平面多项式微分系统的中心问题与极限环分支
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究平面多项式微分系统退化奇点与无穷远点的可积条件以及中心焦点判定与极限环分支,全文由七章组成。
     第一章对平面多项式微分系统极限环分支问题与中心问题的历史背景与研究现状进行了全面综述,并将本文所做的工作作了简单的介绍。
     第二章研究了一类三次多项式系统无穷远点的中心条件与赤道极限环分支。通过将实系统转化为复系统研究,给出了计算无穷远点奇点量的递推公式,并在计算机上用Mathematica推导出该系统无穷远点前七个无穷远点奇点量,进一步导出了无穷远点成为中心的条件和七阶细焦点的条件,得到了三次系统无穷远点分支出七个极限环的一个实例(本章内容发表在《Applied Mathematics and Computation》2006,V.177(1)上)。
     第三章研究了一类五次多项式系统无穷远点的中心条件与赤道极限环分枝问题。给出了计算五次多项式系统无穷远点奇点量的线性递推公式,运用这个公式及计算机代数系统Mathematica,计算了一类五次系统无穷远点的前十一个奇点量。同时得到了无穷远点的中心条件。首次构造了一个在无穷远点产生十一个极限环的五次多项式系统(在《Computers and Mathesatics with Applications》上已接收)。
     第四章研究了一类七次系统无穷远点的中心条件与赤道极限环分支问题。通过将实系统转化为复系统研究,给出了计算无穷远点奇点量的递推公式与系统无穷远点前十四个奇点量,进一步导出了无穷远点成为中心的条件和十四阶细焦点的条件,在此基础上首次得到了七次系统无穷远点分支出十三个极限环的一个实例。
     第五章研究了一类有两个小参数和八个普通参数的五次系统的退化奇点与无穷远点(赤道)的中心条件与极限环分支。通过两个同胚变换将退化奇点与无穷远点转变成初等奇点,进而计算了原点(退化奇点)与无穷远点的Lyapunov常数(奇点量),并由此得到了退化奇点与无穷远点的中心条件。在原点和无穷远点的同步扰动下,得到了极限环的{(7),2}和{(2),6}分布(本章内容发表在《Applied Mathematics and Computation》2006,V.181(1)上)。
     第六章研究了一类更广泛的复自治微分系统(其中z,w,T为相互独立的复变量,a_(αβ),b_(αβ)是复常数,p,q为互质的整数,n为自然数)的原点(它是系统(1)的退化奇点)。定义了这类奇点的广义奇点量并研究了奇点量的结构,给出了计算奇点量的代数递推公式并得出了奇点为广义复中心的充要条件。本章结论是文[41,46]结论的推广。
     第七章研究了一类更广泛的多项式微分系统(其中z,w,T为相互独立的复变量,a_(αβ),b_(αβ)是复常数,p,q为互质的整数,n为自然数)的无穷远点,定义了这类无穷远点的广义奇点量并研究了奇点量的结构,给出了计算无穷远点奇点量的代数递推公式并得出了无穷远点为广义复中心的充要条件。本章结论是文[46]结论的推广。
This thesis is devoted to the problems of integral conditions, center-focus determination and bifurcation of limit cycles at degeneratesingular point and the infinity of planar polynomial differential system. Itis composed of seven chapters.
     In chapter 1, the historical background and the present progress ofproblems about center-focus determination and bifurcation of limit cyclesof planar polynomial differential system were introduced and summarized.At the same time, the main work of this paper was concluded.
     In chapter 2, center conditions and bifurcation of limit cycles fromthe equator for a class of cubic polynomial system with no singular pointat the infinity were studied. By converting real planar system intocomplex system, the recursion formula for the computation of singularpoint quantities were given, and, with computer algebra systemMathematica, the first 7 singular point quantities were deduced. At thesame time, the conditions for the infinity to be a center and 7 degree finefocus were derived respectively. A cubic system that bifurcates 7 limitcycles from the infinity was obtained. This result was published on《Applied Mathematics and Computation》2006, V. 177(1).
