高频耦合电弧热源特性及工艺性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲焊工艺因能实现对热输入量、焊缝成形的精确控制而得到了广泛的应用。本文以航天高强铝合金材料在焊接制造过程中的实际工程需求为背景,以耦合型脉冲焊接电源及工艺实现为基础,通过对高频电弧形貌特性、电热物理特性及焊接工艺特性的研究,力图通过改善电弧热源特性实现提高铝合金焊接质量的目的。
     针对现有焊接电源动特性无法实现高频脉冲电流输出的限制,在不改变已有商品化电源输出方式和控制模式的基础上,搭建了数字化耦合型高频脉冲TIG电源系统,选用适合的外特性输出模式配合新型拓扑电路,摆脱了逆变电源自身工作频率对脉冲电流频率的限制,实现高于电源逆变频率的高频脉冲电流输出。并利用数字化控制系统易于实现柔性化控制的特点,完善了上述电源系统的时序控制程序及闭环控制算法,保证焊接电源输出稳定可靠。建立了高频脉冲电源的等效理论模型,在分析电容容值、电容电压、回路电感及回路等效电阻对脉冲电流的波形影响的基础上,确定了欠阻尼电路结构作为系统有效工作的状态。
     对高频脉冲电弧的形貌及电参数进行了观测,通过对不同频率下的电弧测试结果进行分析,发现随着脉冲频率的升高,电弧形貌峰基值间的差距逐渐减小并伴随沿电弧轴向的球状收缩,结合电弧自磁压缩理论配合多周期宏观高速摄像分析了脉冲参数对电弧能量的影响;随频率的提高,电信号主要表现为基值电压保持在较低值,而峰值电压则升高;高频电弧的伏安特性表明本系统产生的高频脉冲电弧阻抗特性存在从感性向阻性转变的过程。
     根据高频脉冲电弧特点,采用错时采集并配合软件同步的方法,能够准确有效地反映高频电弧瞬态变化过程;光谱诊断结果发现20kHz附近的耦合型电弧能获得较为显著的高频效应;通过对不同脉冲参数条件下的电弧进行光谱诊断,得到与电弧形貌相符的结论,验证了脉冲参数对电弧能量变化规律的机理;针对20kHz附近区间的电弧能量进行光谱分析,发现随着脉冲幅值的增加和占空比的减小,电子密度均呈现出增加的趋势,表征为峰值电流时段电弧能量密度增大的效应,是脉冲电弧不同于直流电弧在热力学状态上的一个重要区别。
     针对航天高强铝合金的材料特性和焊接性,选择直流、交流混合输出的特殊波形进行高频能量的耦合。力学性能测试结果表明高频脉冲能量提高了焊接接头的拉伸强度和延伸率,显著减少了微气孔的数量。焊接接头的断口形貌也验证了耦合高频能量后,焊接接头断口有向韧性断裂转变的趋势;此外,根据高频脉冲频率渐变试验的结果提出了以实际过冷度(枝状晶生长率)和新晶体形核条件(等轴晶生长率)竞争作用为机理的工艺优化思路,为耦合型高频脉冲焊接电弧的参数调控及其工程应用提供的重要基础。
Pulse arc welding process has been widely used in manufacturing industrybecause the heat input and weld shape can be controlled precisely. In accordance withthe welding requirement of Aerospace high strength aluminum-alloy materials, theTIG welding system with high frequency pulse coupling has been proposed to adjustthe welding heat source performance in order to improve welding quality of highstrength aluminum-alloy based research of arc-physics and process characteristic.
     The high frequency current pulse output is difficult to achieve because ofdynamic characteristic limit. The digital control TIG welding system with highfrequency pulse coupling has been established. This system can realize highfrequency pulse current output without limitation because the novel power circuit andspecial external characteristic are adopted. According to strength the flowmanagement and PI arithmetic support by flexible digitalized control system, thewhole system can achieve stable welding process. The circuit parameters, includingcap value, charge voltage and equivalent inductor, have been studied. The result showthe circuit is suitable for working in underdamping pattern.
