猪Gpr3基因特征、表达及其对卵泡颗粒细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物卵泡发育是一个复杂的生理生化过程,主要包括:原始卵泡的募集、腔前卵泡的发育、有腔卵泡的选择和生长及卵泡的成熟或闭锁。该过程受激素、生长因子、金属离子等多种因素控制,最终只有少数卵泡发育为优势卵泡并排卵,99%以上的卵泡发生闭锁。卵泡颗粒细胞是卵泡中最重要的体细胞,它对卵母细胞成熟、卵泡发育有至关重要的作用。伴随着哺乳动物卵泡生长和发育,颗粒细胞体积增大、数量增多并逐步分化和成熟。G蛋白偶联受体3(G protein-coupled receptor3, Gpr3)属于G蛋白偶联受体超家族成员。近年来的研究表明,Gpr3在小鼠和人的卵巢中通过Gs蛋白介导的下游通路调节卵泡的生长发育和卵母细胞的成熟。但Gpr3在猪卵巢中的表达规律及在卵泡颗粒细胞中的作用目前尚未见报道。因此,深入研究猪Gpr3在卵巢及卵泡发育过程中的表达规律,探索Gpr3信号通路在卵泡颗粒细胞中的作用及其调控机制,可以为哺乳动物繁殖性状的选育提供可能的理论基础,在提高家畜繁殖性能方面具有重要意义。
     本论文以三元商品猪为研究对象,采用电子克隆与传统克隆相结合的方法,利用RT-PCR和RACE技术,获得了猪Gpr3基因的全长序列和含有完整编码框的Gpr6及Gprl2的部分cDNA序列,并利用生物信息学方法对其结构及功能进行了系统的研究;利用实时荧光定量(real-time) PCR和免疫蛋白印迹(Western blotting)技术对Gpr3在组织及卵母细胞体外成熟过程中的表达规律进行了分析;利用免疫组织化学方法对猪胎儿期50、70和90(日龄)、新生1日龄及生后期25、35、70、140和180(日龄)9个阶段猪卵巢组织中Gpr3蛋白的表达进行了细胞定位;利用real-time PCR和Western blotting技术对不同日龄、不同品种卵巢及不同直径卵泡中Gpr3的表达规律进行了分析;利用构建的Gpr3真核表达载体及与GFP融合表达载体检测了Gpr3在人胚肾(HEK293)细胞中的亚细胞定位、组成性活性以及鞘脂类脂质对Gpr3组成性活性和受体内化作用的影响;采用RNAi技术敲减Gpr3,阻抑Gpr3介导的信号通路,利用MTT、流式细胞术、放射免疫测定(Radioimmunoassay, RIA)、real-time PCR等方法检测阻抑该信号通路对猪卵泡颗粒细胞的作用及其分子机制;采用超表达Gpr3的方式激活其介导的信号通路,利用MTT、流式细胞术、RIA、real-time PCR等方法检测超表达Gpr3后对猪卵泡颗粒细胞生长及分化的影响,主要研究结果如下:
     1用电子克隆和RACE的方法克隆了猪Gpr3基因的全长序列和含有完整编码框的Gpr6及Gpr12的部分cDNA序列,GenBank登录号分别为HQ606483、HM777010和HM77711,并做生物信息学预测分析,结果表明:猪Gpr3基因的cDNA由2101个核苷酸组成,编码330个氨基酸,分子量为35.2kDa,位于第6号染色体,与牛、犬、人、黑猩猩、小鼠和大鼠的氨基酸相似性分别为96.4%,95.1%,94.9%,94.8%,90.0%和85.4%。它具有典型的七次跨膜结构域,存在多个潜在的磷酸化和糖基化修饰位点,表明它是一个功能活跃的跨膜蛋白,可能参与信号传导、细胞生长调控等过程。另外,猪Gpr3、Gpr6和Gpr12的蛋白序列比对及功能预测分析发现,它们彼此间具有高度的序列同源性和相似的潜在功能,将三者归为同一受体亚家族,称为Gpr3亚家族。
     2用real-time PCR和Western blotting的方法检测猪Gpr3基因的组织分布及在卵母细胞成熟过程中的表达模式,结果表明:猪Gpr3基因在大脑、小脑、下丘脑、垂体、心脏、肝脏、脾脏、肺脏、’肾脏、肌肉、脂肪、胸腺、卵巢、输卵管、子宫、睾丸、卵母细胞和颗粒细胞中均有表达,但仅在脑、垂体、肝脏、脂肪、子宫和卵母细胞中大量表达,推测其在猪的神经系统及生殖系统发育和功能维持方面具有重要作用,可能参与猪的脂肪代谢。另外,Gpr3基因在猪卵母细胞体外成熟过程中的表达量呈下降趋势,并且与卵丘扩散程度呈显著的负相关(r=-0.937,P<0.01),表明其可能对卵丘扩散和卵母细胞成熟具有重要作用。成熟促进因子(Maturation promoting factor, MPF)的调节亚基Cyclin B1基因在卵母细胞体外成熟前期的表达量较低(0-24h),后期显著的升高(24-44h),而催化亚基CDK1基因的表达水平在整个培养过程中保持相对稳定,说明MPF可能主要在卵母细胞体外成熟后期发挥作用。
     3用免疫组织化学方法检测Gpr3蛋白在9个阶段猪卵巢组织中的表达与定位,结果表明:在胎儿和新生期,Gpr3主要在卵母细胞巢中的卵原细胞、原始卵泡和初级卵泡的卵母细胞中表达;在生后期,Gpr3在腔前卵泡和有腔卵泡的颗粒细胞层、卵丘细胞和卵母细胞胞质中表达,并且在卵母细胞中的表达量最高。另外,在成年猪卵巢的黄体中也有微弱的表达。Real-time PCR和Western blotting结果表明,Gpr3mRNA和蛋白在不同发育阶段猪卵巢中均有表达,表达量呈波浪状变化,在新生及出生后140日龄的表达量最高;在不同品种猪的卵巢中,Gpr3的表达量趋于一致,未见显著性差异;在不同直径猪卵巢卵泡中,Gpr3的表达量随着卵泡直径的增加而上升。猪Gpr3受体在卵巢中的细胞和时期特异性表达模式表明,其可能在猪卵泡发育和黄体形成过程中发挥重要作用。
     4为了探究Gpr3的性质功能并筛选其潜在的配体,我们构建了Gpr3真核表达载体及与GFP融合表达载体,用以检测Gpr3在人胚肾(HEK293)细胞中的亚细胞定位、组成性活性、鞘脂类脂质对组成性活性和受体内化的影响。结果表明:在HEK293细胞中,Gpr3的表达引起了腺苷酸环化酶(adenylate cyclase, AC)组成性激活,并且激活程度与完全激活Gs偶联受体的程度相似。而且,鞘氨醇1-磷酸(sphingosine1-phosphate, S1P)可以通过组成性激活的Gpr3受体进一步增加AC的活性。当在HEK239细胞中表达绿色荧光蛋白(green fluorescent protein, GFP)标记的Gpr3受体时发现,绿色荧光仅集中于细胞膜和亚细胞膜中。S1P处理后,通过荧光共聚焦显微镜可以观察到激动剂诱导的受体内化过程。而鞘氨醇(sphingosine, Sph)和鞘磷脂(sphingomyelin, Sphi)不具备以上功能。说明,Gpr3是组成性激活的G蛋白偶联受体,它的组成性活性及激动剂诱导的内化作用受到脂质调节者S1P的调控,表明S1P可能是猪Gpr3受体的潜在激动剂。
     5为了研究Gpr3信号通路在猪卵泡颗粒细胞中的作用,本研究从猪卵巢卵泡(3-5mm)内分离颗粒细胞(pGCs)进行体外培养。采用RNAi技术“沉默”Gpr3阻抑其介导的信号通路,以检测Gpr3受体在猪卵泡颗粒细胞生长及分化过程中的作用。结果表明:转染Gpr3特异性的siRNA后,能够有效地抑制颗粒细胞中Gpr3mRNA和蛋白的表达,成功地阻抑了Gpr3介导的信号通路。MTT、流式细胞术及RIA检测的结果表明,阻抑Gpr3信号通路能够促进颗粒细胞增殖,抑制颗粒细胞凋亡,但对颗粒细胞中类固醇激素的合成没有影响。另外,阻抑Gpr3信号通路显著改变了Cyclin B1、 Cyclin D2、Bcl-2、Bax和Gprl2的表达(P<0.05),而对CDK1、CDK4、P450arom、 P450scc和Gpr6的表达没有影响(P>0.05)。
     6为了进一步明确Gpr3在猪颗粒细胞中的功能,我们在颗粒细胞中超表达了Gpr3受体,结果表明:超表达Gpr3能显著抑制颗粒细胞的增殖,增加G0/G1期细胞的百分含量,减少S期的细胞,同时降低细胞周期标志蛋白Cyclin B1和CDK1的mRNA表达;超表达Gpr3能显著增加颗粒细胞的凋亡比率,抑制Bcl-2的表达,促进Bax的表达;超表达Gpr3促进了Gpr6的表达;然而,超表达Gpr3不影响雌二醇和孕酮的分泌,并且未显著改变P450arom和P450scc的表达。由此可见,Gpr3信号通路在调控猪卵泡颗粒细胞生长和凋亡过程中具有重要的作用,相关基因表达量的改变为进一步探索Gpr3受体在调节卵泡颗粒细胞生长及凋亡过程的中作用机制奠定了一定的基础。
Mammalian follicular development is a very complex physiological and biochemical cascade process, including recruitment of the primitive follicle, the development of preantral follicle and antral follicle selection, growth and mature or follicle atresia. This procedure can be regulated by a lot of factors, such as hormones and growth factors. It is well known that only a few follicles can reach dominant follicles and ovulation, and more than99%follicles go atresia in mammals. Granulosa cells are key somatic cells in follicles, and play very important roles in oocyte maturation and follicular development. Follicular development is accompanied by growth, proliferation, differentiation, and maturation of granulosa cells. G protein-coupled receptor3(Gpr3) belongs to the G protein-coupled receptor superfamily. Recent study showed that Gpr3regulated follicular development and oocyte maturation through Gs-linked signal pathways in ovarian cells of mice and human. However, the expression pattern in ovary and the roles in follicular granulosa cells of Gpr3are have not yet been well documented in pigs. Therefore, it is immediately required to carry out the further study on the expression pattern of Gpr3and regulatory mechanisms of the Gpr3signaling pathway in the follicular granulosa cells of pigs, which provides possible rationale to selection of mammalian reproductive trait and has great importance to the improvement of reproductive capacity of domestic animals.
