V.C., Qian S.E., Time-frequency transform vs fourier transform for radar imaging[C]. IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Paris, France, June 1996, 389-392.
    [119] Qian S.E., Chen D., ISAR feature extraction from targets with non-rigid body motion[C]. In: Proceedings of SPIE on Radar Sensor Technology, Orlando, Apr. 2001, 4374:1-9.
    [120] Thomas G., Flores B.C., Time-varying filters for ISAR motion compensation[C]. In: Proceedings of SPIE on Radar Processing Technology and Applications III, San Diego, California, USA, July 1998, 174-185.
    [121] Son J.S., Flores B.C., Stepped-frequency ISAR motion compensation using maximum likelihood phase gradient[C]. In: Proceedings of SPIE on Algorithms for Synthetic Aperture Radar Imagery, Orlando, USA, Apr. 2002, 252-263.
    [122] Shan R.G., Ren Q.S. and Li S.G., ISAR trajectory motion compensation[C]. In: Proceedings of SPIE on Hybrid Image and Signal Processing II, Orlando, USA, Apr. 1990, 56-61.
    [123] Sparr T., ISAR-radar imaging of targets with complicated motion[C]. In: Proceedings of International Conference on Image Processing, Singapore, Oct. 2004, 1:5 – 8.
    [124] Iwamoto M., Fujisaka T., Autofocus algorithm of inverse synthetic aperture radar using entropy[J]. Electronics and Communications in Japan, Part 1, 2000, 83(2): 97-106.
    [125] Thayaparan T., Lampropoulos G., A new approach in time-frequency analysis with applications to experimental high range resolution radar data[R]. DRDC, Ottawa TR 2003-187, Defence R&D Canada – Ottawa, 2003.
    [126] Lampropoulos G., Laskin E. and Thayananthan T., New concepts in time-frequency estimators with applications to ISAR data[C]. In: Proceedings of SPIE on SAR Image Analysis, Modeling, and Techniques V, Agia Pelagia, Greece, Sep. 2002, 4883: 27-38.
    [127] Chen V.C., Applications of rotational time-frequency transforms to radar imaging of moving targets[C]. In: Proceedings of SPIE on Wavelet and Independent Component Analysis Applications IX, Orlando, UAS, Apr. 2002, 4738: 241-251.
    [128] Haywood B., Evans R.J., Discrete 2-D system identification for imaging rotating radar targets[J]. Signal Processing, 1992, 29(2): 191-211.
    [129] Li M.C., Interferoceiver, ISAR, and passive identification[C]. In: Proceedings of SPIE on Automatic Target Recognition XVI, Orlando, FL, May 2006, 6234: 62340T1-62340T10.
    [130] Stuff M.A., Sanchez P. and Biancalana M., Extraction of three-Dimensional motion and geometric invariants from range dependent signals[J]. Multidimensional Systems and Signal Processing, 2003, 4(1-3) :161-181.
    [131] Li J.F., Ling H., ISAR feature extraction from targets with non-rigid body motion using adaptive chirplet representation[C]. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, San Antonio, Texas, June 2002, 4, 294-297.
    [132]Hagelen M., Wahlen A. and Brehm T., ISAR imaging of flying helicopters at millimeter-wave frequencies[C]. In: proceedings of The First European Radar Conference( EURAD), Amsterdam, Netherlands, 2004, 265- 268.
    [133]Xing M.D., Lei J. and Bao z., A method of ISAR ship imaging based on pendulum model[C]. In: Proceedings of the International Radar Symposium, Berlin, Germany, 2005.
    [134] Barlett M.S., Movellan J.R. and Sejnowski T.J., Face recognition by independent component analysis[J]. IEEE Transactions on Neural Network, 2002, 13(6):1450-1464.
    [135]王盛利, 雷达信号处理的新方法——匹配傅里叶变换研究[D]. 中国西安:西安电子科技大学博士学位论文,2003年10月.
    [136] Geisheimer J.L., Marshall W.S. and Greneker E., A continuous-wave(CW) radar for gait analysis[C], In: Record of the Thirty-Fifth Asilomar Conference on on Signal, Systems and Computers, Pacific Grove, CA, USA, Nov. 2001, 1: 834-838.
    [137] Shen B.C., Shih H.C. and Huang C.L., Real-time human motion capturing system[C]. In: Proceedings of IEEE International Conference on Image Processing, Sept. 2005, 1322-1325.
    [138] Thayaparan T., Abrol S. and Chen V. C., et al., Analysis of micro-Doppler radar signatures from experimental helicopter and human data[C]. NATO SET-80 symposium, Oslo, Norway, Oct. 2004.
