上甸子本底站挥发性有机物与臭氧生成效率关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧(O3)是地球大气中的重要微量成分之一。对流层O3浓度升高加剧了温室效应并导致日益严重的区域光化学污染。为便于理解O3与其前体物之间的复杂非线性关系,人们发展了一些可基于观测取得的指标,臭氧生成效率(OPE)属于其中较为常用的一种指标。本论文对上甸子本底站的OPE和挥发性有机物(VOCs)开展了观测研究,对VOCs与OPE之间的关系进行了探讨,并研究了不同来向气流所应的污染物和OPE值的差异。
     2008年4月至2008年9月,在北京上甸子站连续监测了反应性气体浓度,计算了该站的OPE值。利用采样罐采集了上甸子站的大气样品并在实验室进行了VOCs分析。采用全二维气相色谱(GC×GC)技术分析了C4-C16之间的VOCs和含氧挥发性有机物(OVOCs),采用双毛细柱气相色谱技术分析了C2-C10之间的VOCs。此外,为了保证实验数据的质量,本次试验严格执行了质量控制和质量保证措施。
     基于观测的计算结果表明,2008年4月至9月的OPE的平均值为4.9±3.6,总体上各月OPE值变化不大,只是4月和7月OPE的平均值较其它月份稍高。OPE值随NOx浓度的变化基本符合二次曲线,当NOx小于14.2 ppb时,OPE随着NOx的增加而增加;当NOx大于14.2 ppb时,OPE随着NOx的增加而减少。相关分析表明,芳香烃浓度变化与OPE的相关性最好,其次是植物排放的VOCs和OVOCs,但是OVOCs等效丙烯浓度与OPE的相关程度最高。
     借助后向轨迹法研究了不同来向气流对污染状况和OPE值的影响,结果表明,无论是奥运减排之前还是减排期间,最高OPE值都对应于来自西北方向的干净气流。受北京城区方向气流影响的轨迹4-6月份占31.9%, OPE值为4.7±3.3;7-9月份占26.1%, OPE值为6.6±5.5。
Ozone (O3) is one of the important trace components in Earth's atmosphere. The increase of the O3 level in the troposphere has added to global warming and caused increasingly serious regional photochemical pollution. To facilitate the understanding of the complex nonlinear relationship between O3 and its precursors, some observation-based indicators have been developed; with ozone production efficiency (OPE) being one of the common indicators. In this thesis, observational studies of OPE and volatile organic compounds (VOCs) are conducted at the Shangdianzi Background Station, relationships between VOCs and OPE are discussed,and differences in pollutants concentrations and OPE values among different air parcel backward trajactories are studied.
     Concentrations of reactive gases were observed at Shangdianzi station in the April-September 2008 period and the corresponding OPE values were calculated. Air samples were collected at the station using stainless steel canisters and analyzed in the laboratory for VOCs. The comprehensive two-dimensional gas chromatography (GC×GC)technique was applied to the analysis of VOCs and oxygenated volatile organic compounds (OVOCs) in the carbon range of C4-C16, while the dual-capillary gas chromatography was used to analyzed VOCs in the carbon range of C2-C10. During the observation and analysis QA/QC measures were taken to ensure the data quality.
     The observation-based OPE results show that overall average OPE at Shangdianzi was 4.9±3.6 for the period from April to September 2008, with the values in April and July being slightly higher than those in other months. The dependence of OPE on the NOx concentration can be described using an empirical parabolic function. If the concentration of NOx is lower than 14.2 ppb, OPE increases with NOx; while if the concentration of NOx is higher than 14.2 ppb, OPE decreases with NOx. The correlation analysis indicates that the concentration of aromatics is best correlated to OPE, followed by those of biogenic VOCs and OVOCs. However, the propylene-equivalent concentration of OVOCs is best correlated to OPE.
