黑河流域大气降水环境同位素应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑河流域属于干旱半干旱区内陆河流域,冰川、戈壁、沙漠以及绿洲等自然景观并存。流域降水水汽来源复杂,时空分布变化大,降水对流域生态环境有着重要影响。黑河流域大气降水特征以及水汽来源的研究,将对深入研究黑河流域乃至整个西北干旱区的水循环特征,指导干旱区生态环境的重建与恢复有重要的意义。环境同位素对大尺度流域的降水及水汽来源进行分析有其优越性。2002年10月至2004年9月期间对黑河流域上游和中游六个采样点进行了大气降水水样的采集。在样品的实验室分析及数据分析的基础上,对大气降水中的氢氧同位素的时空分布及其与各种影响因子的关系进行了深入的探讨,并结合后向轨迹法对水汽来源进行了深入研究;同时根据西水站2002至2003年的气象资料,对西水大气降水中的氢氧同位素组成进行了模拟。在综合研究分析的基础上获得了如下成果:
     1.对历次大气降水事件中的δ18O及其月降水加权平均值的分析发现:黑河流域降水中的氢氧同位素表现出明显的“温度效应”,δ18O和温度T之间的线性关系与海拔有一定的关系,即海拔越高,直线的斜率越大,δ18O/△T越大;大气降水中δ18O的月加权平均值和降水量之间无明显的关系,但从逐次降水事件上分析发现δ18O与降水量之间存在着“降水量效应”。降水中δ18O的月加权平均值变化范围从下游戈壁沙漠带的-2.2‰到山区的-9.2‰,随着采样点海拔的增加,δ18O呈现出下降的趋势,特别是1690m的莺落峡至2569m的西水之间呈现出明显的“高度效应”。通过分析西水、莺落峡、甘州、平川和正义峡降水中δ18O的加权平均值,得到δ18O的高度梯度为-0.47‰/100m;模拟δ18O值随时间的变化后发现,每一个取样点降水中δ18O值的季节性变化呈现明显的正弦波趋势;
     2.建立的黑河流域地方大气降水线(LMWL)方程为:δD=7.82δ18O+7.63,相关系数r=0.99。降水线斜率低于全球大气降水线斜率8,符合黑河流域干燥的环境特征和较强的蒸发条件;
     3.研究了流域降水中氘盈余(d)的分布规律及其影响因素,并结合后向轨迹法(Backwards Trajectory)分析了形成黑河流域大气降水的水汽来源。研究发现:冷季以西风带水汽为主,局地循环水汽次之;暖季水汽来源复杂,以西风带、内陆及东南季风水汽的影响最为明显。301个降水水样的d值中,有162个d值大于+10‰,有27个d值甚至大于+20‰,这说明局地蒸散发水汽在黑河流域水汽循环中占有较大的比重,特别是在暖季;
     4.利用瑞利分馏模型对西水大气降水中氢氧同位素比率进行模拟发现冷季模拟的效果要明显好于暖季,冷季模型效率达到90%以上。原因可能是:黑河流域冷季主要受西风带水汽控制,局地蒸发水汽较弱;暖季水汽来源复杂,不存在单一水汽为主的情况,且较高的温度使得蒸散发水汽对整个大气降水中氢氧同位素组成的影响较大。
The Heihe River Basin (HRB) belongs to the arid inland basin, and contains many natural landscapes, such as glacier, the Gobi, desert and the oasis and so on.In HRB, water vapor sources for precipitation are complex and the spatial and temporal distribution varies greatly. Precipitation has an important impact on the ecological environment, and studying on atmospheric precipitation characteristics of HRB and water vapor sources has an important significance on a whole-depth study of water cycle characteristics of HRB, even the northwest arid zone, and guide reconstruction and rehabilitation of the ecological environment in arid areas. Using of environmental isotopes to analysis precipitation of large-scale basin and water vapor sources has its advantages. Water samples of atmospheric precipitation were collected from six sampling points in the upper reach and middle reach of HRB during October 2002 to September 2004. Based on laboratory analysis of samples and data analysis, the spatial and temporal distribution of hydrogen and oxygen isotopes in atmospheric precipitation and the relationship between it and several of impact factors were studied and discussed deeply. Combined both Backwards Trajectory and stable isotope value in precipitation, water vapor sources of Heihe river basin were studied, at the same time,hydrogen and oxygen isotope in precipitation of Xishui were simulated according to meteorological data of Xishui Station from 2002 to 2003. Based on the comprehensive study and analysis, results obtained were as follows:
     1.δ18O in precipitation of every precipitation event values and monthly weighted average values showed that:there is clearly the "temperature effect" inδ18O andδD of precipitation in HRB. The linear relationship betweenδ18O and temperature had a certain relationship with the altitude of sampling area, that was, the altitude higher, the slope greater, andδ18O/ΔT gradient greater from downstream to upstream. "Precipitation Effect" was not observed by monthly weighted average values ofδ18O in precipitation, but it was existent in successive precipitation events value ofδ18O. The monthly weighted average values ofδ18O in