    [139]Lin A., Ling H., Through-wall measurements of a Doppler and direction-of-arrival (DDOA) radar for tracking indoor movers[C]. In: Proceedings of the IEEE Antennas and Propagation Society International Symposium, Columbus, Ohio, July 2005, 3B: 322-325.
    [140] Chen K., Huang Y. and Zhang J.P., Microwave life detection systems for searching human subjects under earthquake rubble or behind barrier[J]. IEEE Trans on Biomedical Engineering, 2000, 27(1):105-114.
    [141] 倪安胜, 伤员探测中生命体识别技术研究[D]. 中国西安:第四军医大学硕士学位论文, 2003 年 5 月.
    [142] S. Lawrence Marple Jr., Sharpening techniques for sensor feature enhancement[R]. 2005, http://www.vissta.ncsu.edu/workshop/presentations/Marple/Marple_afosr05.ppt
    [143]陈行勇,刘永祥,黎湘,等,微多普勒分析和参数估计[J]. 红外与毫米波学报,2006,25(5): 360-363.
    [144] Murray R.M., Li Z. and Sastry S.S., A Mathematical Introduction to Robotic Manipulation[M]. Boca Raton, FL, USA: CRC Press, 1994.
    [145] Chen V.C., Radar signatures of rotor blades [C]. In: Proceedings of SPIE on Radar Processing, Orlando, FL, USA, April 2001, 4391:63-70.
    [146] Gray J.E., Rice T.R. and Conte J.E., et al., A method for determining the non-linear time dependence of windowed data gathered from scattered signals[C]. In: Proceedings of International Symposium on Time-frequency and time-scale analysis, Victoria, BC, Canada, October 1992, 525-528.
    [147]Jacobs S.P., O’sullivan J.A., Automatic target recognition using sequences of high resolution radar range-profiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2):364-382.
    [148]Atsuto M., Kazuhiro F., Ship identification in sequential ISAR imagery[J]. Machine Vision and Applications, 2004, 15(3):149-155.
    [149]Li J., Ling H., and Chen V.C., An Algorithm to Detect the Presence of 3D Target Motion from ISAR Data[J]. Multidimensional Systems and Signal Processing, 2003, 14(1-3): 223-240.
    [150] Burden R.L., Faires J.D. and Reynolds A.C., Numerical Analysis[M]. Boston, MA: Prindle, Weber & Schmidt, 1978.
    [151] Barbaross S., Doppler-rate filtering for detecting moving targets with synthetic aperture radars[C]. In: Proceedings of the SPIE on Millimeter Wave and Synthetic Aperture Radar, Orlando, Florida, 1989, 1101:140-147.
    [152] Sun H.B., Wang S.L. and Liu G.S., et al., The changeable sampling-rate processing technology with application to SAR-MTD[J]. International Journal of Remote sensing, 2003, 24(15): 3033-3047.
    [153] Barkat B., Boashash B., Design of higher order polynomial Wigner-Ville distributions[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2608-2611.
    [154] Barkat B., Boashash B., A high-resolution quadratic time-Frequency disstribution for multicomponent signals analysis[J], IEEE Transactions on Signal Processing, 2001, 49(10): 2232-2239.
    [155] Sucic V., Barkat B. and Boashash B. et al., Performance evaluation of the B-Distribution[C]. In: Proceedings of the Fifth International Symposium on Signal Processing and its Applications, Brisbane, Australia, Aug. 1999, 267-270.
    [156] Wu H.Q., Grenier D. and Delisle G.Y., Translational motion compensation in ISAR image processing[J]. IEEE Transactions on image processing, 1995, 4 (11):1561-1571.
    [157] Wehner D.R., High-Resolution Radar[M]. Boston, MA, USA: Atech House, 1995, 197-238.
    [158] Mun K.L., Stepped frequency imaging radar simulation[R]. A379137, AD, Monterey, California, USA: Naval Postgraduate School, March 2000.
    [159] Abraham P., High radar range resolution with the step frequency waveform[R], A284611, AD, Monterey, California, USA: Naval Postgraduate School, June 1994.
    [160] Schimpf H., Wahlen A. and Essen H., High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps[J]. IEE Electronics Letters, 2003, 39 (18): 1346-1348.
    [161] Levanon N., Mozeson E., Nullifying ACF grating lobes in Stepped-Frequency train of LFM pulses[J]. IEEE Trasactions on Aerospace and Electronic Systems, 2003, 39 (2): 694-703.