     Backward trajectories of air parcel were calculated and used to characterize the influences of the air parcel trajectory on pollutants and OPE. The results show that both in the emission control period of Olympic Games in Beijing and in the period before, the OPE value was highest when relatively clean air parcels were from the northwest sector. In the April-June period about 31.9% of the trajectories were affected by the Beijing City and the corresponding OPE was 4.7±3.3, while in the July-September period about 26.1% of the trajectories were affected by the city, and the corresponding OPE was 6.6±5.5.
引文
Angell, J. K., and J. Korshover (1983), Global variation in total ozone and layer mean ozone: An update through 1981, J. Climate Appl. Meteorol, 22, 1611-1626.
    Beens, J., et al. (1998), Quantitative aspects of comprehensive two-dimensional gas chromatography (GC×GC), J. High Resol. Chromatogr, 21, 47-54.
    Bertsch, W. (2000), Two-dimensional gas chromatography. Concepts, instrumentation, and applications - Part 2: Comprehensive twodimensional gas chromatography, J. High Resol. Chromatogr, 23, 167-181.
    Broderick, B. M., and I. S. Marnane (2002), A comparison of the C2-C9 hydrocarbon compositions of vehicle fuels and urban air in Dublin, Ireland, Atmos. Environ, 36, 975-986.
    Cape, J. N., and J. Methven (2000), The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head, Ireland Atmospheric Environment, 34, 3651-3663.
    Chaloulakou, A., et al. (2008), Compliance with the annual NO2 air quality standard in Athens.Required NOx levels and expected health implications, Atmos. Environ, 42, 454–465.
    Chameides, W. L., et al. (1992), Ozone precursor relationships in the ambient atmosphere, J. Geophys. Res, 97, 6037–6055.
    Crutzen, P. J., and L. T. Gidel (1983), A two-dimensional photochemical model of the atmosphere, 2, The tropospheric budgets of the anthropogenic chlorocarbons CO, CH 4, CH3C, and the effect of various NOx sources on tropospheric ozone, J. Geophys. Res, 88, 6641-6661.
    Davis, D. D., et al. (1996), Assessment of ozone photochemistry in western North Pacific as inferred from PEM-West A observations during fall 1991, J. Geophys. Res, 101, 2111–2134.
    Dennis, R. F., et al. (2003), Measurement of NOy during the SCOS97-NARSTO, Atmos. Environ, 37 Supplement, 119–134.
    Derwent, R. G., and T. J. Davis (1994), Modelling the impact of NOx or hydrocarbon control on photochemical ozone in Europe, Atmos. Environ, 28, 2039–2052.
    Draxler, R. R. (1992), Hybrid Single Particle Lagrangian Integrated Trajectories (HYSPLIT) : Version 4172Userps Guide and Model Description, NOAA Technical Memo ERLARL,2195.
    Edam, R., et al. (2005), Comprehensive multi-dimensional chromatographic studies on the separation of saturated hydrocarbon ring structures in petrochemical samples, Journal of Chromatography A, 1086 12-20.
    Fishman, J., and W. Seiler (1983), Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget, J. Geophys. Res, 88, 3662-3670.
    Gee, I. L., and C. J. Sollars (1998), Ambient air levels of volatile organic compounds in Latin American and Asian cities, Chemosphere, 36, 2497-2506.
    Grosjean, E., et al. (1998), Ambient levels of gas phase pollutants in Porto Aleger, Brazil, Atmospheric Environment, 32, 3371-3379.
    Guo, H., et al. (2004), Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of HongKong, Chemosphere, 57, 1363-1372.
    Guo, H., et al. (2007), C1-C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment, Atmos. Environ, 41, 1456-1472.
    Hirsch, A. I., et al. (1996), Seasonal variation of the ozone production efficiency per unit NOx at Harvard Forest, Massachusetts, J. Geophys. Res, 101, 12659–12666.
    Ho, K. F., et al. (2004), Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong, Science of the Total Environment, 322, 155-166.
    Jacob, D. J., et al. (1995), Seasonal transition from NOx-to-hydrocarbon-limited conditions for ozone production over the eastern United States in September, J. Geophys. Res, 100, 9315–9324.