precipitation ranged from the lower reaches of the Gobi desert to the mountains is-2.2‰to -9.2‰, with the increase of altitude of sampling points,δ18O showed a downward trend. "Altitude Effect" is observed vividly between Yingluoxia and Xishui, the altitude of them is 1690m and 2569m, respectively. By analyzing weighted average values ofδ18O in precipitation of the Xishui, Yingluoxia, Ganzhou, Pingchuan and Zhengyixia, the height gradient ofδ18O is -0.47‰/100 m, which can be obtained. Through simulating changes ofδ18O value over time, seasonal changes ofδ18O values in precipitation of each sampling point showed apparent sine wave trend.
     2. The local meteoric water line (LMWL) equation of HRB was established byδD=7.82δ18O+7.63 and the correlation coefficient r= 0.99. The slope of precipitation line was less than the slope of the global meteoric water line, which is 8. This was consistent with dry conditions and strong evaporation conditions in HRB.
     3. The distribution and influencing factor of d-excess in precipitation of the basin were studied; water vapor sources which formed the atmospheric precipitation in HRB were analyzed combined with Backwards Trajectory. Results obtained as follows:water vapor of westerlies was dominant in cold seasons, followed by local circulation of water vapor; water vapor sources in warm seasons were very complex, and water vapor of westerlies, inland and southeast monsoon were the most pronounced, d-excess values of 162 samples were greater than +10‰, and the values of 27 samples were even greater than +20‰in 301 water samples of the precipitation, which showed water vapor of local evapotranspiration was in a large proportion in water vapor cycle of HRB, especially in the warm seasons.
     4. Hydrogen and oxygen isotope values in the atmospheric precipitation of Xishui were simulated by Rayleigh fractionation model and the simulation results in cold season were significantly better than in the warm season, and the efficiency of model for cool season was over 90%. This probably because that Heihe River Basin was mainly controlled and affected by water vapor of westerlies, and local evaporation was weak in cold season. Water vapor sources in warm seasons were complex, and there was no case that single water vapor was dominant. Hydrogen isotope values in the whole atmospheric precipitation were great influenced by water vapor of evapo transpiration owing to the higher temperature.
引文
[1]Araguas-Araguas L, Froehlich K, Rozanski K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture [J]. Hydrologiacl processes,2000,14:1341-1355.
    [2]Chen Z Y, Nie Z L, Zhang G H, et al. Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China [J]. Hydrogeology Journal,2006,14:1635-1651.
    [3]Ciais P, White W W C, Jouzel J, et al. The origin of present-day antarcticprecipitation from surface snow deuterium excess data [J]. J Geophys Res,1985,100:18917-18927.
    [4]Clark I D, Fritz P. Environment Isotope in Hydrogeology [M]. New York:lewis publishers,1997,1-328.
    [5]Craig H, Gordon L I. Deuterium and oxygen 18 variation in the ocean and marine atmosphere[A].In: Stable Isotopes in Oceanographic Studies and Palaeotemperatures, Spoleto 1965. Tongiorgi E. (Ed). Consiglio Nazionale Della Ricerca; Pisa, Italy; 1965,9-130.
    [6]Craig H. Isotopic variations in meteoric waters [J]. Science,1961,133:1702-1703.
    [7]Dansgaard W. Stable isotopes in precipitation [J]. Tellus,1964,16 (4):436-468.