     In this study, using in silico approach combined with reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE), we cloned the full-length of porcine Gpr3gene and the complete coding sequences of porcine Gpr6and Gpr12genes. Bioinformatics methods were adopted to predict the structure and function of Gpr3, Gpr6and Gpr12protein. Real-time RT-PCR and Western blotting were performed to investigate Gpr3expression pattern in tissues and the whole cumulus-oocyte complexes (COCs) of in vitro maturation (IVM). Cellular localization of Gpr3in the ovaries of50,70and90post coitum (dpc), days1,25,35,70,140and180postpartum (dpp) of commercial pigs were examined by immunohistochemistry (IHC). Time-spatial expression of Gpr3in multi-age, multi-breed ovaries and multi-diameter follicles were detected by Real-time RT-PCR and Western blotting. Subcellular localization, constitutive activity of Gpr3and the effect of sphingolipids on its constitutive activity and ligand-induced receptor internalization were tested using the vectors of pcDNA-Gpr3and pEGFP-Gpr3in HEK293cells. In order to repress Gpr3signaling, the gene of Gpr3was silenced by RNAi, the effects of repressed Gpr3signaling on porcine follicular granulosa cells and underlying molecular mechanism were detected by MTT, FCM, RIA and real-time RT-PCR. The effects of Gpr3overexpression on porcine follicular granulosa cells and underlying molecular mechanism were also detected by MTT, FCM, RIA and real-time RT-PCR.
     The main results achieved were as follows:
     1The full-length of porcine Gpr3gene and the complete coding sequences of porcine Gpr6and Gprl2genes were cloned by RT-PCR and RACE, and were submitted to GenBank (Accession No. HQ606483, HM777010and HM77711, respectively). Using bioinformatics network resources and relevant software, we predicted that the full sequence of Gpr3gene with its length being2101bp nucleotides, including an open reading frame of993bp, encoded a330amino acid polypeptide with the molecular weight of35.2kDa, localizeg at chromosome6. Comparison of the putative amino acid of porcine orthologs with that of other species showed that porcine Gpr3shared96.4%,95.1%,94.9%,94.8%,90.0%and85.4%homology with Bos taurus (XP612644.2), Canis lupus familiaris (XP544470.1), Homo sapiens (NP005272.1), Pan troglodytes (XP001148989.1), Mus musculus (NP032180.1) and Rattus norvegicus (NP714949.1) respectively, which proved that Gpr3gene was well conserved in the process of evolution. The Gpr3protein contained the typical seven-transmembrane structure of G protein-coupled receptors (GPCRs), including several potential phosphorylation and N-glycosylation sites, suggesting that it might be involved in signal transduction and regulation of cell growth process. Further, on the basis of their high levels of sequence similarity and similar potential roles, Gpr3, Gpr6and Gpr12genes were identified as a subfamily of GPCRs, called Gpr3subfamily of GPCRs.
     2Expression patterns of Gpr3in tissues and the whole COCs during IVM were investigated by real-time RT-PCR and Western blotting. The results indicated that Gpr3gene was expressed in tissues of cerebrum, cerebellum, hypothalamus, pituitary, heart, liver, spleen, lung, kidney, muscle, fat, thymus, ovary, oviduct, uterus, testis, oocyte, and granulosa cell at different expression levels, the expression levels of this gene in brain, pituitary, liver, fat, uterus and oocyte being higher than that in other tissues. Since Gpr3mRNA and protein were detected in porcine hypothalamus-pituitary-ovary and testis, it can be speculated that this receptor may play an important role in the neural regulation of sexual and/or reproductive functions and fat metabolism in pigs. Interestingly, the mRNA and protein levels of Gpr3in the whole COCs were down-regulated, and its mRNA expression levels were significantly and negatively correlated with the degrees of cumulus expansion (r=-0.937, P<0.01) during IVM, suggesting its important roles in cumulus expansion and oocyte maturation. Maturation/M-phase promoting factor (MPF) is a complex composed of a regulatory subunit cyclin B1and a catalytic subunit CDK1. Cyclin B1transcripts was up-regulated after24h of maturation, while CDK1mRNA levels were unchanged during IVM, suggesting that MPF might play roles in the later stage of oocyte maturation.