     Appearance and electrical parameters of high-frequency pulse arc observed indifferent frequency. The result shows, with the frequency increasing, the differencebetween peak period and base period decreases. In the meanwhile, ball-like shrinkphenomenon arises. Pulse parameters on the effect of arc energy are analyzed basedself-magnetic compress theory and macro high-speed camera photos with multi-cycleexposure. The peak period voltage presents a ascend tendency with the increase ofpulse frequency. The base period voltage shows reverse trends, but when the pulsefrequency surpasses20kHz, base period voltage no longer change significantly. Atransition process from inductor to resistor has been found base the U-I chart analyze.
     The transient variation process of high-frequency arc can be effectively andaccurately sampled because the dislocation photo take method and softwaresynchronization adopted according to high-frequency arc characteristics. The pulsearc in20kHz presents obviously high-frequency effect on the basis of spectroscopicdiagnosis data. The result of spectroscopic diagnosis in different pulse parameters isbasic same to the arc appearance consequence. This conclusion, as effectivelyevidence, can prove the arc energy variation rules and high-speed camera test result. The results of spectroscopic diagnosis around20k Hz show that the electron densitycan be increased with the pulse amplitude increasing and the duty ratio decreasing. Itindicates arc energy density enhancing during the peak current period and also themain difference between pulse arc and DC arc.
     The high-frequency pulse energy coupling on DC and AC mixture arc acts thepart in high strength aluminum-alloy welding. The mechanical properties, strengthand ductility of welded joints are all enhanced. The micro-porosity quantity at theboth sides of the fusion line can be significantly decreased. Welding joint fracturemorphology shows that the connections between the cleavage surfaces may bechanged from the secondary cleavage fracture to the shearing fracture. Furthermore, aproposal based on grain-grow mechanism may be put forward to reducecolumnar-dendritic region and increase equiaxed region by experiment of HFcoupling effectivity. It may provide a way to optimize the welding process parameteras well as its quality in industrial application.
引文
1Jenney C L&A O’Brien. Welding Handbook,9th edition, V.1, Welding Science&Technology [M], AWS,2001
    2安腾宏平.焊接电弧现象[M],北京:机械工业出版社,1987
    3Needham J C. Pulsed Current for Gas Shielded Arc Welding[J], Industry and GeneralApplications,1966(2):225-233
    4Daggett E H. A power supply for pulsed power welding[J], Spectrum, IEEE,1968(5):67-70
    5Anderson K, Cook G E,Barnett R J. A class-H amplifier as a generic power source for arcwelding[C], Southeastcon90. Proceedings, New Orleans, LA, USA,1990(4):792-796
    6Theron P C, Ferreira J A, Fetter J C. Welding power supplies using the partial seriesresonant converter[C], Proceedings of the IECON93, Maui, HI, USA1993,19:1319-1324