    Kleinman, L., et al. (2002), Ozone production efficiency in an urban area, J. Geophys. Res, 107, 4733.
    Kleinman, L., et al. (1994), Ozone formation at a rural site in the southeastern United States, J. Geophys. Res, 99, 3469–3482.
    Kleinman, L. I., et al. (2000), Ozone production in the New York City urban plume, J. Geophys. Res, 105, 14495–14511.
    Lewis, A. C., et al. (2000), A larger pool of ozone-forming carbon compounds in urban atmospheres, Nature, 405, 778-781.
    Li, S.-M., et al. (1997), Emission ratios and photochemical production efficiencies of nitrogen oxides, ketones, and aldehydes in the lower Fraser Valley during the Summer Pacific 1993 Oxidant Study, Atmos. Environ, 31, 2037–2048.
    Lin, W., et al. (2008), Contributions of pollutants from North China Plain to surface ozone at the Shangdianzi GAW Station, Atmos. Chem. Phys, 8, 5889-5898.
    Lin, X., et al. (1988), On the Nonlinearity Of the Tropospheric Ozone Production, J. Geophys.Res, 93, 15879-15888.
    Liu, C. M., et al. (2000), Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun, the northeast of China, Atmos. Environ, 34, 4459-4466.
    Liu, S. C., et al. (1987), Ozone production in the rural troposphere and the implications for regional and global ozone distributions, J. Geophys. Res, 92, 4191-4207.
    Logan, J. A. (1985), Tropospheric Ozone: Seasonal Behavior, Trends, and Anthropogenic Influence, J. Geophys. Res, 90, 10,463–410,482.
    Mao , T., et al. (2007), The vertical distributions of VOCs in the atmosphere of Beijing in autumn, Sci Total Environ(2007), doi:10.1016/j.scitotenv.2007.08.035.
    Maroni, M., et al. (1995), Indoor air quality-a comprehensive reference book, Elsevier:Amster-dam.
    Mondello, L., A. Casillia, P. Q. Tranchida, G. Dugo, P. Dugo (2005), Comprehensive two-dimensional gas chromatography in combination with rapid scanning quadrupole mass spectrometry in perfume analysis, Journal of Chromatography A, 1067, 235-243.
    Nelson, P. F., and S. M. Quigley (1982), Non-methane hydrocarbons in the atmosphere of Sydney.Australia,Environmental Science and Technology, 16, 650-655.
    Nunnermacker, L. J., et al. (1998), Characterization of the Nashville urban plume on July 3 and July 18, 1995, J. Geophys. Res, 103, 28129–28148.
    Olszyna, K. J., et al. (1994), O3 and NOy relationships at a rural site, J. Geophys. Res, 99, 14557–14563.
    Pang, X. B., and Y. J. Mu (2006), Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air, Atmospheric Environment, 40, 6313-6320.
    Pankowa, J. F., et al. (2003), Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States Atmos. Environ, 37, 5023-5046.
    Phillips, J. B., and J. Beens (1999), Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions, J. Chromatogr. A, 856, 331-347.
    Phillips, J. B., and J. Xu (1995), Comprehensive multi-dimensional gas chromatography, J. Chromatogr. A, 703, 327-334.
    Pittock, A. B. (1977), Climatology of the vertical distribution of ozone over Aspendale, Q. J. R. Meteorol. Soc, 103, 575-584.
    Prevot, A. S. H., et al. (2004), Diurnal variations of volatile organic compounds and local circulation systems in an Alpine valley, Atmos. Environ, 34, 1413-1423.
    Prevot, A. S. H., et al. (1997), The Milan photooxidant plume, J. Geophys. Res, 102, 23375–23388.
    Rickard, A. R., et al. (2002), Comparison of measured ozone production efficiencies in the marine boundary layer at two European coastal sites under different pollution regimes, J. Atmos. Chem, 43, 107–134.
    Ryerson, T. B., et al. (1998), Emission lifetimes and ozone formation in power plant plumes, J. Geophys. Res, 103, 22569-22584.