     3Cellular localization and expression pattern of Gpr3were investigated by IHC, real-time PCR and Western blotting in the ovaries of pigs. The results showed that Gpr3protein was primarily expressed in the oogonia in egg nest and the oocyte in primodial and primary follicles of the fetal and neonatal pigs. In postnatal pigs, Gpr3protein was expressed mainly in the granulosa cell layer, cumulus cell and cytoplasm of oocytes. Furthermore, the immunostaining for Gpr3in cytoplasm of oocytes was the most intensive. In additional, the staining intensity was faintly presented in the corpora lutea of the ovary in adult pigs. The results of real-time PCR and Western blotting indicated that Gpr3mRNA and protein were both presented in the different ages of ovaries, and the expression levels were wave-changed from postpartum1to180days. The expression levels of Gpr3in the1-dpp-old and140-dpp-old ovaries were higher than that of other age ovaries. There was no significant difference among three tested breeds at the expression level of Gpr3in the ovary. Moreover, both mRNA and protein levels of Gpr3were up-regulated significantly during follicle growth. The stage-and cell-specific expression pattern of Gpr3in the porcine ovary suggested that Gpr3might play an important role in the process of entire follicular development and luteinization.
     4In order to understand the properties and functions of Gpr3, by which to screen its potential ligands, the vectors of pcDNA-Gpr3and pEGFP-Gpr3were constructed for checking the subcellular localization, constitutive activity of Gpr3and the effect of sphingolipids on its constitutive activity and ligand-induced receptor internalization in HEK293cells. The results showed that expression of porcine Gpr3in HEK293cells resulted in constitutive activation of adenylate cyclase (AC) similar in amplitude to that produced by fully stimulated Gs-coupled receptors. Moreover, sphingosine1-phosphate (SIP) could increase AC activation via the constitutively active Gpr3receptor. When expressed in HEK293cells, GFP-labeled Gpr3protein was shown to be localized in the plasmalemma and subcellular membranes. After SIP treatment, agonist-mediated intemalization could be visualized by confocal microscopy. However, sphingosine (Sph) and sphingomyelin (Sphi) had no ability like that of S1P. In short, our findings suggested that the porcine Gpr3is a constitutively active G protein-coupled receptor. Constitutive activation of AC and agonist-mediated intemalization of Gpr3receptor could be modulated by the SIP, suggesting that SIP might act as an activator for porcine Gpr3receptor.
     5To demonstrate the effects of Gpr3signaling pathways on growth and differentiation of porcine granulosa cells (pGCs), pGCs were isolated from3-5mm antral follicles in diameter and cultured in vitro. A strategy of RNAi-mediated gene silencing of Gpr3was used to repress endogenous Gpr3signaling in cells. The results indicated that GprJ-siRNA causes specific inhibition of Gpr3mRNA and protein expression after transfection, which successfully repressed endogenous Gpr3signaling in pGCs. Repressed endogenous Gpr3signaling significantly promoted growth and inhibited apoptosis of pGCs, but no effect was shown on steroidogenesis in pGCs. In addition, repressed Gpr3signaling significantly changed the mRNA expression of Cyclin B1, Cyclin D2, Bcl-2, Bax and Gpr12(P<0.05), but there is no change in the expression of CDK1, CDK4, P450arom, P450scc and Gpr6(P>0.05).
     6To further confirm the roles of Gpr3in pGCs, Gpr3overexpression was performed in pGCs. The results showed that Gpr3overexpression significantly inhibited porcine GCs proliferation, increased the proportion of G0/G1-phase cells, and decreased the cells of S-phase and the mRNA expression of Cyclin B1and CDK1; Gpr3overexpression significantly induced apoptosis of porcine GCs, decreased the expression of Bcl-2, and increased the expression of Bax; Gpr3overexpression significantly increased the expression of Gpr6. However, there was no effect of Gpr3overexpression on steroidogenesis and related genes in pGCs. These results implied that Gpr3signaling play an important role in pGCs, and the change of genes related to cell growth and apoptosis were provided a basis for further research on the regulatory mechanisms of porcine Gpr3gene in pGCs.
引文
[1]罗峰,谢琪璇,秋山泰身等.调节卵子发育成熟的信号转导通路[J].生殖与避孕,2011,31(7):495-501.
    [2]Edson MA, Nagaraja AK, Matzuk MM. The mammalian ovary from genesis to revelation [J]. Endocr Rev,2009,30(6):624-712.
    [3]Chiquoine AD. The identification, origin, and migration of the primordial germ cells in the mouse embryo [J]. Anat Rec,1954,118(2):135-46.
    [4]Mintz B, Russell ES. Gene-induced embryological modifications of primordial germ cells in the mouse [J]. J Exp Zool,1957,134(2):207-37.
    [5]Clark JM, Eddy EM. Fine structural observations on the origin and associations of primordial germ cells of the mouse [J]. Dev Biol,1975,47(1):136-55.
    [6]Chuva de Sousa Lopes SM, van den Driesche S, Carvalho RL, et al. Altered primordial germ cell migration in the absence of transforming growth factor beta signaling via ALK5 [J]. Dev Biol,2005, 284(1):194-203.
    [7]Farini D, La Sala G, Tedesco M, et al. Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells [J]. Dev Biol,2007,306(2):572-83.
    [8]Tsuda M, Sasaoka Y, Kiso M, et al. Conserved role of nanos proteins in germ cell development [J]. Science,2003,301(5637):1239-41.
    [9]Youngren KK, Coveney D, Peng X, et al. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours [J]. Nature,2005,435(7040):360-4.
    [10]Ancelin K, Lange UC, Hajkova P, et al. Blimp 1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells [J]. Nat Cell Biol,2006,8(6):623-30.
    [11]Seligman J, Page DC. The Dazh gene is expressed in male and female embryonic gonads before germ cell sex differentiation [J]. Biochem Biophys Res Commun,1998,245(3):878-82.
    [12]Lin Y, Gill ME, Koubova J, et al. Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos [J]. Science,2008,322(5908):1685-7.
    [13]Bowles J, Knight D, Smith C, et al. Retinoid signaling determines germ cell fate in mice [J]. Science,2006,312(5773):596-600.
    [14]Anderson EL, Baltus AE, Roepers-Gajadien HL, et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice [J]. Proc Natl Acad Sci U S A,2008, 105(39):14976-80.
    [15]Reynolds N, Collier B, Bingham V, et al. Translation of the synaptonemal complex component Sycp3 is enhanced in vivo by the germ cell specific regulator Dazl [J]. RNA,2007,13(7):974-81.
    [16]Menke DB, Koubova J, Page DC. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave [J]. Dev Biol,2003,262(2):303-12.
    [17]Baltus AE, Menke DB, Hu YC, et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication [J]. Nat Genet,2006,38(12):1430-4.
    [18]Liang CG, Su YQ, Fan HY, et al. Mechanisms regulating oocyte meiotic resumption:roles of mitogen-activated protein kinase [J]. Mol Endocrinol,2007,21(9):2037-55.
    [19]Boyer A, Goff AK, Boerboom D. WNT signaling in ovarian follicle biology and tumorigenesis [J]. Trends Endocrinol Metab,2010,21(1):25-32.
    [20]Castro A, Peter M, Lorca T, et al. c-Mos and cyclin B/cdc2 connections during Xenopus oocyte maturation [J]. Biol Cell,2001,93(1-2):15-25.