    [162] 陈行勇,魏玺章,黎湘,等, 调频步进雷达扩展目标高分辨距离像分析[J].电子学报, 2005, 33(9): 1599-1602.
    [163] 雷文,龙腾,等, 调频步进雷达运动目标信号处理的新方法[J]. 电子学报, 2000, 28(12): 34-37.
    [164]Chen H.Y., Liu Y.X. and Li X, et al., Mathematics of synthesizing range profile[J]. IEEE Transactions on Signal Processing, accepted for publish.
    [165] Oppenheim A.V., Schafer R.W., Discrete-Time Signal Processing[M]. Englewood Cliffs, NJ, USA: Prentice-Hall Inc, 2000, 426-479.
    [166] Meyer C.D., Matrix Analysis and Applied Linear Algebra[M]. Philadelphia, PA, USA: SIAM, 2000, 279-293.
    [167] 张贤达, 信号处理中的线性代数[M]. 中国北京:科学出版社,1997 年,43-47.
    [168] Chen H.Y., Liu Y.X. and Jiang W.D., et al., A new approach for Synthesizing Range Profile of moving target via stepped-frequency waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3):406-409.
    [169] 沈吉,向锦武,祁载康,目标运动对步进频率毫米波雷达图像匹配识别的影响研究[J]. 电子学报, 2003, 31(3): 345-348.
    [170] 龙腾, 毛二可, 何佩琨, 调频步进雷达信号分析与处理[J]. 电子学报, 1998, 26(12): 84-88.
    [171] Zhang Q., Jin Y.Q., Aspects of radar imaging using frequency-stepped chirp signals[J]. EURASIP Journal on Applied Signal Processing, 2006, Article ID: 85823
    [172] Shen Y.Y., Liu Y.T., A step pulse train design for high resolution range imaging with Doppler resolution processing[J]. Chinese Journal of Electronics, 1999, 8(2):196-199.
    [173] 蒋楠稚, 王毛路, 步进脉冲距离高分辨一维成像速度补偿分析[J]. 电子科学学刊, 1999, 21(5): 665-670.
    [174] 陈广飞, 张运宁, 线性频率步进脉冲串信号的多普勒相位补偿[J]. 中国空间科学技术, 1997, 2(1):1-8.
    [175] Taylor J.D., Ultra-wideband Radar Technique[M]. Boca Raton, FL, USA: CRC Press, 2001, 298-323.
    [176] Rabideau D.J., Nonlinear synthetic wideband waveforms[C]. In: Proceedings of IEEE International Conference on Radar, Edinburgh, UK, October 2002, 21-219.
    [177] Wong S.K., Duff G. and Riseborough E., Analysis of distortion in the high range resolution profile from a perturbed target[J]. IEE Proceedings on Radar, Sonar and Navigation, 2001, 148 (6): 353-362.
    [178] Ma Y.B., Velocity Compensation in Stepped Frequency Radar[D]. Naval Postgraduate School Master Degree Thesis, Monterey, California, USA, 1995.
    [179] He S.H., Zhang L. and Zhang W.F., Doppler compensation of range profiles and moving target discrimination In FMCW radar[C]. In: Proceedings of International Conference on Aerospace and Electronic, Dayton, USA, May 1995, 49-52.
    [180] Temple M.A., Sitler K.L. and Raines R.A., et al., High range resolution(HRR) improvement using synthetic HRR processing and stepped-frequency polyphase coding[J]. IEE Proceedings on Radar, Sonar and Navigation, 2004, 151(1):41-47.
    [181] Torres J.A., Davis R.M. and Krmer J. D.R., Efficient wideband jammering when using stretch processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (4): 1167-1178.
    [182] Maron D.E., Frequency-jumped burst waveforms with stretch processing[C]. In: Proceedings of IEEE International Conference on Radar, Arlington, USA, May 1990, 274-279.
    [183] Levanon N., Stepped-frequency pulse-train radar signal[J]. IEE Proceedings on Radar, Sonar and Navigation, 2002, 149 (6):297-309.
    [184] Gill G.S., Step frequency waveform design and processing for detection of moving targets in clutter[C]. In: Proceedings of IEEE International Conference on Radar, Washington D.C., USA, May 1995, 573-578.
    [185] de Wit J. J. M., Meta A. and Hooge boom P., Modified range-Doppler processing for FM-CW synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3 (1): 83-87.
    [186] Abatzoglou T.J., Gheen G.O., Range, radial velocity, and acceleration MLE using radar LFM pulse train[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4):1070-1084.
