南京市溧水县稻田土壤全氮的遥感估测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是生活在地球上的人类赖以生存的物质基础和宝贵源泉。作为作物赖以生长并为全世界提供衣食的中介,土壤是植物生长繁育和生物生产的基地。而土壤中的各种元素含量是衡量土壤肥力,决定作物丰产与否的主要原因。因此,了解土壤肥力并根据作物生产的基本营养需求,进而认识到土壤对于作物的限制性因子对于农田的合理施肥和作物增收是至关重要的。
     由于农田土壤肥力空间分布存在差异,传统的均一施肥方式,容易导致局部施肥过多而造成农业面源污染,也同样会导致一些区域因施肥不足产生地力衰竭。另外,土壤中的各种元素含量是一个相对动态的变化过程。而进行配方施肥就必须准确掌握田间土的壤肥力状况,所以对土壤中的各种营养元素含量进行实时监测是必不可少的。传统的土壤肥力状况监测一般是实地采样,然后风干,磨土过筛,最后进行实验室化学分析。一方面投入大,浪费大量的人力物力;另一方面,监测土壤的周期也比较长,这就造成了土壤监测的时效性差。耕作者不能有效及时详尽地掌握田间土壤的肥力信息,难以做到及时有效的配方施肥去消除土壤对于作物的限制性因子。所以,寻找一种快速、有效、低投入的土壤肥力监测方法显得迫在眉睫。
     遥感技术是20世纪60年代兴起并迅速发展起来的一门综合性探测技术,是一种通过量测从地表获取电磁辐射进而推断地表参数的过程。土壤作为地球表面的最常见的地物,其对特定波段的电磁波反射率非常敏感。它的一些光谱反射率和本身的一些理化参数之间存在着很大的相关性,这就是利用遥感监测土壤肥力的内在机理。然而,农田土壤经常为植被所覆盖,裸露的时间比较短,影响了遥感技术在农田土壤肥力监测方面的应用。不过,国内外学者在遥感监测作物长势、营养状况方面取得了巨大成果。由于不同的土壤理化性质和施肥量会在一定程度上引起作物长势的差异,并最终反映在作物冠层光谱反射率上。这种机理的存在使得利用遥感获得的植被光谱特性间接监测土壤理化性质成为可能。NDVI(归一化植被指数)在监测地表植被覆盖中发挥着重要作用。水田植被覆盖种类单一,其它影响因素少,这使得通过NDVI监测水稻长势,间接监测稻田土壤肥力状况变得可行。
     利用遥感技术监测土壤肥力状况,正好弥补了传统土壤监测的缺陷。遥感技术以其实时、持久、数据量大、观测范围广等优点在土壤监测中发挥了重要作用,成为土壤各种元素含量监测和时空动态分析的重要技术手段,突破了传统的地面点状监测方法。遥感技术能清楚地反映出土壤一些理化性质的空间分布特征,利用多时相的遥感数据可对同一地区的土壤进行动态监测,防止施肥过度导致的面源污染或施肥不足产生的地力衰竭,为合理的配方施肥提供决策依据。
     本研究以南京溧水县农区水稻田作为实验区,以研究区水稻的主要遥感影象指数——归一化植被指数(NDVI)作为研究对象。采用相关性回归分析方法将地面定位微观监测数据和遥感技术宏观监测数据有机地对接起来,旨在探讨研究区水田土壤的主要营养元素——全氮在中巴地球资源2号卫星(CBERS-2,简称中巴-2)数据中的敏感波段或波段组合,研究建立农区水田土壤全氮含量的遥感监测估算模型。最后将所建的模型应用于水田肥力的估测和研究区水田土壤全氮含量二级图的划分。
     本文的创新点在于利用中巴-2号卫星的CCD的归一化植被指数对南京溧水县水田的土壤全氮进行估测,在此基础上做了研究区的氮素等级分布图,并对关于遥感估测土壤元素技术体系的建立进行了讨论和初探。通过全文研究,得出结论如下:1)水稻分蘖期中巴-2卫星影象取得的归一化植被指数可以很好的反映水稻长势,间接表现稻田土壤的全氮水平;2)中巴-2卫星影象的CCD数据可以实现对稻田土壤全氮的半定量估测;3)在归一化植被指数影象的基础上可以实现对研究区稻田土壤全氮水平的区划,并可成图;4)遥感估测土壤元素技术体系的建立基本是可行的。基于上述研究,可通过进一步的研究提高估测模型的精度,进而达到精确监测。通过对土壤其它元素含量和物理性质的遥感监测研究,建立并完善遥感估测土壤元素的技术体系。
The remote sensing is important in getting the fertility level of the cropland and plays an important role in the the fertilization. The Normalized Difference Vegetation Index (NDVI) has made great contribution in the monitoring of the earth vegetation cover. The kind of the vegetation cover in the paddy field is single, with few other affecting factors which makes monitoring the soil fertility indirectly with the monitoring of the rice growth vigour using NDVI. The paper focused on the monitoring of the soil fertility of the paddy soil in the county of Lishui, Nanjing city using the NDVI of the CBERS-2 CCD image. And the research showed that is possible. And the grade distribution figure of the total Nitrogen content of the study area is made, which makes the monitoring of the total Nitrogen in the paddy field possible with remote sensing.
     Soil is the material foundation and the headspring of human survival for the people living on the earth. As the agency which is very important for the crop growth and provides food for the world, soil is the plant base for its growth reproduction and biological production. And the content of various elements in the soil is the main factor affecting the soil fertility and deciding whether the srop has a high yield or not Therefor, understand the soil fertility and realize the crop restriction factor according to the basic nutritional requirement of the crop production is critical to the rational fertilization and the income increase of the crop.