    [21]Dekel N, Beers WH. Rat oocyte maturation in vitro:relief of cyclic AMP inhibition by gonadotropins [J]. Proc Natl Acad Sci U S A,1978,75(9):4369-73.
    [22]Schultz RM, Montgomery RR, Belanoff JR. Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis [J]. Dev Biol,1983,97(2):264-73.
    [23]Conti M, Andersen CB, Richard F, et al. Role of cyclic nucleotide signaling in oocyte maturation [J]. Mol Cell Endocrinol,2002,187(1-2):153-9.
    [24]Hinckley M, Vaccari S, Homer K, et al. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes [J]. Dev Biol,2005, 287(2):249-61.
    [25]Milligan G Constitutive activity and inverse agonists of G protein-coupled receptors:a current perspective [J]. Mol Pharmacol,2003,64(6):1271-6.
    [26]Penn RB, Pronin AN, Benovic JL. Regulation of G protein-coupled receptor kinases [J]. Trends Cardiovasc Med,2000,10(2):81-9.
    [27]Lefkowitz RJ. Historical review:a brief history and personal retrospective of seven-transmembrane receptors [J]. Trends Pharmacol Sci,2004,25(8):413-22.
    [28]Saeki Y, Ueno S, Mizuno R, et al. Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system [J]. FEBS Lett,1993, 336(2):317-22.
    [29]Eggerickx D, Denef JF, Labbe O, et al. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase [J]. Biochem J,1995,309 (Pt 3):837-43.
    [30]Kehrl JH, Sinnarajah S. RGS2:a multifunctional regulator of G-protein signaling [J]. Int J Biochem Cell Biol,2002,34(5):432-8.
    [31]Cabrera-Vera TM, Vanhauwe J, Thomas TO, et al. Insights into G protein structure, function, and regulation [J]. Endocr Rev,2003,24(6):765-81.
    [32]Sinnarajah S, Dessauer CW, Srikumar D, et al. RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase Ⅲ [J]. Nature,2001,409(6823):1051-5.
    [33]Roy AA, Lemberg KE, Chidiac P. Recruitment of RGS2 and RGS4 to the plasma membrane by G proteins and receptors reflects functional interactions [J]. Mol Pharmacol,2003,64(3):587-93.
    [34]Simonds WF. G protein regulation of adenylate cyclase [J]. Trends Pharmacol Sci,1999,20(2): 66-73.
    [35]Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms [J]. Annu Rev Pharmacol Toxicol,2001,41:145-74.
    [36]Horner K, Livera G, Hinckley M, et al. Rodent oocytes express an active adenylyl cyclase required for meiotic arrest [J]. Dev Biol,2003,258(2):385-96.
    [37]Shilling F, Chiba K, Hoshi M, et al. Pertussis toxin inhibits 1-methyladenine-induced maturation in starfish oocytes [J]. Dev Biol,1989,133(2):605-8.
    [38]Kalinowski RR, Jaffe LA, Foltz KR, et al. A receptor linked to a Gi-family G-protein functions in initiating oocyte maturation in starfish but not frogs [J]. Dev Biol,2003,253(1):139-49.
    [39]Defer N, Best-Belpomme M, Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase [J]. Am J Physiol Renal Physiol,2000,279(3):F400-16.
    [40]Mattioli M, Gioia L, Barboni B. Calcium elevation in sheep cumulus-oocyte complexes after luteinising hormone stimulation [J]. Mol Reprod Dev,1998,50(3):361-9.
    [41]Webb RJ, Marshall F, Swann K, et al. Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes [J]. Dev Biol,2002,246(2):441-54.
    [42]Tsafriri A, Chun SY, Zhang R, et al. Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells:studies using selective phosphodiesterase inhibitors [J]. Dev Biol,1996,178(2):393-402.
    [43]Shitsukawa K, Andersen CB, Richard FJ, et al. Cloning and characterization of the cyclic guanosine monophosphate-inhibited phosphodiesterase PDE3A expressed in mouse oocyte [J]. Biol Reprod,2001, 65(1):188-96.
    [44]Richard FJ, Tsafriri A, Conti M. Role of phosphodiesterase type 3A in rat oocyte maturation [J]. Biol Reprod,2001,65(5):1444-51.
    [45]Bornslaeger EA, Mattei P, Schultz RM. Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation [J]. Dev Biol,1986,114(2):453-62.
    [46]Masciarelli S, Homer K, Liu C, et al. Cyclic nucleotide phosphodiesterase 3A-deficient mice as a model of female infertility [J]. J Clin Invest,2004,114(2):196-205.
    [47]Ratner A. Effects of follicle stimulating hormone and luteinizing hormone upon cyclic AMP and cyclic GMP levels in rat ovaries in vitro [J]. Endocrinology,1976,99(6):1496-500.
    [48]Hubbard CJ, Greenwald GS. Cyclic nucleotides, DNA, and steroid levels in ovarian follicles and corpora lutea of the cyclic hamster [J]. Biol Reprod,1982,26(2):230-40.
    [49]Vaccari S, Weeks JL,2nd, Hsieh M, et al. Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes [J]. Biol Reprod,2009,81(3):595-604.
    [50]Tornell J, Brannstrom M, Hillensjo T. Different effects of cyclic nucleotide derivatives upon the rat oocyte-cumulus complex in vitro [J]. Acta Physiol Scand,1984,122(4):507-13.
    [51]Tornell J, Billig H, Hillensjo T. Resumption of rat oocyte meiosis is paralleled by a decrease in guanosine 3',5'-cyclic monophosphate (cGMP) and is inhibited by microinjection of cGMP [J]. Acta Physiol Scand,1990,139(3):511-7.
    [52]Norris RP, Ratzan WJ, Freudzon M, et al. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte [J]. Development,2009,136(11):1869-78.
    [53]Zhao J, Taverne MA, van der Weijden GC, et al. Effect of activin A on in vitro development of rat preantral follicles and localization of activin A and activin receptor Ⅱ [J]. Biol Reprod,2001,65(3): 967-77.
    [54]朱士恩.动物生殖生理学[M].北京,中国农业出版社,2006:63-65.
    [55]杨增明,孙青原,夏国良.生殖生物学[M].北京,科学出版社,2005:75-122.
    [56]Goodenough D, Simon A, Paul D. Gap junctional intercellular communication in the mouse ovarian follicle [J]. Navartis Found Symp,1999,219:226-235.
    [57]Shimasaki S, Moore RK, Erickson GF, et al. The role of bone morphogenetic proteins in ovarian function [J]. Reprod Suppl,2003,61:323-37.
    [58]Liu YX, Liu K, Feng Q, et al. Tissue-type plasminogen activator and its inhibitor plasminogen activator inhibitor type 1 are coordinately expressed during ovulation in the rhesus monkey [J]. Endocrinology,2004,145(4):1767-75.
    [59]Paavola LG. The corpus luteum of the guinea pig. IV. Fine structure of macrophages during pregnancy and postpartum luteolysis, and the phagocytosis of luteal cells [J]. Am J Anat,1979,154(3): 337-64.
    [60]Langendijk P, Dieleman SJ, van Dooremalen C, et al. LH and FSH secretion, follicle development and oestradiol in sows ovulating or failing to ovulate in an intermittent suckling regimen [J]. Reprod Fertil Dev,2009,21(2):313-22.