    [8]Dansgaard W. The abundance of 18O in atmospheric water and water vapor [J]. Tellus,1953,5(4):461-469.
    [9]DeWalle D R, Edwards P J, Swistock B R, et al. Seasonal isotope hydrology of three Appalachian forest catchments[J]. Hydrological Processes,1997,11 (15):1895-1906.
    [10]Eriksson E. Deuterium and oxygen-18 in precipitation and other natural waters. Some theoretical considerations [J]. Tellus,1965,17:498-512.
    [11]Friedman I, Machta L, Soller R. Water vapour exchange between a water droplet and its environment [J]. Jounral of Geophysical Research,1962,67:27
    61-2766.
    [12]Friedman I, Smith G I, Gleason J D, et al. Stable Isotope compositions of waters in southeastern Cailfornia: Part1, Modem precipitation [J]. Jounral of Geophysical Research,1992,97 (D5):5795-5812.
    [13]Frohlich K, Gibson J J, Aggarwal P K. Deuteirum Excess in Precipitation and its Climatological Significance [A].In: Study of Environmental Change using Isotope Techniques[C]. IAEA, VIENNA,2002,54-66.
    [14]Gat J R. Environmental isotope balance of Lake Tiberis [A]. Isotope Hydrology [C].Vienna:IAEA,1970,109-127.
    [15]Gat J R, Carmi I. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area [J]. Journal of Geophysical Research,1970,75: 3039-3048.
    [16]Gourcy L L, Groening M, Aggarwal P K. Isotopes in the Water Cycle —Stable oxygen and hydrogen isotopes in precipitation [M]. Netherlands:Springer Netherlands,2005,39-51.
    [17]Gourcy L L, Groening M, Aggarwal P K. Stable oxygen and hydrogen isotopes in precipitation. In: Aggarwal P K, Gat J R, Froenlich K F O, Eds. Isotopes in the water cycle: past, present and future of a developing science[C], Amsterdam: Springer,2005,39-51.
    [18]Hofmann G, Jouzel J, Mason V. Stable water isotopes in atmospheric general circulation models [J]. Hydrological Processes,2000,14(8):1385-1406.
    [19]http://wateriso.eas.purdue.edu/waterisotopes/index.html
    [20]http://www.ready.noaa.gov/ready.html
    [21]IAEA,1969,1970,1971,1973,1975,1979,1981,1983,1986,1990, 1992. Environmental Isotope Data. World survey of isotope concentration in precipitation[R]. Technical Report Series No 69,117,129,147,165,192, 210,226,264,311,331. Vienna:International Atomic Energy Agency.
    [22]Ingraham N L, Lyles B F, Jacobson R L, et al. Stable Isotopic Study of Precipitation and Spring Discharge in southern Nevada [J]. Jour of Hydrol,1991, 125(3-4):243-258.
    [23]Ingraham N L, Taylor B E. Hydrogen Isotope Study of Large-Scale Meteoric Water Transporting Northern California and Nevada [J]. Jour of Hydrol,1986, 85(1-2):183-197.
    [24]Jacob H, Sonntag C. An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg Germany [J]. Tellus, 1991,43B:291-300.
    [25]Jeanton H C, Goufiantini R, Travi Y, et al. Oxygen-18 variations of rain water during precipitation:application of the Rayleigh model to selected rainfalls in Southern France [J]. Jour of Hydrol,2004,289:165-177.
    [26]Joussaume S, Sadourny R, Jouzel J. A general circulation model of water isotope cycles in the atmosphere [J]. Nature,1984,311:24-29.
    [27]Jouzel J, Froehkich K, Schotterer U. Deuterium and oxygen-18 in present-day precipitation:data and modeling [J]. Hydrol Sci,1997,42(5):747-763.
    [28]Jouzel J, Russell G L, Suozzo R J, et al. Simulations of the HDO and H18O atmospheric cycles using the NASA GISS general circu2 lation model:the seasonal cycle for p resent-day conditions [J]. Journal of Geophysical Research, 1987,92 (D12):14,739-14,760.
    [29]Jouzel J, Froehkich K, Schotterer U. Deuterium and oxygen-18 in present-day precipitation:data and modeling [J]. Hydrol Sci,1997,42(5):747-763.