     As there are spatial distribution differences of the soil fertility in the cropland, the traditional indistinctive fertilization may lead to agricultural no point pollution because of over fertilization in some area whereas can cause soil fertility exhaustion in other places. Besides, the content of various elements in the soil is a relative dynamic state which is a changing process. So it is necessary to real time monitor all kinds of nutrient elements in the soil because the soil fertility in the cropland must to be mastered if formulated fertilization want to be executed. The traditional monitoring to the soil fertility usually implemented through the steps of field sampling, air drying, soil grinding and the chemical analysis in the laboratory. On one hand, it will wast a mass of labours and material resources; on the other hand,the period of monitoring the soil fertility will last for long and that will make a bad time effectiveness. Therefore the peasants can not master the information of the soil fertility in the cropland effectively in time and it is hard to take efficient measures to execute rational fertilization for removing the soil restriction factor to the crops. So it is urgent to find a method to monitor the soil fertility quickly, effectively with low input.
     The remote sensing technology is a comprehensive detective technology which springed up in the sixties of the 20th century and then developed rapidly. It is a process to conclude earth surface parameters by the measure of the electromagnetic radiation obtained from the ground surface. As the common ground object, soil is very sensitive to the electromagnetic radiation of specific waveband. There is a remarkable correlation between soil electromagnetic radiation in some waveband and some physical-chemical parameters of the soil which is the internal mechanism of monitoring soil quality with remote sensing technology. But the soil in the cropland was usually covered by vegetation and the duration of the bare soil was short that affected the application of remote sensing technology in the soil fertility monitoring in the croplang. However, scholars at home and abroad have make remarkable achievements on the monitoring of crop growth status and its nutritional conditions. Because different physico-chemical properties of the soil and different levels of fertilization will affect the crop growth which reflects on the different electromagnetic radiation of the crop canopy finally, the existence of this mechanism make it possible to indirectly monitor the soil physico-chemical properties through vegetation spectrum properties obtained by remote sensing. The Normalized Difference Vegetation Index (NDVI) has made great contribution in the monitoring of vegetation coverage on the land surface. Because the single kind vegetation coverage in the paddy land is scarcely affected by other factors, it is feasible to indirectly monitor the soil fertility in the paddy land through monitoring the rice growth by NDVI.