    7Drews.Schulle. Electric steam radiator space heating unit: United States, US4427875[P]1984-01-24
    8Heinrich, Hacki. Digitally Controlled GMA Power Sourcep[EB/OL].pp:1-7.www.fronius.com/worldwide/usa/products/paper-digitally-controlled-power-sources-gb.pdf
    9Manti R, Dwivedi,D.K.. Microstructure of Al–Mg–Si Weld Joints Produced by Pulse TIGWelding[J].Materials and Manufacturing Processes,2007,22:57–61
    10Galler D A.KnskoA. A Fast Response Transistor Current Regulator for Welding Response,IEEE—Annual Meeting[C], Philadelphia, PA,1981
    11Zeng X M, Lucas J. Welding with high-frequency square-wave AC arcs[J].IEEEProceeding,1990,137(4):193-198
    12Yamaoto T, Shimada W. Characteristics of high-frequency pulsed DC TIG weldingprocess[J], Int. Inst.Welding Document,1976: XII-628-76-13
    13Cook G E, Merrick G J, Arc energy relations in pulse current welding process[C]. Proc.2nd Int. Symp. Japan Welding Society,1975, p.10
    14赵家瑞.电流脉冲频率对TIG焊电弧影响机理的研究[J],电焊机,1993,23(2):16-18
    15赵家瑞,孙栋,胡绳荪等.高频脉冲TIG焊电弧的阳极行为[J],焊接学报,1992,13(1):59-66
    16赵家瑞,张东元,孙栋等.矩形波直流脉冲TIG焊电弧稳定性的研究[J],焊接学报,1988,9(3):171-180
    17赵家瑞,李义丹.高频脉冲TIG焊的电弧控制及高频效应[J].天津大学学报,1989(3):25-32
    18赵家瑞.微机图像处理法对高频脉冲TIG焊电弧的诊断研究[J],焊接学报,1987,8(4):213-219
    19殷树言,王其隆,何景山.小电流高频脉冲TIG焊电弧稳定性的研究[J].金属科学与工艺,1987,6(4):97-106
    20吴敏生,段向阳,李路明.电弧超声的激发及其特性研究[J].清华大学学报:自然科学版,1999,39(6):110-113
    21吴敏生,张春雷,段向阳.电弧超声的频率响应特性及其谐振机理[J].清华大学学报:自然科学版,1999,39(11):97-99
    22Taihei Matsumoto, Hidetoshi Fujii, Kouki Kitamura. Development of Supersonic waveTIG welding method[J].IIW-Doc,2006, XII-1908-06, SG-212-1098-06
    23邱灵,范成磊,林三宝等.高频脉冲变极性焊接电源及电弧压力分析[J].焊接学报,2007,28(11):81-84
    24邱灵,杨春利,林三宝等..高频脉冲焊接工艺性能研究[J].焊接,2007(7):35-38
    25齐铂金,许海鹰,黄松涛等.超音频脉冲TIG焊电源拓扑及电弧焊适用性[J].北京航空航天大学学报,2009,35(1):61-64
    26齐铂金,从保强.新型超快变换复合脉冲变极性弧焊电源拓扑[J].焊接学报,2008,29(11):57-60
    27齐铂金,许海鹰,周兴国等.快变换超音频直流脉冲TIG焊[J].焊接学报,2009,30(7):57-60
    28许海鹰,齐铂金,黄松涛.基于DSP的超音频脉冲TIG焊电源设计[J].电力电子技术,2008,42(9):47-49
    29从保强,齐铂金,周兴国.超快变换复合脉冲方波变极性TIG电弧行为[J].北京航空航天大学学报,2009,35(8):1013-1017
    30从保强,齐铂金,周兴国等.5A06铝合金超快变换复合脉冲方波VPTIG焊接[J].宇航材料工艺,2009(2):71-74
    31齐铂金,许海鹰,张伟.0Cr18Ni9Ti超音频脉冲TIG焊接头组织与性能[J].北京航空航天大学,2009,35(2):132-136
    32何德坪,陈锋,舒光冀等.振动干扰波形对枝晶生长的影响[J].人工晶体学报,1989,18(4):262-266
    33Sun Q J, Lin S B. Penetration increase of AISI304using ultrasonic assisted tungsten inertgas welding[J].Science and Technology of welding and joining,2009,14(8):765-767
    34LEI Yu-cheng, WANG Zhi-wei, CHEN Xi-zhang. Effect of arc-ultrasound onmicrostructures and mechanical properties of plasma arc welded joints of SiCp/AlMMCs[J]. Transactions of Nonferrous Metals Society of China,2011,21,272-277
    35牛永,宋永伦,曾周末.小电流脉冲TIG弧谐振现象及其交流阻抗特性分析[J].焊接学报,2011,32(2):13-16
    36牛永.小电流脉冲TIG弧的高频特征[D].天津:天津大学,2010
    37Jackson K A, Hunt J D, et al. On the origin of the equiaxed zone in castings. TMS-AIME.1966m236(2):149-158