    [30]Jouzel J, Merilvat L. Deuterium and oxygen-18 in precipitation:modeling of the isotope effects during snow formation [J]. Journal of Geophysical Research, 1984,89(D7):11749-11757.
    [31]Jouzel J, Koster R D, Suozzo R J, et al. Stable water isotope behaviour during the last glacial maximum:a general circulation model analysis [J]. J Geophys Res,1994,99:25791-25801.
    [32]Jouzel J, Koster R D, Suozzo R J, et al. Simulaitons of the HDO and H218O atmospheric cycles using the NASA GISS General Circulation Model: Sensitivity experiments for persent-day conditions [J]. J Geophys Res,1991, 96:7495-7507.
    [33]Wu J, Ding Y, Ye B, et al. Spatio-temporal variation of stable isotopes in precipitation in the Heihe River basin, Northwestern China [J]. Environmental Earth Sciences,2010, DOI:10.2007/s12665-009-0432-7.
    [34]Kondoh A, Shimada J. The origin of Precipitation in Eastern Asia by deuterium excess [J]. Journal of Japan Society of Hydrology & Water Resources,1997, 10(6):627-629.
    [35]Kreutz K J, Wake C P, Aizen V B, et al. Seasonal deuterium excess in a Tien Shan ice core:Influence of moisture transport and recycling in Central Asia [J]. Geophys Res Lett,2003,30(18),1922, doi:10.1029/2003GL017896.
    [36]Kristof S, Georg H, Barble L, et al. Simulation of δ18O in precipitation by the regional circulation model REMOiso [J]. Hydrol Process,2005,19:3425-3444.
    [37]Lauriol B, Clark I D. An approach to determine the origin and age of massive ice blockages in two Arctic caves [J]. Permafrost and Periglacial Processes, 1993,4:77-85.
    [38]Liljequist G H, Cehak K. Allgemeine Meteorologie [M]. Braunschweig: Wiesbaden,1979,1-298.
    [39]Merlivat L, Jouzel J.Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation [J] Journal of Geophysical Research,1979,84 (C8):5029-5033.
    [40]Metcalf L. Ground Water-Surface Water Interactions in the Lower Virgin River Area Arizona and Nevada [D].M S Thesis UNLV,1995,181.
    [41]Mook W G Environmental Isotopes in the Hydrological Cycle [M]. Principles and Applications. Vienna: IHS of IAEA,2001.
    [42]Koster R D, Valpine D P, Jouzel J. Continentalwater recycling and H218O concentrations [J]. Geophysical Research Letters,1993,20(20):2215-2218.
    [43]Rozanski K, Araguas L, Gonfiantini R. Relation between long-term trends of oxygen-18 isotope composition ofprecipitation and climate [J]. Science,1992, 258:981-985.
    [44]Rozanski K, Araguas-Araguas L, Gonfiantini R. Isotopic patterns in modern global precipitation in Swart [M]. In:Continental Isotope In dictators of Climate, American geophysical Union, Geophysical Monograph,1993,78:1-36.
    [45]Rozanski K, Sonntag C, Munnich K O. Factors controlling stable isotope composition of European precipitation [J], Tellus,1982,34 (2):142-150.
    [46]Rozanski K. D,18O, and 3H in atmospheric water vapour and precipitation collected at Krakow station during the time period June 1981-December 1985. Report INT 202/, Institute of Physics and Nuclear Techniques, University of Mining and Metallurgy: Krakow:1986,57.
    [47]Rozanski K, Araguas- Araguas L, Gonfiantini R. Isotopic patterns in modern global precipitation [M]. In:Continental Isotope In dictators of Climate, American geophysical Union Monograph, Washington, D C,1993,1-37.
    [48]Rozanski K, Araguas-Araguas L, Gonfiantini R. Relaiton between Long-Term Trends of Oxygen-18 Isotope composition of Precipitation and Climate [J]. Science,1992,258:981-985.
    [49]Salati E, DallOlio A, Matsui E, et al. Recycling of water in the Amazon basin: an isotopic study [J].Water Resour. Res,1979,15:1250-1258.
    [50]Sanntag C, Rozanski K, Munnich K O, et al. Variations of deute-rium and oxygen-18 in continental precipitation and groundwater and their causes. In: Street-Perrott A, eds. Variations in the Global Water Budget. Dordrecht:D Reidel Publishing Company,1983,107-124.