     The application of remote sensing in the monitoring of the soil fertility status just can make up the defects of the traditional soil monitoring. Remote sensing technology has played an important role in the soil monitoring for its advantages such as the real time, persistence, large volume of data, wide range of observation and so on. The spatial distribution of the soil physical-chemical properties can be reflected using the remote sensing, so the soil in the same area could be monitored by using multi-temporal remote sensing images that will prevent the no_point pollution caused by over fertilization in some area and the soil fertility exhaustion in other places which can provide evidence for the rational fertilization.
     The research took paddyland of the rural area in Lishui County, Nanjing as research region, took the main index of the remote sensing image—NDVI as the research object. The correlation and regression analysis was make to connect organically the relationship between the micro monitoring data on the ground and the macroscopically monitoring data of the remote sensing on the purpose of probing into the sensitive wave band or wave band association of the main nutrient element of the soil-total nitrogen in rural area from China and Brazil Earth Resource Satellite 2 data (CBERS-2 data), studied the establishment of remote sensing monitoring speculating model of soil quality in rural district. At last, the established model was applied to monitor the soil fertility of the paddyland and the map of the total nitrogen content of the paddy soil in the research region was also made.
     The innovative point of this paper is that the soil total nitrogen content of the paddyland in Lishui County, Nanjing was estimated by the Normalized Difference Vegetation Index (NDVI) of the CCD data from the CBERS-2; and on this basis the grade distribution of the soil total nitrogen content in the research area was made; further more, the preliminary study of the founding of the technology system of the estimation of the soil elements in the rice field using remote sensing was also discussed. This paper reached the following conclusions by the study:(1)The NDVI of the CCD data from the CBERS-2 in the tillering stage of the rice can reflect the rice growth propertily and the total nitrogen level of the soil in the paddyland can also be indirectly reflected through that; (2)the semi-quantitative estimation of the soil total nitrogen in the paddyland could be realized using the CCD data from the CBERS-2; (3) regionalization mapping of the soil total nitrogen in the paddyland of the research region also can be achieved on the basis of the NDVI image; (4) it is basicly feasible to found the technology system of the estimation of the soil elements with remote sensing technology. On the basis of the research above, further research can be done to improve the precision of the estimation model,then the accurate monitoring to the soil elements can be realized. Furthermore found and perfect the technology system of the estimation of the soil elements with remote sensing technology through monitoring the content of other elements in the soil.
引文
[1]黄昌勇,土壤学[M].北京:中国农业出版社,2004:192-196.
    [2]王鹏,戴金明,何成风.水稻需肥规律及施肥技术[J].现代农业利技2009,1(23):97-99.
    [3]吴文强,贺建德,赵永志,等.施氮量对糯玉米产量及土壤氮动态的影响[J].华北农学报.2008,23(增刊):283-285.
    [4]林忠成,叶世超,戴其根,等.太湖流域不同施氮水平对水稻产量和土壤氮素的影响[J].江苏农业科,2009,6(1):386-389.
    [5]张凤荣,土壤发生学[M].北京:中国农业出版社,2003:335-336
    [6]高亮之,金之庆,黄耀,等.水稻栽培计算机模拟优化决策系统[M].北京:中国农业科技出版社,1992:21-40.
    [7]周清波.国内外农情感遥感现状与发展趋势[J].中国农业资源与区划,2004,25(5):9-14
    [8]李卫国,朱艳,戴廷波,等.水稻直链淀粉含员的生态模型研究[J].应用生态学报,2005,16(3):491-495.
    [9]宏裕闻.卫星遥感在美国农业上的应用[J].全球科技经济僚望,1997,(4):18-19
    [10]徐文波.作物种植面积遥感提取力法的研究进展[J].云南农业大学学报,2005,20(1):94-98.