    38Yue T M, Ha H U, Musson N J. Grain Size effects on the mechanical properties of somesqueeze cast light alloys[J]. Journal of material science,1995,30:2277-2283
    39范金辉,翟启杰.物理场对金属凝固组织的影响[J].中国有色金属学报,2002,(12):11-15
    40B S Murty, S A Kori, M Chakraborty. Grain refinement of aluminium and its alloys byheterogeneous nucleation and alloying[J]. International Materials Reviews,2002,47(1):3-29
    41黄良余.铝及铝合金的晶粒细化处理简述[J].特种铸造及有色合金,1997,3:41-43
    42Sigworth G K. Foundmentals of grain refining in aluminum alloy castings[J]. Light Metals,1989:75-85
    43Mats Johusson, Lennart Baekerud, SigworthGK. Study of meehanism of grain refinementof AI after additions of Ti-and B-containing master alloys[J]. Metal Trans. A,1993,20A(2):481一491
    44Dhindaw, Brij K. International Conference on solidification Science and Processing:outlook for the21stcentury. Science Pulishers,2001
    45Flemings Merton C. Proceedings of the Merton C. Flemings Symposium on Solidificationand Materials Processing. TMS,2001
    46Campbell, John. Modeling of casting, welding, and advanced solidification process VII.Minerals, Metals&Materials Society,1995
    47Furuhashi S, Yoshida M, Tanaka T. Control of early solidification by the use of highfrequency electromagnetic field In the continuous casting of steel. Tetsu To Hagane1998,84(9):625-631
    48B.I.Butakov, M.B.Stolyar, Yu.G.Ovchinnikov, rt al. External physical actions on structureand properties of metals and alloys. Tyazheloe Mashinostroenie,2002,(3):9-16
    49A.A. Wheeler, S. R. Coriell, G.B. McFadden. The effect of an electric field on themorphological stability of the crystal-melt interface of a binary alloy [J], Journal ofCrystal Growth,1988,4(88):1-15
    50H. Conrad. Influence of an electric or magnetic field on the liquid-solid transformation inmaterials and on the microstructure of the solid [J]. Material Science and engineering,2000, A287:205-212
    51L. N. Brush, B. T. Murray. Crystal growth with applied current [J]. Journal of CrystalGrowth,2003,250:170-173
    52L. N. Brush. A phase field model with electric current [J]. Journal of Crystal Growth,2003,247:170-173
    53S. Taniguchi, H. Yasuda, K. Takatani. Preface to the special issue on “advancedapplication of electromagnetic force to materials processing”[J], ISIJ International,2003,43(6),799-800
    54Garnier M. Technological and economical challenges facing EMP in next century[C]. The3rdinternational symposium on EPM. Nagoya: The Iron and steel institute of Japan,2000:3-8
    55Utech U P, Fleming M C. Thermal convection in metal crystal growth: effect of amagnetic field [J]. Trans. Metal. Soc. Aime,1965,223:156
    56Uhlmann D R, Seward T P, Chalmers B. The effect of magnetic fields on the structure ofmetal alloy casting [J]. Trans. Metal. Soc. AIME,1966,236(4):527-531
    57V. Abramov, V.Bulgakov, F. Sommer. Solidification of aluminium alloys under ultrasonicirradiation using water-cooled resonator[J]. Materials Letters,1998,42:27-34