     In chapter 3, center conditions and bifurcation of limit cycles fromthe equator for a class of quintic polynomial system with no singularpoint at the infinity were studied. The recursion formula to compute thesingular point quantities of quintic polynomial system at the infinity wasgiven. With this formula, the first eleven singular point quantities of aclass of quintic polynomial differential system at the infinity werecomputed with computer algebra system Mathematica. The conditions forthe infinity to be a center were derived as well. At last, a system that allows the appearance of eleven limit cycles in a small enoughneighborhood of the infinity was constructed at the first time. This resulthas been accepted on《Computers and Mathematics with Applications》.
     In chapter 4, center conditions and bifurcation of limit cycles fromthe equator in a class of polynomial system of degree seven were studied.The method was based on converting real planar system into complexsystem, the reeursion formula for the computation of singular pointquantities of the infinity were given, which allows us to compute thegeneralized Lyapunov constants (the singular point quantities) for theinfinity. The first 14 singular point quantities of the infinity were deduced.At the same time, the conditions for the infinity to be a center and 14degree fine focus were derived respectively. A system of degree 7 thatbifurcates 13 limit cycles from infinity was constructed at the first time.
     In chapter 5, Center conditions and bifurcation of limit cycles at thedegenerate singular point and infinity (the equator) in a class of quinticpolynomial differential system with two small parameters and eightnormal parameters was studied. The method was based on twohomeomorphic transformations of the infinity and degenerate singularpoint into linear singular point, which allows us to compute thegeneralized Lyapunov constants (the singular point quantities) for theorigin and infinity. The center conditions for the degenerate singular pointand infinity were derived respectively. The limit cycle configurations of{(7), 2} and {(2), 6} were obtained under simultaneous perturbation atthe origin and infinity. This result was published on《AppliedMathematics and Computation》2006, V. 181 (1).
     In chapter 6, the origin of a class of general complex autonomouspolynomial differential system (with z, w, T independent complex variables,α_(αβ),b_(αβ)complex constants, (p, q)=1, n natural)was studied. It is a degenerate singular point. Theextended singular point quantity of the singular point was defined, at thesame time, the construction of the extended singular point quantity werestudied. The linear recursion formula to compute the extended singularpoint quantity was given and necessary and sufficient condition of thesingular point to be a extended complex center was obtained. Theconclusion of this chapter is the expansion of that of [41, 46].
     In chapter 7, the infinity of a class of general complex autonomouspolynomial differential system(with z, w, T independent complex variables, a_(αβ), b_(αβ) complex constants, (p, q)=1, n natural)was studied. The extended singular point quantity ofthe infinity was defined, at the same time, the construction of theextended singular point quantity of the infinity were studied. The linearrecursion formula to compute the extended singular point quantity of theinfinity was given and necessary and sufficient condition of the infinity tobe a extended complex center was obtained. The conclusion of thischapter is the expansion of that of [46].
引文
[1] J. Li. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. International Journal of Bifurcation and chaos. 2003, 3:47-106.
    [2] 张芷芬,丁同仁,黄文灶,董镇喜,微分方程定性理论.科学出版社,北京,1985.
    [3] 叶彦谦.极限环论(第二版)上海:上海科学技术出版社,1984.
    [4] 史松龄.平面二次系统存在四个极限环的具体例子.中国科学.1979,11:1051-1056.
    [5] 史松龄.平面二次系统的极限环.中国科学.1980,(8):734-739.
    [6] 陈兰荪,王明淑.二次微分系统极限环的相对位置和数目.数学学报.1979,22(6):751-758.
    [7] 秦元勋,史松龄,蔡燧林.关于平面二次系统的极限环.中国科学.1981,(8):929-938.
    [8] Ye Yan-qian. Some problems in the qualitative theory of ordinary differential equations. J. Differential Equations, 46(1982), 153-164.
    [9] H. Dulac. Sur les cycles limit. Bull. Soc. Math. France, 1923, 51:45-188.
    [10] Ii' yashenko Yu. Finiteness theorems for limit cycles. Russian Math. Surveys., 1990, 40:143-200.
    [11] Ecalle E. J. Finitude des cycles limit et accelero-sommation de 1' app; ication deretour. Lecture Notes in Math., 1990, 1455:74-159.
    [12] Li Jibin and Huang Qiming. Bifurcations of limit cycles forming compound eyes in the cubic system, Chin. Ann. of Math. 1987, 8B(4): 391-403.