    Ryerson, T. B., et al. (2001), Observations of ozone formation in power plant plumes and implications for ozone control strategies, Science, 292, 719–723.
    Schomburg, G. (1995), Two-dimensional gas chromatography: principles, instrumentation, methods, J. Chromatogr. A, 703, 309-325.
    Seinfeild, J. H. (1989), Urban air pollution: State of science, Science, 243, 745-752.
    Sillman (2000), Ozone production efficiency and loss of NOx in power plant plumes: Photochemical model and interpretation of measurements in Tennessee, J. Geophys. Res, 105, 9189–9202.
    Sillman, S. (1995), The use of NOy, H2O2 and HNO3 as indicators for ozone-NOx -hydrocarbon sensitivity in urban locations, J. Geophys. Res, 100, 14175–14188.
    Sillman, S. (1999), The relationship between ozone, NOx and hydrocarbons in urban and polluted rural environments, Atmos. Environ, 33, 1821-1845.
    Sillman, S., et al. (1998), Model correlations for ozone, reactive nitrogen, and peroxides for Nashville in comparison with measurements: Implications for O3-NOx-Hydrocarbon chemistry, J. Geophys. Res, 103, 22629–22644.
    Silman, et al. (1990), The sensitivity of ozone to NOx and hydrocarbons in the regional ozone episodes, J. Geophys. Res, 95, 1837-1851.
    Srivastava, A. (2004), Source apportionment of ambient VOCS in Mumbai city, Atmos. Environ, 38, 6829-6843.
    Srivastava, A., et al. (2005), Air toxics in ambient air of Delhi, Atmos. Environ, 39, 59-71.
    St John, J. C., et al. (1998), Role of anthropogenic NOx and VOC as ozone precursors: a case study from the SOS Nashville/middle Tennessee Ozone study, J. Geophys. Res, 103, 22415–22423.
    Trainer, M., et al. (1993), Correlation of ozone with NOy in photochemically aged air, J. Geophys. Res, 98, 2917–2985.
    Trainer, M., et al. (2000), Review of observational-based analysis of the regional factors influencing ozone concentrations, Atmos. Environ, 34, 2045–2061.
    Vogel, B., et al. (1999), Findings on NOy as an indicator for ozone sensitivity based on different numerical simulations, J. Geophys. Res, 104, 3605-3620.
    Volz, A., and D. Kley (1988), Evaluation of the Montsouris series of ozone measurements in the nineteenth century, Nature, 332, 240-242.
    Wang, T., et al. (2001), Ozone and related gaseous pollutants in the boundary layer of eastern China, Overview of the recent measurements at a rural site, Geophys. Res. Lett, 28, 2373– 2376.
    Wang, T., et al. (2006), Strong ozone production in urban plumes from Beijing,China, Geophys. Res. Lett, 33, 1806.doi:10.1029/2006GL027689.
    Wang, T., et al. (2003), Characterizing the temporal variability and emission patterns of pollution plumes in the Pearl River Delta of China, Atmos. Environ, 37, 3539–3550.
    Wang, T., et al. (2004), Relationships of trace gases and aerosols and the emission characteristics at Lin'an, a rural site in eastern China, during spring 2001, J.Geophys. Res, 109, S05.doi:10.1029/2003JD004119.
    Warmbt, W. (1979), Results of long term measurements of near surface ozone in the GDR, Z. Meteorol, 29, 24-31.
    Wotawal, G., and H. KroKger (2000), Transport of ozone towards the Alps-results from trajectory analyses and photochemical model studies, Atmos. Environ, 34.
    Xu, X., et al. (2003a), Comprehensive two-dimensional gas chromatography GC×GC measurements of volatile organic compounds in the atmosphere, Atmos.Chem. Phys, 3, 665–682.
    Xu, X., et al. (2003b), GC×GC measurements of C7-C11 aromatic and n-alkane hydrocarbons on Crete, in air from Eastern Europe during the MINOS Campaign, Atmos. Chem. Phys, 3, 1461-1475.