    [11]李卫国,戴廷波,朱艳,等.基于生态效应的水稻籽粒蛋白含量预测模型研究[J].植物生态学报,2005,29(4):630-635.
    [12]邓良基.遥感技术与应用[M].北京:中国农业出版社,2002:17-19.
    [13]帅修富,王兴仁,曹一平,等.冬小麦氮营养诊断及氮追肥推荐[J].北京农业大学学报,1995,21(增刊):47-51.
    [14]郑跃鹏,曾新平,蔡劲宏.近年遥感技术新进展及几点思考[J].矿产与地质,2004,18(03):269-273.[15]张万良,刘德长.卫星遥感及其应用的发展态势[J].世界核地质科学,2005,(01):44-52.
    [16]徐丽萍.SPOT-5卫星系统性能概述[J].航天返回与遥感,2002,23(04):9-13.
    [17]刘德长,叶发旺.后遥感应用技术的提出与思考[J].世界核地质科学,2004,(01):57-64.
    [18]陈世平.高分辨率卫星遥感数据传输技术发展的若干问题[J].空间电子技术,2003,(03):1-5.
    [19]冯钟葵,张洪群.王万玉,等.遥感卫星数据获取与处理关键技术概述[J].遥感信息,2008,(4):91-97.
    [20]王东伟,孟宪智,李子轩,等.定量遥感技术在海河流域植被覆盖信息提取中的应用[J].淮海水利,2009,79(3):79-82.
    [21]王峰.卫星混编数据地面接收快视系统的设计与实现[J].航天器工程,2008,17(06):44-47.
    [22]赵静文.遥感卫星地面接收系统总体设计探讨[J].现代雷达,2004,26(7):14-16.
    [23]高珍,王超.遥感技术与地理信启、系统相结合在区域规划中的应用[J].工程技术与产业经济,2009,21(5):21-22.
    [24]石丽娜,赵旭东,韩发.遥感技术在环境监测中的应用和发展前景[J].贵州农业科学2010,38(1):175-178.
    [25]徐水明,蔺启忠,黄秀华,等.利用可见光/近红外反射光谱估算土壤总氮含量的实验研究[J].地理与地理信息科学,2005,21(1):19-22.
    [26]KIMES D S, Idso S B, Pinter P J, et al. View angle effects in radiometric measurement of plant canopy temperatures [J]. Remote Sensing of Environment,1980,10:273-284
    [27]Hunt G R, Salisbury J W. Visible and near infrared spectra of minerals and rocks,1, Silicate Minerals[J].Mod. Geol,1970,1:283-300.
    [28]Ben-Dor E, Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal,1995,59:364-372.
    [29]KRISHNAN P, John D, Alexander, et al. Reflectance technique for predicting soil organic matter[J]. Soil Science Society of America Journal.1980,44:1282-1285.
    [30]Bowers S A, Hanks R T. Reflection of radiant enerngy from soils[J]. Soil Sci.1965,100:130-138.
    [31]A1-Abbas, Swain H H, Baumgardne M F. Relating ornanic matter and clay content to the multispectral radiance of soil[J]. Soil Sci.1972,114:477-485.
    [32]KOOISTRA L, Wehrens L, Leuven R, et al. Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains[J]. Analytica Chimica Acta, 2001,446:97-105.
    [33]Etienne M, Henri D. Modeling soil moisture reflectance[J].Remote Sensinn of Environment,2000, 76:173-180.
    [34]Morra M J, Hall M H, Freeborn L L. Carbon and nitronen analysis of soil fractions usinn near-infrared reflectance spectroscopp[J]. Soil Sci.1991,55:288-291.
    [35]Liu W D, Baret F, Gu X F, et al. Using hyperspectral data to estimate soil surface moisture under experimental condidons[J]. Journal of Remote Sensing,2004(5):434-442.