    [61]Baird D. Role of FSH and LH in follicle development [J]. J Gynecol Obstet Biol Reprod (Paris), 2006,35(5Pt2):2S24-2S29.
    [62]Chada M, Prusa R, Bronsky J, et al. Inhibin B, follicle stimulating hormone, luteinizing hormone, and estradiol and their relationship to the regulation of follicle development in girls during childhood and puberty [J]. Physiol Res,2003,52(3):341-6.
    [63]Richards JS, Ireland JJ, Rao MC, et al. Ovarian follicular development in the rat:hormone receptor regulation by estradiol, follicle stimulating hormone and luteinizing hormone [J]. Endocrinology,1976, 99(6):1562-70.
    [64]Braw-Tal R. The initiation of follicle growth:the oocyte or the somatic cells? [J]. Mol Cell Endocrinol,2002,187(1-2):11-8.
    [65]Flaws JA, Abbud R, Mann RJ, et al. Chronically elevated luteinizing hormone depletes primordial follicles in the mouse ovary [J]. Biol Reprod,1997,57(5):1233-7.
    [66]Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis [J]. Endocrinology,1999,140(9):4262-71.
    [67]金艳梅.颗粒细胞对卵泡发育的影响[J].生物技术,2010,37(8):69-72.
    [68]Skinner MK, Coffey RJ, Jr. Regulation of ovarian cell growth through the local production of transforming growth factor-alpha by theca cells [J]. Endocrinology,1988,123(6):2632-8.
    [69]Miro F, Smyth CD, Hillier SG Development-related effects of recombinant activin on steroid synthesis in rat granulosa cells [J]. Endocrinology,1991,129(6):3388-94.
    [70]Matsuda-Minehata F, Inoue N, Goto Y, et al. The regulation of ovarian granulosa cell death by pro-and anti-apoptotic molecules [J]. J Reprod Dev,2006,52(6):695-705.
    [71]Vaskivuo TE, Tapanainen JS. Apoptosis in the human ovary [J]. Reprod Biomed Online,2003,6(1): 24-35.
    [72]Manabe N, Goto Y, Matsuda-Minehata F, et al. Regulation mechanism of selective atresia in porcine follicles:regulation of granulosa cell apoptosis during atresia [J]. J Reprod Dev,2004,50(5): 493-514.
    [73]Tilly JL, Kowalski KI, Johnson AL, et al. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression [J]. Endocrinology,1991,129(5):2799-801.
    [74]Hughes FM, Jr., Gorospe WC. Biochemical identification of apoptosis (programmed cell death) in granulosa cells:evidence for a potential mechanism underlying follicular atresia [J]. Endocrinology, 1991,129(5):2415-22.
    [75]Dlamini Z, Mbita Z, Zungu M. Genealogy, expression, and molecular mechanisms in apoptosis [J]. Pharmacol Ther,2004,101(1):1-15.
    [76]Schuler M, Green DR. Mechanisms of p53-dependent apoptosis [J]. Biochem Soc Trans,2001, 29(Pt 6):684-8.
    [77]Benchimol S. p53-dependent pathways of apoptosis [J]. Cell Death Differ,2001,8(11):1049-51.
    [78]Hakuno N, Koji T, Yano T, et al. Fas/APO-1/CD95 system as a mediator of granulosa cell apoptosis in ovarian follicle atresia [J]. Endocrinology,1996,137(5):1938-48.
    [79]Picton HM. Activation of follicle development:the primordial follicle [J]. Theriogenology,2001, 55(6):1193-210.
    [80]Wang SB, Xing BS, Yi L, et al. Expression of Frizzled 2 in the mouse ovary during oestrous cycle [J]. J Anim Physiol Anim Nutr (Berl),2010,94(4):437-45.
    [81]Le Good JA, Joubin K, Giraldez AJ, et al. Nodal stability determines signaling range [J]. Curr Biol, 2005,15(1):31-6.
    [82]Wang W, Wang L, Li XX, et al. Effect of interrupted endogenous BMP/Smad signaling on growth and steroidogenesis of porcine granulosa cells [J]. J Zhejiang Univ Sci B,2010,11(9):719-27.
    [83]Mehlmann LM, Saeki Y, Tanaka S, et al. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes [J]. Science,2004,306(5703):1947-50.
    [1]Edson MA, Lin YN, Matzuk MM. Deletion of the novel oocyte-enriched gene, Gpr149, leads to increased fertility in mice [J]. Endocrinology,2010,151(1):358-368.
    [2]Goldman RD. Drug-induced gynecomastia in children and adolescents [J]. Can Fam Physician, 2010,56(4):344-345.
    [3]Islam SK, Hossain KJ, Kamal M, et al. Serum immunoglobulins and white blood cells status of drug addicts:influence of illicit drugs and sex habit [J]. Addict Biol,2004,9(1):27-33.
    [4]Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors [J]. Endocr Rev,2000,21(1):90-113.
    [5]Kolakowski LF, Jr. GCRDb:a G-protein-coupled receptor database [J]. Receptors Channels, 1994,2(1):1-7.
    [6]Chen JL, Weng GZ, Ni HX. [The advancement of G protein and coupled signal transduction pathways] [J]. Sheng Wu Gong Cheng Xue Bao,2001,17(2):113-117.
    [7]Hall RA, Lefkowitz RJ. Regulation of G protein-coupled receptor signaling by scaffold proteins [J]. Circ Res,2002,91(8):672-680.
    [8]Sodhi A, Montaner S, Gutkind JS. Viral hijacking of G-protein-coupled-receptor signalling networks [J]. Nat Rev Mol Cell Biol,2004,5(12):998-1012.
    [9]孙兆贵,顾正,王健.KiSS-1/GPR54系统的生殖内分泌功能研究进展[J].生殖与避孕,2009,29(6):374-384.
    [10]冯涛,储明星,张英杰.KISS-1/GPR54基因及其在生殖中的作用[J].遗传,2008,30(4):419-425.
    [11]吴井生,张跟喜,戴国俊等.GPR54基因多态性与小梅山猪产仔数的关联分析[J].中国畜牧杂志,2012,48(3):1-5.
    [12]Saeki Y, Ueno S, Mizuno R, et al. Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system [J]. FEBS Lett,1993,336(2):317-322.
    [13]Iismaa TP, Kiefer J, Liu ML, et al. Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system [J]. Genomics,1994,24(2):391-394.
    [14]Eggerickx D, Denef JF, Labbe O, et al. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase [J]. Biochem J,1995,309 (Pt 3):837-843.
    [15]Libert F, Parmentier M, Lefort A, et al. Selective amplification and cloning of four new members of the G protein-coupled receptor family [J]. Science,1989,244(4904):569-572. [16] Parmentier M, Libert F, Maenhaut C, et al. Molecular cloning of the thyrotropin receptor [J]. Science,1989,246(4937):1620-1622.
    [17]Zimin AV, Delcher AL, Florea L, et al. A whole-genome assembly of the domestic cow, Bos taurus [J]. Genome Biol,2009,10(4):R42.
    [18]Kovanci E, Simpson JL, Amato P, et al. Oocyte-specific G-protein-coupled receptor 3 (GPR3): no perturbations found in 82 women with premature ovarian failure (first report) [J]. Fertil Steril, 2008,90(4):1269-1271.
    [19]Rovati GE, Capra V, Neubig RR. The highly conserved DRY motif of class A G protein-coupled receptors:beyond the ground state [J]. Mol Pharmacol,2007,71(4):959-964.