    [187] Liu A.F., Zhu X.H. and Lu J.H., The ISAR range profile compensation of fast-moving target using the dechirp method[C]. In: Proceedings of International Conference on Neural Networks & Signal Processing, Nan Jing, Chnia, Dec. 2003, 1619-1623.
    [188] Xiao H., Qiu Y.Z., Maximum likelihood based range alignment for ISAR imaging[C]. IEEE Antennas and Propagation Society Symposium, Monterey, CA, USA, Jun. 2004, 2: 2013-2016.
    [189] Luigi C.D., Jauffret C., Estimation and classification of FM signals using time frequency transforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2): 421-437.
    [190]Chen H.Y., Jiang W.D. and Liu Y.X., et al., Nonuniform stretch processing for range profile of target with micro-motion[J]. Progress in Nature Science, 2006, 16(12): 107-115.
    [191] Martorella M., Berizzi F. and Bruscoli S., Use of genetic algorithms for contrast and entropy optimization in ISAR autofocusing[J]. EURASIP Journal on Applied Signal Processing, 2006, Article ID: 87298.
    [192] Thayaparana T., Lampropoulosb G. and Hopkins T., Focusing ISAR images using genetic algorithms[C]. International Radar Symposium, Berlin, Germany, 2005.
    [193] Wong S., Riseborough E. and Duff G., Experimental investigations on the distortion of ISAR images using different radar waveforms[R]. Technical Memorandum, September 2004, TM 2003-196, Defence R&D Canada, Ottawa, Canada.
    [194] Yamamoto K., Iwamoto M. and Fujisaka T., et al., An ISAR imaging algorithm for multiple targets of different radial velocity[J]. Electronics and Communications in Japan, Part 1, 2003, 86(7):1-10.
    [195] Alexander E., Poularikas D., The Handbook of Formulas and Tables for Signal Processing[M]. Boca Raton, FL, USA: CRC Press, 1998, 73-79.
    [196] Xu R.Q., Cao Z.D. and Liu Y.T., Motion compensation for ISAR and noise effect[J]. IEEE Aerospace and Electronic Systems Magazine, 1990, 5(6): 20-22.
    [197]Komorniczak W., Pietrasinski J. and Solaiman B., The data fusion approach to the priority assignment in the multifunction radar[C]. In: Proceedings of the 14th International Conference on Microwaves, Radar and Wireless Communications, Gdansk, Poland, May 2002, 2: 647-650.
    [198]周苑,沈齐,信息战条件下敌我目标综合识别方法研究[J]. 现代雷达,2000,22(6): 6-10.
    [199]曲东才,史贤俊,董文洪,雷达敌我识别系统现状、发展及启示[J]. 现代防御技术,2004,32(3):64-68.
    [200] LaCroix L., Kurzius S., Peeling the onion: an heuristic overview of hit-to-kill missile defense in the 21st century[C]. In: Proceedings of SPIE on Quantum Sensing and Nanophotonic Devices II, Orlando, USA, Apr. 2005, 5732: 225-249.
    [201]罗宏,动态雷达目标的建模与识别研究[D]. 中国北京:航天科工集团公司第二研究院博士学位论文,2004 年 4 月.
    [202] Canavan G.H., Missile Defense for the 21st Century[M]. Washington DC: The Heritage Foundation, 2003, 25-30.
    [203] Lewis G.N., Postol T.A., Future challenges to ballistic missile defense[J]. IEEE Spectrum, Sep. 1997, 34(9):60-68.
    [204] Hatch N.A., Radar Based Estimation of Asymmetric Target Inertial Parameters[D]. Worcester polytechnic Institute Doctor degree thesis, Boston, MA, USA, 2006.
    [205] Zorpette G., Kwajaleinapos’s new role: radars for SDI[J]. IEEE Spectrum, 1989, 26(3): 64-69.
    [206] 陈行勇,黎湘,郭桂蓉,等, 微进动弹道导弹目标雷达特征提取[J]. 电子与信息学报, 2006, 28(4):643-646.
    [207] Cuomo K.M., Piou J.E. and Mayhan J.T., Ultra-wideband sensor fusion for BMD discrimination[C]. In: Proceedings of IEEE International Conference on Radar, Alexandria, VA, USA, May 2000, 31-34.
    [208] Levine R.Y., Khuon T.S., Neural networks for distributed sensor data fusion: the Firefly experiment[C]. In: Proceedings of SPIE on Sensor Fusion IV: Control Paradigms and Data Structures, Boston, MA, USA, Nov. 1991, 1611:52-64.
    [209] Freed C., Laser radar component technology[J]. Proceedings of the IEEE, 1996, 84(2):227-267.