    [36]Chen F, Kissel D E, West L T, et al. Field-Scale mapping of surface soil ornanic carbon usinn remotely sensed imagery[J]. Soil Sci Soc Am J,2000,64:746-753.
    [37]Garey A, Fox, George J. Sabbagh. Estimation of soil ornanic matter from red and near-infrared remotely sensed data using a soil line Euclidean Distance Technique[J]. Soil Sci Soc Am J,2002, 66:1922-1929.
    [38]Dalai R C, Henry R J. Simultaneous determination of moisture, ornanic carbon and total nitronen by near infrared reflectance spectroscopy[J].Soil Sci Soc Am J,1986,50:120-123.
    [39]张平,闫宏涛.反射光谱法测定土壤和作物中氮[J].仪器仪表与分析监测,1999,(1):37-39.
    [40]徐永明,蔺启忠,黄秀华,等.利用可见光/近红外反射光谱估算土壤总氮含量的实验研究[J].地理与地理信息科学,2005,21(1):19-22.
    [41]赵春江,黄文江,王纪华.不同品种、肥水条件下冬小麦光谱红边参数研究[J].中国农业科 学,2002,35(8):980-987.
    [42]程一松,胡春胜,郝二波,等.氮素胁迫下的冬小麦高光谱特征提取与分析[J].资源科学,2003,25(1):86-93.
    [43]宋晓宁,王纪华,薛绪掌,等.利用航空成像光谱数据研究土壤供氮量及变量施肥对冬小麦长势影响[J].农业工程学报,2004,20(4):45-49.
    [44]唐延林,王人潮,黄敬峰,等.不同供氮水平下水稻高光谱及其红边特征研究[J].遥感学报,2004,8(2):185-192.
    [45]任红艳,潘剑君,张佳宝.不同施氮水平下的小麦冠层光谱特征及产量分析[J].土壤通报,2005,36(1):26-29.
    [46]李映雪,朱艳,曹卫星.不同施氮条件下小麦冠层的高光谱和多光谱反射特征[J].麦类作物学报,2006,26(2):103-108.
    [47]Ladha, J K, Tirol-Padre A, Punzalan G C, et al. Nondestructive Estimation of Shoot Nitrogen in Different Rice Genotypes[J]. Agronomy Journal,1998,90(1):33-40.
    [48]Takebe M, Yoneyama T, Inada K, et al. Spectral Reflectance Ratio of Rice Canopy for Estimating Crop Nitrogen Status[J]. Plant and Soil,1990,122(2):295-297.
    [49]Zhou Q F, Wang, J H. Comparison of Adaxial and Abaxial Surface Reflectance under Different Nitrogen Level [J]. Transaction of the CASE,2002,18(5):34-38.
    [50]王渊,王福民,黄敬峰.油菜不同组分生物量光谱遥感估算模型[J].浙江农业大学学报.2004,16(2):79-83.
    [51]王人潮,黄敬峰.水稻遥感估产[M].北京:农业出版社.2001.
    [52]王坷,蒋亨显,王人潮.建立大田早稻农学光谱估产模式研究初报[J].浙江农业大学学报,1993,19(增刊):66-72.
    [53]陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998:46-50.
    [54]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社.2000:7-11.
    [55]Rouse J W, Has R H, Schell, T A, et al. Monitoring vegetation systems in the great plains with ERTS[C]. Third ERTS Symposium, NASA SP-351.1973:309-317.
    [56]Labus M P, Nielsen G A, et al. Wheat yield estimates using multi-temporal NDVI satellite imagery[J]. International Remote Sensing,2002,23(20):4169-4180.
    [57]Calera, Martinez C, Melia J. A procedure for obtaining green plant cover relation to NDVI in a case study for barley[J]. International Remote Sensing.2001,22(17):3357-3362.
    [58]Galvao L S, Vitorello I, Pizarro M A. An adequate band positioning to enhance NDVI contrasts among green vegetation, senescent biomass and tropical soils[J]. International Remote Sensing.2000,21 (9):1953-1960.