    [20]Aizaki Y, Maruyama K, Nakano-Tetsuka M, et al. Distinct roles of the DRY motif in rat melanin-concentrating hormone receptor 1 in signaling control [J]. Peptides,2009,30(5):974-981.
    [21]Alewijnse AE, Timmerman H, Jacobs EH, et al. The effect of mutations in the DRY motif on the constitutive activity and structural instability of the histamine H(2) receptor [J]. Mol Pharmacol,2000,57(5):890-898.
    [22]郭志云,张怀渝,梁龙.G蛋白偶联受体的结构与功能[J].生命的化学,2004,24(5):412-414.
    [23]Song ZH, Modi W, Bonner TI. Molecular cloning and chromosomal localization of human genes encoding three closely related G protein-coupled receptors [J]. Genomics,1995,28(2): 347-349.
    [24]Marchese A, Docherty JM, Nguyen T, et al. Cloning of human genes encoding novel G protein-coupled receptors [J]. Genomics,1994,23(3):609-618.
    [25]Mehlmann LM, Saeki Y, Tanaka S, et al. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes [J]. Science,2004,306(5703):1947-1950.
    [26]Tanaka S, Ishii K, Kasai K, et al. Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth [J]. J Biol Chem,2007,282(14):10506-10515.
    [27]DiLuigi A, Weitzman VN, Pace MC, et al. Meiotic arrest in human oocytes is maintained by a Gs signaling pathway [J]. Biol Reprod,2008,78(4):667-672.
    [28]Silver J, Miller JH. Regeneration beyond the glial scar [J]. Nat Rev Neurosci,2004,5(2): 146-156.
    [29]Meyer-Franke A, Kaplan MR, Pfrieger FW, et al. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture [J]. Neuron,1995,15(4):805-819.
    [30]Thathiah A, Spittaels K, Hoffmann M, et al. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons [J]. Science,2009,323(5916):946-951.
    [31]Annaert W, De Strooper B. A cell biological perspective on Alzheimer's disease [J]. Annu Rev Cell Dev Biol,2002,18:25-51.
    [32]Haass C. Take five-BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation [J]. EMBO J,2004,23(3):483-488.
    [33]Wilquet V, De Strooper B. Amyloid-beta precursor protein processing in neurodegeneration [J]. Curr Opin Neurobiol,2004,14(5):582-588.
    [34]Selkoe DJ. Alzheimer's disease is a synaptic failure [J]. Science,2002,298(5594):789-791.
    [35]Blacker D, Bertram L, Saunders AJ, et al. Results of a high-resolution genome screen of 437 Alzheimer's disease families [J]. Hum Mol Genet,2003,12(1):23-32.
    [36]Tanaka S, Shaikh IM, Chiocca EA, et al. The Gs-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development [J]. PLoS One,2009,4(6): e5922.
    [37]Altman J. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer [J]. J Comp Neurol,1972,145(4):399-463.
    [38]Altman J. Postnatal development of the cerebellar cortex in the rat.3. Maturation of the components of the granular layer [J]. J Comp Neurol,1972,145(4):465-513.
    [39]Altman J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer [J]. J Comp Neurol,1972,145(3):353-397.
    [40]Altman J, Bayer SA. Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements [J]. J Comp Neurol,1985,231(1):1-26.
    [41]Burgoyne RD, Cambray-Deakin MA. The cellular neurobiology of neuronal development: the cerebellar granule cell [J]. Brain Res,1988,472(1):77-101.
    [42]Hatten ME. The role of migration in central nervous system neuronal development [J]. Curr Opin Neurobiol,1993,3(1):38-44.
    [43]Alder J, Cho NK, Hatten ME. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity [J]. Neuron,1996,17(3):389-399.
    [44]Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum [J]. Development,1999,126(14):3089-3100.
    [45]Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum [J]. Curr Biol,1999,9(8):445-448.
    [46]Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog [J]. Neuron,1999,22(1):103-114.
    [47]Pons S, Trejo JL, Martinez-Morales JR, et al. Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation [J]. Development,2001,128(9): 1481-1492.
    [48]Fan CM, Porter JA, Chiang C, et al. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway [J]. Cell,1995,81(3):457-465.
    [49]Hammerschmidt M, Bitgood MJ, McMahon AP. Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo [J]. Genes Dev,1996,10(6):647-658.
    [50]Waschek JA, Dicicco-Bloom E, Nicot A, et al. Hedgehog signaling:new targets for GPCRs coupled to cAMP and protein kinase A [J]. Ann N Y Acad Sci,2006,1070:120-128.
    [51]Miyazawa K, Himi T, Garcia V, et al. A role for p27/Kip1 in the control of cerebellar granule cell precursor proliferation [J]. J Neurosci,2000,20(15):5756-5763.
    [52]Valverde O, Celerier E, Baranyi M, et al. GPR3 receptor, a novel actor in the emotional-like responses [J]. PLoS One,2009,4(3):e4704.
    [53]Zhang HT, Huang Y, Jin SL, et al. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme [J]. Neuropsychopharmacology,2002,27(4):587-595.
    [54]Carlezon WA, Jr., Duman RS, Nestler EJ. The many faces of CREB [J]. Trends Neurosci, 2005,28(8):436-445.
    [55]Blendy JA. The role of CREB in depression and antidepressant treatment [J]. Biol Psychiatry, 2006,59(12):1144-1150.
    [56]Sutherland RJ. The dorsal diencephalic conduction system:a review of the anatomy and functions of the habenular complex [J]. Neurosci Biobehav Rev,1982,6(1):1-13.
    [57]Lecourtier L, Kelly PH. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition [J]. Neurosci Biobehav Rev,2007,31(5):658-672.
    [58]Pucilowski O, Kostowski W. Aggressive behaviour and the central serotonergic systems [J]. Behav Brain Res,1983,9(1):33-48.
    [59]Chamberlain B, Ervin FR, Pihl RO, et al. The effect of raising or lowering tryptophan levels on aggression in vervet monkeys [J]. Pharmacol Biochem Behav,1987,28(4):503-510.
    [60]Ruiz-Medina J, Ledent C, Valverde O. GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception [J]. Neuropharmacology,2011,61(1-2):43-50.
    [61]谢益宽.慢性痛的发生机理[J].科学通报,1999,44(22):2353-2362.
    [62]Garrison CJ, Dougherty PM, Kajander KC, et al. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury [J]. Brain Res, 1991,565(1):1-7.
    [63]Bura SA, Nadal X, Ledent C, et al. A 2A adenosine receptor regulates glia proliferation and pain after peripheral nerve injury [J]. Pain,2008,140(1):95-103.
    [64]DeLeo JA, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain [J]. Pain,2001,90(1-2):1-6.
    [65]Sommer C. [Determining the diagnosis from the pain pattern. Brief and stabbing or chronic and dull?] [J]. MMW Fortschr Med,2003,145(19):30-33.
    [66]Watkins LR, Maier SF. Glia:a novel drug discovery target for clinical pain [J]. Nat Rev Drug Discov,2003,2(12):973-985.
    [67]Sirard MA. Resumption of meiosis:mechanism involved in meiotic progression and its relation with developmental competence [J]. Theriogenology,2001,55(6):1241-1254.
    [68]Trounson A, Anderiesz C, Jones G. Maturation of human oocytes in vitro and their developmental competence [J]. Reproduction,2001,121(1):51-75.