    Zaveri, R. A., et al. (2003), Ozone production efficiency and NOx depletion in an urban plume: Interpretation of field observations and implications for evaluating O3-NOx-VOC sensitivity, J. Geophys. Res, 108, 4436.doi:10.1029/2002JD003144.
    丁国安, et al. (2002),北京城区大气边界层空气污染特征观测研究,应用气象学报, 13.
    丁爱军(2004),东亚地区低层空气污染物变化特征与输送规律研究,南京大学学报, 1367-1377.
    毛婷(2008),北京大气中VOCs、OVOCs同步观测及光化学反应过程研究(博士后出站报告),北京.
    王木林, et al. (2005),北京地区大气中VHCs观测结果的初步分析,应用气象学报,第16卷第5期.
    王木林, et al. (2006),临安和上甸子大气本底站大气中NMHCs组成与浓度的变化特征,气象学报, 64, 658-665.
    王木林, et al. (2002),二维毛细柱气相色谱法测定大气中挥发性烃类,色谱, 20, 172-177.
    王伯光, et al. (2004),珠江三角洲大气环境VOCs的时空分布特征,环境科学, 25, 35-38.
    王雪松, and李金龙(2003),北京地区臭氧源识别个例研究,北京大学学报,第39卷, 244-253.
    王新明, et al. (1999),广州街道空气中挥发性烃类特征和来源分析,环境科学, 20, 30-34.
    王跃思, et al. (2000),北京大气中可形成气溶胶的有机物-现状与变化规律的研究,气候与环境研究, 5, 13-19.
    安俊岭(2006),北京近交通干线地区的臭氧生成效率,环境科学学报, 26, 652-657.
    安俊琳, et al. (2007a),北京大气中SO2、NOx、CO和O3体积分数变化分析,生态环境, 16, 1585-1589.
    安俊琳, et al. (2007b),北京大气中NO、NO2和O3浓度变化的相关性分析,环境科学, 28.
    李昕, et al. (2003),北京气象塔夏季大气臭氧观测研究,中国环境科学, 23, 353-357.
    沈学优, and罗晓璐(2002),空气中挥发性有机物监测技术的研究进展,环境污染与防治, 24, 46-48.
    邵敏, et al. (2005),北京市大气挥发性有机物的关键活性组分及其来源,中国科学D辑地球科学, 123-130.
    胡泳涛, et al. (1999),利用轨迹模式模拟近地层臭氧日变化,环境科学学报, 19, 345-350.
    胡建林, and张远航(2005),长江三角洲地区臭氧生成过程分析,环境科学研究.
    范国梁, et al. (2002),氢火焰离子化检测器校正因子的理论计算,分析化学, 30, 906-910.
    苗欣, et al. (2003),南京市交通干道大气环境中挥发性有机物的研究,环境保护科学, 29, 6-9.
    刘洁, et al. (2006),上甸子本底站地面臭氧变化特征及影响因素,环境科学研究, 19, 19-25.
    刘洁, et al. (2007),上甸子区域本底站大气痕量活性气体的变化规律,环境化学, 26, 693-698.
    张靖, et al. (2004),北京市大气中挥发性有机物的组成特征,环境科学研究, 17, 1-5.
    张广兴, and崔彩霞等(2006),阿克达拉大气本底站气流轨迹模拟研究,中国沙漠, 28, 154-160.
    张远航, et al. (1998),中国城市光化学烟雾污染研究,北京大学学报, 34, 392-400.
    钱群, and张大年(1999),上海市大气中非甲烷挥发性有机物的组成及特点,上海环境科学, 18, 400-402.
    颜鹏, et al. (1997),我国地面O3,NOx,SO2背景值的观测研究,应用气象学报, 8, 53-61.
    黄健, et al. (2002),利用HYSPLIT-4模式分析珠海地面SO2浓度的变化规律,热带气象学报, 18, 407-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700