    [59]陈述彭,赵英时.遥感地学分析[M].北京:测绘出版社,1990:90-101.
    [60]彭掳,张树文.基于NDVI与LAI的水稻生长状况研究[J].遥感技术与应用,2002,12(5):12-16.
    [61]武红敢,乔彦友,陈林洪,等.马尾松叶面积指数动态变化的遥感监测研究[J].植物生态学报,1997,21(5):485-488.
    [62]刘丽,刘青,黄万岗,等.贵州省植被指数遥感动态监测研究[J].贵州气象,1997,21(5):26-30.
    [63]张佳华,符宗斌.生物量估测模型中遥感信息与植被光合参数的关系研究[J].测绘学报,1999,28(2):128-132.
    [64]http://www.jsagri.gov.cn.江苏省农业经济统计网站.
    [65]赵其国.民以食为天,食以净为本-论江苏省农产品清洁生产创新研究[J].土壤,2005,37(1):1-7.
    [66]董元华,张桃林.基于农产品质量安全的土壤资源管理与可持续利用[J].土壤,2003,35(3):182-186.
    [67]张学雷,龚子同.人为诱导下中国的土壤退化问题[J].生态环境,2003,12(3):317-321.
    [68]李秀中.长三角局部土壤污染调查:重金属超标威胁人类:http://www.chinagate.com.cn/chinese/huanjing/38808.htm.
    [69]李雪林,张小燕.中国1/5耕地受重金属污染土壤污染法正酝酿[J].资源与人居环境,2010,(5):49-50.
    [70]王秀云,陈晔,舒强,等.溧水县DEM的建立及坡面土地面积的提取[J].安徽农业科学,2006,34(15):3603-3604.
    [71]江苏省土壤普查办公室.江苏省溧水县土壤志[M].1985.
    [72]胡如忠.中巴地球资源卫星及其应用[M].北京:遥感应用协会,2002:4-5.
    [73]陈冬花,咎梅.中巴地球资源卫星的应用与研究[J].新疆师范大学学报,2006,25(5):173-177.
    [74]雷坤,郑丙辉,王桥.基于中巴地球资源1号卫星的太湖表层水体水质遥感[J].环境科学学报,2004,24(3):376-380.
    [75]张庆君,马世俊.中巴地球资源卫星成就与发展[J].航天器工程,2009,1(04):21-26.
    [76]马炼,张明波.嘉陵江流域水保治理前后沿程水沙变化研究[J].水文,2002,22(1):27-31.
    [77]唐娅琴.几种图像平滑去噪方法的比较[J].西南大学学报,2009,31(11):125-128.
    [78]刘丹.计算机图像处理的数学和算法基础[M].北京:国防工业出版社,2005:85-91.
    [79]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:39-50.
    [80]王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究-不同氮素水平的水稻光谱特征及其敏感波段的选择[J].浙江农业大学学报,1993,19(5):7-14.
    [81]HIVLMAN L D, BAUER M E, DAUGHTRY C S T. Effects of nitrogen fertilization on growth and reflechance characteristics of winterwheat[J]. Remote Sensing of Environment,1980,19(4):47-61.
    [82]吉川年彦.应用近红外分光法测定水稻叶片的氮、镁、钾[J].日本土壤肥料学杂志,1991,62(6):641-642.
    [83]王珂,沈掌泉,王人潮.不同钾营养水平的水稻冠层和叶片光谱特征研究初报[J].科技通报,1997,13(4):35-40.
    [84]Ni C Y, Shi J Y, Luo Y M, et al. "Co-cultur engineering" for enhanced phytoremediation of metal contaminated soils[J]Pedosphere,2004,14(4):475-482.
    [85]王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿索水平的影响[J].草业科学,2003,20(6):73-75.
    [86]伍瑞卿,杨存建.石南省腾冲油菜反射波谱特征与应用分析[J].地球信息科学,2006,8(4):136-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700