    58F. P. Qi, H. B. Zhang, Q. J. Zhai. Microstructure Refinement of Sn-Sb Peritectic Alloyunder High-Intensity Ultrasound Treatment [J]. journal of Shanghai University,2005,9:74-77
    59X. Jian, H. Xu, Q. Han. Effect of power ultrasound in solidification of aluminum A356alloy [J]. materials Letters,2005,59:190-193
    60A. Troitskii. Pressure shaping by the application of high energy [J]. Materials Science andengineering A,1983,75:37-50
    61H. Conrad, N. Karam, S. L. Mannan. Effect of electric current pulses on therecrystallization of copper [J]. Acta Metall,1983,17(3):411-416
    62A.F. Sprecher, S. L. Mannan, H. Conrad. On the mechanisms for the electroplastic effectin the metals [J]. Acta Metall,1986,34:1145-1162
    63H. Conrad, A. F. Sprecher, W. D. Cao et al. Electroplasticity the effect of electricity on themechanical properities of metals [J]. JOM,1990,42(9):28-33
    64H. Conrad. Effects of electric current on solid state phase transformation in metals [J].Materials Science and engineering A,2000,287:227-237
    65H. Conrad, J. White, W. D. Cao, et al. Effect of electric current pulses on fatiguecharacteristics of polycrystalline copper [J]. Materials Science and engineering A,1991,145:1-12
    66Z. H. Lai, C. X. Ma, H. Conrad. Cyclic softening by high density electric current pulsesduring low cycle fatigue of a-Ti [J]. Scripta Metall.,1992,27:527-531
    67肖素红,周亦胄,吴世丁等.高密度脉冲电流对Cu单晶体驻留滑移带的影响[J].金属学报,2000,36(12):1237-1239
    68L. Jianming, L. Hantong. Modification of solidification structure by pulse electricdischarging [J]. Scripta. Metall.,1994,31(12):1691-1694
    69J P. Barnak, A F. Sprecher, H. Conrad. Colony(grain) size reduction in eutectic Pb-Sncastings by electropulsing [J]. Scripta Metall.,1995,32(6):879-884
    70H. Conrad. Influence of an electric or magnetic field on the liquid-solid transformation inmaterials and on the microstructure of the solid [J]. Materials Science and engineering A,2000,287:205-212
    71王建中,苍大强,周本濂等.电脉冲孕育处理对AL-5.0%Cu合金凝固结构的影响[J].铸造,1999,5:4-7
    72曹丽云,王建中,曹力生等.电脉冲孕育(EPM)处理对ZL101合金凝固组织和力学性能的影响[J].铸造,2001,50(10):590-59
    73曹丽云,王建中,刘兴江等.电脉冲变质处理对ZL108合金性能的影响[J].特种铸造及有色合金,2001,4:10-11
    74曹丽云,王建中,曹力生等.电脉冲孕育处理Al-Si合金变质新方法[J].材料与表明处理,2001,12:40-42
    75Zi Bingtao, Yao Kefu, Liu Wenjin. Effect of Higher Density Pulsed Current onSolidi-fication Structures of2024Al-alloy [J]. Rare Metal Materials and Engineering,2003,1(32):9-1
    76訾炳涛,崔建忠,巴启先.高密度脉冲电流作用下LY12铝合金的凝固组织[J].特种铸造及有色合金,2000,4:4-6
    77C. Y. Ban, J. Z. Cui, Q. X. Ba et al. The influence of Pulsed Magnetic Field onMicrostructures and Macro-seregation in2124Al-alloy[J], Acta Metallurgica Sinica,2002,15(4):380-384
    78S. Y. Sokolov. Ultrasonic methods of detecting internal flaws in metal articles,Zavodskaya Laboratoriya,1936,(3)3:176
    79Fei-peng Qi,Hai-bo Zhang,Shou-lei Gao,Qi-jie Zhai. Microstructure refinement of Sn-Sbperitectic alloy under high-intensity ultrasound treatment[J]. Journal of ShanghaiUniversity (English Edition),2005,9(1)