    [210] Keicher W.E., Edwards B.E. and Sullivan L.J., ‘Firefly’ laser experiment successful in measuring inflatable decoy motion[J]. Aviat. Week Space Technol., 1990, 132(16):75.
    [211] Knott E.F., Simulation of reentry vehicle motion during laboratory measurements of radar cross section[J]. IEEE Transactions on Antennas and Propagation, 1969, 17(3):242-244.
    [212] Lammers Yve H.W., Marr R.A., Doppler imaging based on radar target precession[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1):166-173.
    [213] Isaac B., Model of laser radar signatures of ballistic missile warheads[C]. In: Proceedings of SPIE on Targets and Backgrounds: Characterization and Representation V, Orlando, FL, USA, April 5-7, 1999, 3699:133-137.
    [214] Pouliguen P., Lucas L. and Muller F., et al., Calculation and analysis of electromagnetic scattering by helicopter rotating blades[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(10):1396-1408.
    [215] 汤子跃, 王永良, 蒋兴舟, 相控阵机载预警雷达对悬停直升机的检测[J]. 电子学报, 2002, 29(9):1249-1252.
    [216] Gini F., Farina A., Matched subspace CFAR detection of hovering helicopters[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4):1293-1304.
    [217] Green H.E., Electromagnetic backscattering from a helicopter rotor in the decametric wave band regime[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(4):501-509.
    [218] Martint J., Mulgrew B., Analysis of the effects of blade pitch on the radar return signal from rotating aircraft blades[C]. In: Proceedings of IEEE International Conference on Radar, Brighton, United Kingdom, Oct. 1992, 446-449.
    [219] 邹焕新,杜攀,胡卫东,等, 周期性运动构件调制回波的特性研究[J].系统工程与电子技术,2000,22(6):58-61.
    [220] 陈行勇,魏玺章,黎湘,等, 基于盲数理论的空中目标粗分类[J]. 电子与信息学报, 2006, 28(2): 322-325.
    [221]陈行勇,黎湘,郭桂蓉,等, 基于旋翼微动雷达特征的空中目标识别[J]. 系统工程与电子技术,2006, 28(3): 372-375.
    [222] 刘开第,吴和琴,庞彦军,等, 不确定性信息数学处理及应用[M]. 中国北京:科学出版社, 1999, 160-182.
    [223] 刘永祥, 导弹防御系统中的雷达目标综合识别研究[D]. 中国长沙:国防科技大学博士学位论文,2004年6月.
    [224] 曾勇虎, 极化雷达时频分析与目标识别的研究[D]. 中国长沙:国防科技大学博士学位论文, 2004年6月.
    [225] 冯德军, 弹道中段目标雷达识别与评估研究[D]. 中国长沙:国防科技大学博士学位论文,2006年6月.
    [226] Ingwersen P.A., Lemnios W.Z., Radars for ballistic missile defense Research[J]. The Lincoln Laboratory Journal, 2000, 12(2): 245-266.
    [227] Stone M.L., Banner G.P., Radars for the detection and tracking of ballistic missiles, satellites, and Planets[J]. The Lincoln Laboratory Journal, 2000, 12(2): 217-244.
    [228] Florios B., Kill Vehicle Effectiveness for Boost Phase Interception of Ballistic Missiles[D]. Master’s Thesis, Monterey, California, USA: Naval Postgraduate School, June 2004.
    [229] Sauter L.M., Satellite Constellation Design for Mid-course Ballistic Missile Intercept[D]. Master Degree Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, June 2004.
    [230] Banks H.T., Ito K., and Kepler G.M., et al., Material surface design to counter electromagnetic interrogation of targets[J]. SIAM Journal on Applied Mathematics, 2006, 66(3): 1027-1049.
    [231] 章仁为, 卫星轨道姿态动力学与控制[M]. 中国北京:北京航空航天大学出版社,1998.
    [232] 刘延柱,空间飞行器姿态控制动力学[M]. 中国北京:国防工业出版社,1995.
    [233] Mahafza B.R., Radar Systems Analysis and Design Using MatLab[M]. Boca Raton, FL, USA: CRC Press, 2000, 89-92.
    [234] Postol T.A., Explanation of why the sensor in the Exoatmospheric Kill Vehicle (EKV) cannot reliably discriminate decoys from warheads[R]. Security Studies Program Massachusetts Institute of Technology. http://www.globalsecurity.org/space/library/news/2000/postol_atta.pdf
    [235]Mayhan J.T., Burrows M.L. and Cuomo K.M., et al., High resolution 3D “snapshot” ISAR imaging and feature extraction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630-641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700