    [13] 李继彬,黄其明.n=3的Hilbert第16问题,H(3)≥11.科学通报,1985(12),958.
    [14] 黄其明,李继彬.平面三次微分系统的极限环复眼分支(Ⅰ).云南大学学报,1985,No.1,7-16.
    [15] Li Jibinand Liu Zhenrong. Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system, Pub. Math. v. 35, 1991, 487-506.
    [16] H. Zoladek. Eleven small limit cycles in a cubic vector field. Nonlinearity, 1995, 8:843-860.
    [17] 刘一戎.一类平面三次系统的焦点量公式、中心条件与中心积分.科学通报,1987,2:85-87.
    [18] N. G.. Lloyd, J. M. Pearson, V. A. Romanovskii. Computing integrability conditions for a cubic differential system. Computers Math. App. 1996, 32(10):99-107.
    [19] J. Devin, J. M. Pearson, N. G.. Lloyd. Cubic systems and Abel equation. J. D. E, 1998, 147:435-454.
    [20] I. D. Iliev, L. M. Perko. Higher order bifurcations of limit cycles. J. D. E., 1999, 154:339-363.
    [21] Han Maoan, Ye Yanqian, Zhu Deming. Cyclicity of homoclinic loops and degenerate cubic Hamitonian system. Sci. in China, series A, 1999, 42(6):607-617.
    [22] P. Yu, M. Han. Twelve limit cycles in a cubic case of the Hilbert problem. Int. J. Bifurcation & Chaos, 2005, 15(7):2191-2205.
    [23] Y. Liu, W. huang. A cubic system with twelve small amplitude limit cycles. Bulletin des science mathematiques, 2005, 129:83-98.
    [24] T. Zhang, M. Han, H. Zang, etal. Bifurcations of limit cycles for a cubic Hamitonian system under quartic perturbations. Chaos, Solitions and Fractals, 2004, 22(5):1127-1138.
    [25] 杜超雄,中南大学硕士学位论文,2005年10月.
    [26] J. Li, HSY Chan, KWChung. Bifurcations of limit cycles in a Z_6-equivariant planar vector field of degree 5. Sci. in China, series A, 2002, 45(7):817-826.
    [27] S. Smale. Dynamics retrospective: great problems, attempts that failed. Physics D. 1954, 51:261-273.
    [28] N. Bautin. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Amer. Math. Soc. Trans., 1954, 100:397-413.
    [29] F. Gobber and K. D. Willamski. Liapunov approach to multiple hopf bifurcation. J. Math Anal. Appl. 71(1979), 333-350.
    [30] S. Shi. A Method of constructing cycles without contact around a weak focus. J. D. E. 1980, 41:301-312.
    [31] S. Shi. On the structure of Poincare-Liapunov constants for the focus of polynomial vector fields. J. D. E. 1984, 52:52-57.
    [32] N. G. Lloyd, J. M. Pearson. REDUCE and the bifurcation of limit cycles. J. Symb. Comput., 1990, 9(2):215-222.
    [33] J. M. Pearson, N. G. Lloyd, C. J. Christopher. Algorithmic derivation of center condiyions. SIAM Rev. 1996, 38(4):619-636.
    [34] J. Chavarriga. Integrable systems in the plane with center type linear part. Applicationes Mathematicae. 1994, 22:285-309.
    [35] 杜乃林,曾宪武.计算焦点量的一类递推公式.科学通报.1994,39:1742-1744.
    [36] 李承治.关于平面二次系统的两个问题.中国科学.1982,12:1087-1096.
    [37] 秦元勋,刘尊全.微分方程公式的机器推导(Ⅲ).科学通报.1981,7:288-397.
    [38] 杨世藩.一类三次系统的中心焦点问题.贵州大学学报.1990,7(4):193-201.
    [39] 蔡燧林,马晖.广义lienard方程的奇点的中心焦点判定问题.浙江大学学报.1991,25:562-589.
    [40] J. P. Francoise. Successive derivatives of first-return map, application to quadratic vector fields. Ergodic theory dynamical systems. 1996, 16:87-96.
    [41] 刘一戎,李继彬.论复自治微分系统的奇点量.中国科学.1989,A辑(3):245-255.