    [69]Mehlmann LM. Stops and starts in mammalian oocytes:recent advances in understanding the regulation of meiotic arrest and oocyte maturation [J]. Reproduction,2005,130(6):791-799.
    [70]Mehlmann LM, Jones TL, Jaffe LA. Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte [J]. Science,2002,297(5585):1343-1345.
    [71]Kalinowski RR, Berlot CH, Jones TL, et al. Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway [J]. Dev Biol,2004,267(1):1-13.
    [72]Park JY, Su YQ, Ariga M, et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle [J]. Science,2004,303(5658):682-684.
    [73]Eppig JJ, Viveiros MM, Bivens CM, et al. Regulation of mammalian oocyte maturation [J]. The Ovary,Raven Press, New York,2004:185-208.
    [74]Iiri T, Herzmark P, Nakamoto JM, et al. Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function [J]. Nature,1994,371(6493):164-168.
    [75]Uhlenbrock K, Gassenhuber H, Kostenis E. Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors [J]. Cell Signal, 2002,14(11):941-953.
    [76]Eppig JJ, Viveiros MM, Bivens CM, et al. Regulation of mammalian oocyte maturation [J]. The Ovary,Raven Press, New York,2004:113-129.
    [77]Erickson GF, Sorensen RA. In vitro maturation of mouse oocytes isolated from late, middle, and pre-antral graafian follicles [J]. J Exp Zool,1974,190(1):123-127.
    [78]Bornslaeger EA, Mattei PM, Schultz RM. Protein phosphorylation in meiotically competent and incompetent mouse oocytes [J]. Mol Reprod Dev,1988,1(1):19-25.
    [79]Homer K, Livera G, Hinckley M, et al. Rodent oocytes express an active adenylyl cyclase required for meiotic arrest [J]. Dev Biol,2003,258(2):385-396.
    [80]Olsiewski PJ, Beers WH. cAMP synthesis in the rat oocyte [J]. Dev Biol,1983,100(2): 287-293.
    [81]Schultz RM, Montgomery RR, Belanoff JR. Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis [J]. Dev Biol,1983,97(2):264-273.
    [82]Bornslaeger EA, Schultz RM. Adenylate cyclase activity in zona-free mouse oocytes [J]. Exp Cell Res,1985,156(1):277-281.
    [83]Downs SM, Buccione R, Eppig JJ. Modulation of meiotic arrest in mouse oocytes by guanyl nucleotides and modifiers of G-proteins [J]. J Exp Zool,1992,262(4):391-404.
    [84]Webb RJ, Marshall F, Swann K, et al. Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes [J]. Dev Biol,2002,246(2):441-454.
    [85]De Haan L, Hirst TR. Cholera toxin:a paradigm for multi-functional engagement of cellular mechanisms (Review) [J]. Mol Membr Biol,2004,21(2):77-92.
    [86]Dekel N, Beers WH. Rat oocyte maturation in vitro:relief of cyclic AMP inhibition by gonadotropins [J]. Proc Natl Acad Sci U S A,1978,75(9):4369-4373.
    [87]Urner F, Herrmann WL, Baulieu EE, et al. Inhibition of denuded mouse oocyte meiotic maturation by forskolin, an activator of adenylate cyclase [J]. Endocrinology,1983,113(3): 1170-1172.
    [88]Vivarelli E, Conti M, De Felici M, et al. Meiotic resumption and intracellular cAMP levels in mouse oocytes treated with compounds which act on cAMP metabolism [J]. Cell Differ,1983, 12(5):271-276.
    [89]Grondahl C, Lessl M, Faerge I, et al. Meiosis-activating sterol-mediated resumption of meiosis in mouse oocytes in vitro is influenced by protein synthesis inhibition and cholera toxin [J]. Biol Reprod,2000,62(3):775-780.
    [90]Gallo CJ, Hand AR, Jones TL, et al. Stimulation of Xenopus oocyte maturation by inhibition of the G-protein alpha S subunit, a component of the plasma membrane and yolk platelet membranes [J]. J Cell Biol,1995,130(2):275-284.
    [91]Bornslaeger EA, Mattei P, Schultz RM. Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation [J]. Dev Biol,1986,114(2): 453-462.
    [92]Choi T, Aoki F, Mori M, et al. Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos [J]. Development,1991,113(3):789-795.
    [93]Duckworth BC, Weaver JS, Ruderman JV. G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A [J]. Proc Natl Acad Sci U S A,2002,99(26): 16794-16799.
    [94]Lincoln AJ, Wickramasinghe D, Stein P, et al. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation [J]. Nat Genet,2002,30(4):446-449.
    [95]Han SJ, Conti M. New pathways from PKA to the Cdc2/cyclin B complex in oocytes:Wee1B as a potential PKA substrate [J]. Cell Cycle,2006,5(3):227-231.
    [96]Pirino G, Wescott MP, Donovan PJ. Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes [J]. Cell Cycle,2009,8(4):665-670.
    [97]Zhiqin L, Jingbo Z. Cell cycle regulation and tumor [J]. Oncology Progress,2004,2(1): 146-150.
    [98]Kakizuka A, Sebastian B, Borgmeyer U, et al. A mouse cdc25 homolog is differentially and developmentally expressed [J]. Genes Dev,1992,6(4):578-590.
    [99]Ferrell JE, Jr. Xenopus oocyte maturation:new lessons from a good egg [J]. Bioessays,1999, 21(10):833-842.
    [100]Stanford JS, Ruderman JV. Changes in regulatory phosphorylation of Cdc25C Ser287 and Weel Ser549 during normal cell cycle progression and checkpoint arrests [J]. Mol Biol Cell,2005, 16(12):5749-5760.
    [101]Anderson E, Albertini DF. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary [J]. J Cell Biol,1976,71(2):680-686.
    [102]Albertini DF, Anderson E. The appearance and structure of intercellular connections during the ontogeny of the rabbit ovarian follicle with particular reference to gap junctions [J]. J Cell Biol, 1974,63(1):234-250.
    [103]Eppig JJ, Downs SM. Chemical signals that regulate mammalian oocyte maturation [J]. Biol Reprod,1984,30(1):1-11.
    [104]Norris RP, Ratzan WJ, Freudzon M, et al. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte [J]. Development,2009,136(11): 1869-1878.
    [105]Sun QY, Miao YL, Schatten H. Towards a new understanding on the regulation of mammalian oocyte meiosis resumption [J]. Cell Cycle,2009,8(17):2741-2747.
    [106]Tripathi A, Kumar KV, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes [J]. J Cell Physiol,2010,223(3):592-600.
    [107]Peng XR, Hsueh AJ, LaPolt PS, et al. Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation [J]. Endocrinology,1991,129(6):3200-3207.
    [108]Eppig JJ, Wigglesworth K, Pendola F, et al. Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells [J]. Biol Reprod,1997, 56(4):976-984.
    [109]Zhang M, Ouyang H, Xia G The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption [J]. Mol Hum Reprod,2009,15(7):399-409.
    [110]Conti M, Andersen CB, Richard F, et al. Role of cyclic nucleotide signaling in oocyte maturation [J]. Mol Cell Endocrinol,2002,187(1-2):153-159.
    [111]Liang CG, Huo LJ, Zhong ZS, et al. Cyclic adenosine 3',5'-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes [J]. Endocrinology,2005,146(10):4437-4444.