    [51]Schoch-Fischer H, Rozanski K, Jacob H, et al. Hydrometeorological factors controlling the time variation of D, 18O and 3H in atmospheric water vapour and precipitation in the northern westwind belt.Isotope Hydrology 1983. Vienna: International Atomic Energy Agency,1984,3-31.
    [52]Siegenthaler U, Oesehger H. Correlation of 18O in precipitation with temperature and altitude [J]. Nature,1980,285:314-317.
    [53]Simpson E S, Thorub D B, Friedman L. Distinguishing seasonal recharge to groundwater by deuterium analysis in southern Arizona [A].World Water Balance[C].1972,3:623-633. IASH.WMO and UNESCO.
    [54]Sonntag C, Rozanski K, Munnich K O, et al. Variations of deuterium and oxygen-18 in continental precipitation and groundwater and their causes[A]. In: Variations in the Global Water Budget[C].Street-Perrott F A (eds) D.Reidel Publishing Company:Dordrecht.1983,107-124.
    [55]Stewart M K. Stable Isotope Fractionation Due to Evaporation and Isotopic Exchange of Falling Waterdrops:Applications to Atmospheric Processes and Evaporation of Lakes [J]. Journal of geophysical research,1975,80(9): 1133-1146.
    [56]Tian L, Masson-Delmotte V, Stievenard M. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes [J]. J Geophys Res,2001,106(D22):28081-28088.
    [57]Wang G X, Cheng G D. Changes of hydrology and ecological environment during late 50 years in Heihe River basin[J]. J Des Res,1998,18:233-238.
    [58]Wang G X, Cheng G D. Land desertification status and developing trend in the Hei River basin [J]. J Des Res,1999,19:368-374.
    [59]White J W C, Gedzelman S D.The isotopic composition of atmospheric water vapour and the concurrent meteorological conditions [J].Journal of Geophysical Research,1984,89:4937-4939.
    [60]Yurtsever Y, Gat J R. Atmospheric waters [A]. In:Gat J R, Gonflantini R, ed. Stable Isotopes in Hydeology. Deuterium and oxygen-18 in the water cycle[C]. Vienna/Austria:IAEA—publi—cations,1981,103-142.
    [61]Zhang X, Liu J, Tian L, et al. Variations of in precipitation along vapor transport paths [J]. Advances in atmospheric sciences,2004,21(4):562-572.
    [62]Zhou S Q, Nakawo M, Sakai A, et al. Water isotope variations in the snow pack and summer precipitation at July 1 Glacier, Qilian Mountains in northwest China [J]. Chinese Science Bulletin,2007,52(21):2963-2972.
    [63]丁宏伟,张举.干旱区内陆平原地下水持续下降引起的环境问题——以河西走廊黑河流域中游地区为例[J].水文地质工程地质,2002,3:71-75.
    [64]福尔G.同位素地质学原理[M].潘曙兰,乔广生译.北京科学出版社,1983.
    [65]高前兆,李福兴.黑河流域水资源合理开发利用[M].兰州:甘肃科学技术出版社,1991,1-228.
    [66]林瑞芬,卫克勤.北京及上海降水的同位素组成[C].中国科学院地理化学研究 所年报(1980-1981),贵阳:贵州人民出版社,1982,39-41.
    [67]刘东生.桂林地区大气降水的氢氧同位素研究[J].中国岩溶,1987,6(3):12-15.
    [68]刘进达,刘思凯,赵迎昌,等.影响中国大气降水稳定同位素组成的主要因素分析[J].勘察科学技术,1997,(4):14-18.
    [69]刘进达,赵迎昌,刘恩凯.中国大气降水稳定同位素时—空分布规律探讨[J].勘察科学技术,1997,3:34-39
    [70]刘忠方,田立德,姚檀栋,等.雅鲁藏布江流域降水中δ18O的时空变化[J].地理学报,2007,62(5):510-517.
    [71]潘启民,田水利.黑河流域水资源[M].黄河水利出版社,2001,12:1-142
    [72]田立德,姚檀栋,孙维贞,等.青藏高原中部蒸发过程中的氧同位素研究[J].冰川冻土,2000,22(2):159-164.