    [42] 刘一戎,陈海波.奇点量公式的机器推导与一类三次系统的前10个鞍点量.应用数学学报.2002,25:295-302.
    [43] N.G. Lloyd, J. M. Pearson. Bifurcation of limit cycles and integrability of planar dynamical systems in complex form. J. Phys. A:Math. Gen. 32(1999)1973-1984.
    [44] A. Gasull, A. Guilliamon, V. Manosa. Anexplicit xpression of the first Liapunov and period constants with applications. Journal of mathematical analysis and applications. 1997, 211:190-212.
    [45] N.G. Lloyd, J. M.Pearson. Symmetry in planar dynamical systems. J. Symbolic computation. 2002, 33:357-366.
    [46] 刘一戎.一类高次奇点与无穷远点的中心焦点理论.中国科学(A辑).2001,31(1):37-48.
    [47] 黄文韬,刘一戎.唐清干.一类五次多项式系统的奇点量与极限环分支.数学物理学报.2005,25A(5):744-752.
    [48] J. Sotomayor, R. Paterelini. Bifurcation of polynomial vector fields in the plane. Proceeding of the conference Oscillations, Bifurcations and Chaos of the CanadianMath. Soc.,Vol. 8, Toronto, 1986, 8: 65-685.
    [49] 韩茂安,朱德明.微分方程分支理论.北京,煤炭工业出版社,1994.
    [50] M. Han. Stability of the Equator and bifurcation of limit cycles. World Sci. Publishing, River Edge, NJ, 1993,79-85.
    [51] T. R. Blows, C. Rousseau. Bifurcation at infinity in polynomial vector fields. J.D.E. 1993, 104:215-242.
    [52] 刘一戎,赵梅春.一类五次系统的赤道极限环分支.数学年刊,23A:1(2002), 75-78.
    [53] 陈海波,罗交晚.一类七次系统赤道环的稳定性与极限环分支.应用数学.2002,15:22-25.
    [54] 刘一戎.二次系统的广义焦点量与极限环分支.数学学报.2002,45:671-682.
    [55] Y. R. Liu, H.B. Chen. Stability and bifurcation of limit cycles of the equator in a class of cubic polynomial systems. Computers and mathematics with applications, 44(2002): 997-1005.
    [56] 陈海波,刘一戎.一类平面五次系统的赤道极限环问题.数学年刊.2003,24A:219-224.
    [57] Wentao Huang and Yirong Liu. A polynomial differential system with nine limit cycles at infinity. Computers and Mathematics with application. 48(2004)577-588.
    [58] Yirong Liu and Wentao Huang. Seven large-amplitude limit cycles in a cubic polynomial system. International Journal of Bifurcation and Chaos, 2006, 16:2,473-485.
    [59] 黄文韬,刘一戎.一个在无穷远点分支出八个极限环的多项式微分系统.数学杂志.Vol.24(2004)No.551-556.
    [60] 陈海波,刘一戎.一类平面三次多项式系统的赤道极限环分支.中南工业大学学报(自然科学版).2003,34:325-327.
    [61] 黄文韬,刘一戎.一个在无穷远点分支出6个极限环的三次多项式系统 中南大学学报(自然科学版)2004,35(4):690-693.
    [62] W. Huang, Y. Liu. Bifurcation of limit cycles from infinity for a class of quintic polynomial system. Bull. Sci. math. 128(2004)291-302.
    [63] K.E. Malkin, Criteria for the center of a differential equation, Volz. Math. Sb., 1964, 2:87-91.
    [64] V.A.Lunkevich, K.S. Sibirskii. Conditions of a center in homogeneous nonlinearities of the third degree. Differential equations, 1965, 1:1164-1168.
    [65]C. Rousseau, D. Schlomiuk. Cubic systems symmetric with respect to a center, J.D. E. 1995, 123:388-436.
    [66]Kukles I S. Sur quelques cas de distinction entre un foyer et un centre, Dok1. Akad. Nauk. SSSR 42 (1994), 208-211.
    [67]Xiaofan Jin and Dongming Wang. On the conditions of Kukles for the existence of a center, Bull. Lond. Math. Soc. 22(1990), 1-4.