    80G. I. Eskin,G. S. Makarov,Yu. P. Pimenov. Effect of ultrasonic processing of molten metalon structure formation and improvement of properties of high-strength Al-Zn-Mg-Cu-Zralloys[J]. Advanced Performance Materials,1995,2(1)
    81Luminita Moraru. Fourier thermal analysis of solidification kinetics in molten aluminiumand in presence of ultrasonic field[J]. Czechoslovak Journal of Physics,2000,50(10)
    82G. I. Eskin,V. S. Sinyavskii,V. V. Usova. Regularities of the Intensifying Effect ofUltrasonic Treatment on Titanium Alloy Pickling[J]. Protection of Metals,2003,39(6)
    83LEI Yu-cheng, WANG Zh i-wei, CHEN Xi-zhang. Effect of arc-ultrasound onmicrostructures and mechanical properties of plasma arc welded joints of SiC_p/Al MMCs,Transactions of Nonferrous Metals Society of China[J],2011,21:272-277
    84刘志华,尚育如,宁立芹等.新一代运载火箭贮箱焊接工艺评价的概念及应用[J].导弹与航天运载技术.2009,(4):30—34
    85刘志华.21世纪航天工业铝合金焊接工艺技术展望[J].导弹与航天运载技术.2002,(5):63—68
    86姚君山,周万盛,王国庆,等.航天贮箱结构材料及其焊接技术的发展[J].导弹与航天运载技术.2002,(5):17—22
    87席峰.航天大型铝合金结构件焊接残余应力和变形的研究[D].北京:北京工业大学博士论文,2008
    88P. F. Mendez., T. W. Eagar: Welding Processes for Aeronautics[J], Advanced materials&processing,2001,5:39-43
    89关桥,张崇显,郭德伦.动态控制的低应力无变形焊接新技术[J],焊接学报,1994,3(15):8-15
    90郭少庆.高热裂敏感铝合金薄板焊接裂纹与变形控制研究[D].哈尔滨:哈尔滨工业大学博士论文.1999
    91尹勇,欧光军.关荣锋. DSP集成开发环境CCS开发指南[M].北京.北京航空航天大学出版社,2004
    92彭启琮,管庆等. DSP集成开发环境-CCS及DSP/BIOS的原理与应用[M].北京.电子工业出版社.2004
    93过增元.电弧与热等离子体[M],北京:科学出版社,1986
    94Song Yonglun, Yan Sibo, Xiao Tianjiao, Yang Xiaohong. A Study on the Macro-microPhysical Properties in Pulsed Arc Plasma, Visual-JW2010, Osaka,2010,11
    95M A阿勃拉洛夫, P Y阿勃杜拉赫曼诺夫.电磁作用焊接技术[M],韦福水,路登平译,机械工业出版社[M],1988
    96H. R. Griem. Spectral Line Broadening by Plasma. New York: Academic Press.1974:127-157
    97徐晨明.氩氦电弧的光谱诊断及其应用[D].哈尔滨:哈尔滨工业大学博士论文,2005.5
    98胡坤平.交流TIG电弧的过零现象及其特征[D].北京:北京工业大学博士论文,2007,6
    99S Pelleriny, K Musiolz, B Pokrzywkax, etl. Stark width of4p’[1/2]-4s[2/3]0Ar I transition(696.543nm)[J], J. Phys. B,1996(29):3911-3924
    100T. A. Siewert, K. Matsubuchi, Lee Flanigan. In-space welding Vision&Rralities[C],Thirtieth Space Congress,1993,4
    101何柞镛,赵玉芳.声学理论基础[M].北京:国防工业出版社,1983,112
    102王俊.用高能超声法制备的MMCp及细观力学行为[D].南京:东南大学,1997
    103陈伯蠡.焊接冶金原理[M].北京:清华大学出版社,1991.
    104盖伊,易斯金.超声波工学与应用技术[M],日苏通信社—新日本铸锻造协会联合出版,1975(日文版)
    105Abramov. O. V.超声波场内的金属凝固[M].日苏通信社—新日本铸锻造协会联合出版,1975(日文版)
    106M R Hoffman, I Hua, R Hchemer. Ultrasonics Sonochemistry[J].1996,(3):163-172
    107Y T Yen, T H Fang, Y C Lin. Application of a Taguchi Method Technique in Determiningthe Laminating Process Parameters for a bonding sheet[J], Journal of Electronic Packaging,2010,132:041005
    108M. Yousefieh, M, Shamanian, A. Saatchi. Optimization of the pulsed current gas tungstenarc welding parameters for corrosion resistance of super duplex stainless steel welds usingthe taguchi method[J], journal of alloys and compounds.2011,590:782-781.
    109冉国伟.航天铝合金材料激光—电弧复合热源焊接工艺性研究[D].北京:北京工业大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700