    [73]田立德,姚檀栋,蒲健辰,等.拉萨夏季降水中氧稳定同位素变化特征[J].冰川冻土,1997,19(4):295-301.
    [74]田立德,姚檀栋,Stievenard M,等.中国西部降水中δD的初步研究[J].冰川冻土,1998,20(2):175-179.
    [75]田立德,姚檀栋,孙维贞.青藏高原南北降水中δD和δ18O关系及水汽循环[J].中国科学(D辑),2001,31(3):214-220.
    [76]王恒纯.同位素水文地质概论[M].地质出版社,1991,11-44.
    [77]王可丽,程国栋,江灏,等.祁连山-黑河流域水循环中的大气过程[J].水科学进展,2003,14(1):91-97.
    [78]王宁练,张世彪,贺建桥,等.祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究[J].科学通报,2009,54:2148-2152.
    [79]卫克勤,林瑞芬,王志祥.北京地区降水中的氘、氧18、氚含量[J].中国科学(B辑),1982,8:754-757.
    [80]卫克勤,林瑞芬.论季风气候对我国雨水同位素组成的影响[J].地球化学,1994,23(1):33-41.
    [81]吴锦奎,丁永建,王根绪,等.同位素技术在寒旱区水科学中的应用进展[J].冰川冻土,2004,26(4):509-516.
    [82]徐庆,刘世荣,安树青,等.卧龙地区大气降水氢氧同位素特征的研究[J].林业科
    学研究,2006,19(6):679-686.
    [83]杨梅学,姚檀栋,田立德,等.藏北高原夏季降水的水汽来源分析[J].地理科学,2004,24(4):426-431.
    [84]姚檀栋,孙维贞,蒲键辰,等.内陆河流域系统降水中稳定同位素—乌鲁木齐河流域降水中δ18O雨温度关系的研究[J].冰川冻土,2000,22(1):15-22.
    [85]于津生,虞福平,刘德平.中国东部大气降水中氢氧同位素组成[J].地球化学,1987,16(1):22-26.
    [86]张强,俞亚勋,张杰.祁连山与河西内陆河流域绿洲的大气水循环特征研究[J].冰川冻土,2008,30(6):907-913.
    [87]张应华,仵彦卿.黑河流域不同水体中δ18O的变化[J].水科学进展,2007,18(6):864-870.
    [88]张应华,仵彦卿.黑河流域大气降水水汽来源分析[J].干旱区研究,2008,31(3):403-408.
    [89]张应华,仵彦卿.黑河流域中上游地区降水中氢氧同位素与温度关系研究[J].干旱区地理,2007,30(1):16-21.
    [90]张应华.应用环境同位素对黑河流域水循环的研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2005,1-140.
    [91]章申,于维新,张青莲.我国西藏南部珠穆朗玛峰地区冰雪中氘和重氧的分布[J].中国科学(A辑),1973 4:430-433.
    [92]章新平,姚檀栋.利用稳定同位素比率估计湖泊的蒸发[J].冰川冻土,1997,19(2):161-166.
    [93]章新平,姚檀栋.青藏高原东北地区现代降水中δD与δ18O的关系研究[J].冰川冻土,1996,18(4):360-365.
    [94]章新平,施雅风,姚檀栋.青藏高原东北部降水中δ18O的变化特征[J].中国科学(B辑),1995,25(5):540-547.
    [95]章新平,姚檀栋,田立德.水体蒸发过程中稳定同位素分馏的模拟[J].冰川冻土,2003,25(1):65-71.
    [96]章新平,姚檀栋.全球降水中氧同位素比率的分布特点[J].冰川冻土,1994,16(3):202-210.
    [97]章新平,中巴正义,姚植栋,等.青藏高原及其毗邻地区降水中稳定同位素成分的时空变化[J].中国科学(D辑),2001,31(5):353-361.
    [98]章新平.水循环过程中的稳定同位素变化[J].新疆大学学报,1993,10(1):103-112.
    [99]郑淑慧,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素的研究[J].科学通报,1983,28(13):801-806.
    [100]朱建强.酒泉地区麦收后复种饲用油菜高产栽培技术[J].甘肃农业科技,2003,9:52-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700