    [68]C. J. Christopher and N. G. Lloyd. On the paper of Jin and Wang concerning the conditions for a center in certain cubic systems, Bull. Lond. Math. Soc. 22(1990), 5-12.
    [69]C.J.Christopher and N.G.Lloyd. Invariant algebraic curves and conditions for a center. Proc. Roy. Soc. Edinburgh, 1994, 124A: 1209-1229.
    [70]N.G. Lloyd and J. M. Pearson. Computing center conditions for certain cubic Systems. J. Comput. Appl. Math. 1992, 40: 323-336.
    [71]C. Rousseau, D. Schlomiuk, P. Thibaudeau. The centers in the reduced Kukles system. Nonlineraity, 1995,8:541-569.
    [72]J. Gine. Conditions for the existence of a center for the Kukles homogeneous system. Computers and mathematics with applications, 2002, 43:1261-1269.
    [73]N. Yasmin. Closed orbits of certain two-dimensional cubic systems. Ph D. Thesis Univ, College of Wales, Aberystwyth, 1989.
    [74]N. G. Lloyd, C. J. Christopher, J. Devlin, J. M. Pearson and Nausmin, Quadratic like cubic systems. Differential equations dynamical systems 5(3-4)(1997),329-345.
    [75]A. Algaba, M. Reyes. Computing center conditions for vector fields with constant angular speed. Journal of computational and applied mathematics. 2003, 154: 143-159.
    [76]J. Chavarriga, H. Giacomini, J. Gine. Polynomial inverse integrating factors. Ann. of Diff. Eqs. 2000, 16:320-329.
    [77]Valery G. Romanovski, Alexandru SUBA. Centers of some cubic systems. Ann. of Diff.Eqs. 2001, 17: 363-376.
    [78]Chen Haibo, Liu Yirong, Zeng Xianwu. Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system. Bull. Sci. math. 129(2005):127-138.
    [79]Dana Schlomiuk. Algebraic particular integrals, integrability and the problem of the center. Transaction of the A. M. S., Vol. 338, No. 2, August 1993:799-841.
    [80] J. Chavarriga and J. Gine. integrability of a linear center perturbed by fourth degree homogeneous polynomial. Publications Mathematiques. 1996,40(1): 21-39.
    [81]J. Chavarriga and J. Gine. integrability of a linear center perturbed by fifth degree homogeneous polynomial. Publications Mathematiques. 1997, 41(2), 335-356.
    [82]H. Zoladek. The problem of center for resonant singular points of polynomial vector fields. J. D. E., 1997, 137:94-118.
    [83]A. Fronville, A. Sadovski,H. Zoladek. Solution of the 1:2 resonant center problem in the quadratic case. Fundamental Mathematicae, 1998, 157: 191-207.
    [84]C. J.Christopher, P. Mardesic, C.Rousseau. Normalizable, integrable and linearizable saddle points in complex quadratic systems in C~2. Journal of dynamical and control systems, 2003, 9:311-363.
    
    [85]S. Gravel, P. Thibault. Integrability and linearizability of the Lotka-Volterra system with a saddle point with rational hybolicity ratio. J. D. E., 2002,184:20-47.
    
    [86]C. Liu, G.Chen, C.Li. Integrability and linearizability of the Lotka-Volterra systems. J. D.E.,2004, 198:301-320.
    
    [87]肖萍. 中南大学博士论文. 2005年6月.
    
    [88]Yirong Liu and Wentao Huang. Center and isochronous center at infinity for differential systems. Bull. Sci. math. 128(2004):77-89.
    [89] 叶彦谦.多项式微分系统定性理论.上海科学技术出版社.1995.
    [90] Qi Zhang, Yirong Liu. A cubic polynomial system with seven limit cycles at infinity. Applied Mathematics and computation, 2006, Vol. 177(1):319-329.
    [91] A. Gasull, J. Torregrosa. Center problem for several differential equations via Cherkas' method. J. Math. Anal. Appl. 228:322-343 (1998).
    [92] A. Gasull, J. Torregrosa. A new algorithm for the computation of the Lyapunov constants for some degenerate critical points. Nonlinear Analysis. 47: 4479-4490(2001).
    [93] B. B. Amelbkin, H. A. Lukasevnky, A.N. Catovcki. Nonlinear vibration. BΓY Lenin Publ. 1982 (in Russian).
    [94] Chen Haibo, Liu Yirong, Linear recursion formulas of quantities of singular point and applications, Applied Mathematics And Computation 148:163—171(2004).
    [95] 张锦炎,冯贝叶.常微分方程几何理论与分支问题.北京大学出版社,北京.2002.
    [96] 23 (1987), 825-834.
    [97] C. Christopher, Jaume Llibre, Grzegorz Swirszcz. Invariant algebraic curves of large degree for quadratic system. J. Math. Anal. Appl. 303 (2005) 450-461.
    [98] 刘一戎,芮嘉诰,邵润华.一类三次系统的奇点判定量.中南工业大学学报,1997,28(1):82-83.1997,28(1):82-83.
    [99] 刘一戎.微分自治系统高次奇点的重次.中南工业大学学报,1999,(3):325-326.
    [100] 秦元勋,微分方程所定义的积分曲线(上、下),科学出版社,1959.
    [101] II' yashenko,Yu.S. Singular points and Limit cycles of differential equations, in the real and complex planes, Preprint, Pushchino: Sci. Res. Comput. Cent.,Acad. Sci. USSR, 1982,39.
    [102] J. M. Pearson, N. G. Lloyd and C. J. Christopher. Algorithmic derivation of center conditions, SIAM Rev. 38(1996):619-636.
    [103] C. Christopher, An Algebraic approach to the classification of centers in polynomial Lienard systems, J. Math. Anal. Appl. 1999,229 (2):319-329.
    [104] C.J. Christopher, N.G. Lloyd and J.M. Pearson. Ona Cherkas' s method for center conditions, Nolinear World 2(1995):459-468.
    [105] F. Dumotier and C. Z. Li, Quadratic Lienard equations with quadratic damping .J. Diff. Eqs. 1997,139(1):41-59.
    [106] Ye Yanqian. Bifurcation theory of quadratic differential systems, Chin. Ann of Math.,1993,14B(4):427-434.
    [107] Luo Dingjun. Limit cycle bifurcation of planar vector fields with several parameters and applications, Ann. of Diff. eqs.,Vol. 1,1985 (1):91-105.
    [108] P.Griffiths.代数曲线.北京大学数学系译.北京大学出版社,1985.
    [109] R. pons, N. Salish. Center conditions for a lopsided quartic polynomial vector field. Bull. Sci. Math. 2002,126:369-378.
    [110] Van Horssen, W.T. Kooij, R.E.,Bifurcation of limit cycles in a particular class of quadratic systems with two centers. J. Diff. Eqs.,114(1994),538-569.
    [111] Marcin Bobienski and Henry Zoladek. Limit cycles of three-dimensional polynomial vector fields. Nolinearity 18(2005): 175-209.
    [112] N.G..Lloyd, J.M. Pearson. A cubic kolmogorov system with six limit cycles. Computers and Mathematics with Applications 44(2002): 445-455.
    [113] 水树良,蔡隧林.具有星形结点的三次系统地极限环.高校应用数学学报,第10卷第4期:360-368.
    [114] S. C. Ning, S. L. Ma, H. K. Keng and Z. M. Zheng. A cubic system with eight small-amplitude limit cycles. Appl. Math. Lect., 4(1994): 23-27.
    [115] Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong. "Qualitative theory of differential equations" , Trans. Math. Monographs, Vol. 101, Amer. Math. Soc, 1992.
    [116] 程民德.中国数学发展的若干主攻方向.江苏教育出版社.
    [117] 廖山涛.常微系统的结构稳定性及一些相关的问题.计算机应用与应用数学.7(1987):52-64.
    [118] 陆启韶.分岔与奇异性.上海科学技术教育出版社,1995.
    [119] J. Chavarriga and J. Gin e.Analytic integrability of a class of nilpotent cubic systems. Mathematics and Computers in simulation 59(2002):489-495.
    [120] V.G. Romanovski and Maoan Han. Critical period bifurcations of a cubic system. J.Phys. A: Math. Gen. 36(2003)5011-5022.
    [121] V.G. Romanovski and Marko Robnik. The center and isochronisity problems for some cubic systems. J. Phys. A: Math. Gen. 34(2001) 10267-10292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700