    [112]Chen X, Zhou B, Yan J, et al. Epidermal growth factor receptor activation by protein kinase C is necessary for FSH-induced meiotic resumption in porcine cumulus-oocyte complexes [J]. J Endocrinol,2008,197(2):409-419.
    [113]Gall L, Boulesteix C, Ruffini S, et al. EGF-induced EGF-receptor and MAP kinase phosphorylation in goat cumulus cells during in vitro maturation [J]. Mol Reprod Dev,2005,71(4): 489-494.
    [114]Li Q, McKenzie LJ, Matzuk MM. Revisiting oocyte-somatic cell interactions:in search of novel intrafollicular predictors and regulators of oocyte developmental competence [J]. Mol Hum Reprod,2008,14(12):673-678.
    [115]Sela-Abramovich S, Chorev E, Galiani D, et al. Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles [J]. Endocrinology,2005,146(3):1236-1244.
    [116]Norris RP, Freudzon M, Mehlmann LM, et al. Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles:one of two paths to meiotic resumption [J]. Development,2008,135(19):3229-3238.
    [117]Norris RP, Freudzon L, Freudzon M, et al. A G(s)-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor-G(s) signaling [J]. Dev Biol,2007,310(2):240-249.
    [118]Ledent C, Demeestere I, Blum D, et al. Premature ovarian aging in mice deficient for Gpr3 [J]. Proc Natl Acad Sci U S A,2005,102(25):8922-8926.
    [119]Lefkowitz RJ. G-protein-coupled receptors. Turned on to ill effect [J]. Nature,1993, 365(6447):603-604.
    [120]Samama P, Cotecchia S, Costa T, et al. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model [J]. J Biol Chem,1993,268(7): 4625-4636.
    [121]Zhou S, Wang B, Ni F, et al. GPR3 may not be a potential candidate gene for premature ovarian failure [J]. Reprod Biomed Online,2011,20(1):53-55.
    [122]Ignatov A, Lintzel J, Hermans-Borgmeyer I, et al. Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development [J]. J Neurosci,2003,23(3):907-914.
    [123]Kostenis E. Novel clusters of receptors for sphingosine-1-phosphate, sphingosylphospho-rylcholine, and (lyso)-phosphatidic acid:new receptors for "old" ligands [J]. J Cell Biochem,2004, 92(5):923-936.
    [124]Kostenis E. A glance at G-protein-coupled receptors for lipid mediators:a growing receptor family with remarkably diverse ligands [J]. Pharmacol Ther,2004,102(3):243-257.
    [125]Wittenberger T, Hellebrand S, Munck A, et al. GPR99, a new G protein-coupled receptor with homology to a new subgroup of nucleotide receptors [J]. BMC Genomics,2002,3:17.
    [126]Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells [J]. Biochem J, 2000,349(Pt 2):385-402.
    [127]Clemens JJ, Davis MD, Lynch KR, et al. Synthesis of para-alkyl aryl amide analogues of sphingosine-1-phosphate:discovery of potent SIP receptor agonists [J]. Bioorg Med Chem Lett, 2003,13(20):3401-3404.
    [128]Hinckley M, Vaccari S, Horner K, et al. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes [J]. Dev Biol, 2005,287(2):249-261.
    [129]Jee BC, Jo JW, Suh CS, et al. Dose-dependent effect of sphingosine-1-phosphate in mouse oocyte maturation medium on subsequent embryo development [J]. Gynecol Obstet Invest,2011, 72(1):32-36.
    [1]Mehlmann LM, Saeki Y, Tanaka S, et al. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes [J]. Science,2004,306(5703):1947-1950.
    [2]Tanaka S, Shaikh IM, Chiocca EA, et al. The Gs-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development [J]. PLoS One,2009,4(6):e5922.
    [3]Thathiah A, Spittaels K, Hoffmann M, et al. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons [J]. Science,2009,323(5916):946-951.
    [4]Valverde O, Celerier E, Baranyi M, et al. GPR3 receptor, a novel actor in the emotional-like responses [J]. PLoS One,2009,4(3):e4704.
    [5]Ruiz-Medina J, Ledent C, Valverde O. GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception [J]. Neuropharmacology,2011, 61(1-2):43-50.
    [6]Ledent C, Demeestere I, Blum D, et al. Premature ovarian aging in mice deficient for Gpr3 [J]. Proc Natl Acad Sci U S A,2005,102(25):8922-8926.
    [7]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [J]. Nucleic Acids Res,1994,22(22):4673-4680.
    [8]Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res,1997, 25(24):4876-4882.
    [9]Petersen TN, Brunak S, von Heijne G, et al. SignalP 4.0:discriminating signal peptides from transmembrane regions [J]. Nat Methods,2011,8(10):785-786.
    [10]Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions [J]. Bioinformatics,2001,17(7):646-653.
    [11]Marchler-Bauer A, Panchenko AR, Shoemaker BA, et al. CDD:a database of conserved domain alignments with links to domain three-dimensional structure [J]. Nucleic Acids Res,2002,30(1): 281-283.
    [12]Marchler-Bauer A, Anderson JB, DeWeese-Scott C, et al. CDD:a curated Entrez database of conserved domain alignments [J]. Nucleic Acids Res,2003,31(1):383-387.
    [13]Marchler-Bauer A, Bryant SH. CD-Search:protein domain annotations on the fly [J]. Nucleic Acids Res,2004,32(Web Server issue):W327-331.
    [14]Marchler-Bauer A, Anderson JB, Cherukuri PF, et al. CDD:a Conserved Domain Database for protein classification [J]. Nucleic Acids Res,2005,33(Database issue):D192-196.
    [15]Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling [J]. Electrophoresis,1997,18(15):2714-2723.
    [16]Nakai K, Horton P. PSORT:a program for detecting sorting signals in proteins and predicting their subcellular localization [J]. Trends Biochem Sci,1999,24(1):34-36.
    [17]Yi L, Hao Z, Yang T, et al. cDNA cloning, bioinformatic and tissue-specific expression analysis of porcine JARID1C gene [J]. J Genet Genomics,2007,34(12):1088-1096.
    [18]FANG Wei LG-q, LI Mei-li, WANG Wei and XU Yin-xue. The Pig Lhx8 Gene:cDNA cloning, bioinformatic analysis and expression level in tissue and preimplantation embryos [J]. Agricultural Sciences in China,2009,8(12):1503-1510.
    [19]Li G, Li M, Fang W, et al. Cloning and characterization of porcine NOBOX gene [J]. Sheng Wu Gong Cheng Xue Bao,2009,25(8):1130-1137.
    [20]Strader CD, Fong TM, Graziano MP, et al. The family of G-protein-coupled receptors [J]. FASEB J,1995,9(9):745-754.
    [21]Edson MA, Lin YN, Matzuk MM. Deletion of the novel oocyte-enriched gene, Gprl49, leads to increased fertility in mice [J]. Endocrinology,2010,151(1):358-368.
    [22]尹燕斌,罗静初,姜颖.G蛋白偶联受体及其生物信息学研究[J].科学通报,2003,48(4): 307-312.
    [23]Uhlenbrock K, Gassenhuber H, Kostenis E. Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gprl2 family of constitutively active G protein-coupled receptors [J]. Cell Signal,2002, 14(11):941-953.
    [24]Alewijnse AE, Timmerman H, Jacobs EH, et al. The effect of mutations in the DRY motif on the constitutive activity and structural instability of the histamine H(2) receptor [J]. Mol Pharmacol,2000, 57(5):890-898.
    [25]Okada T, Sugihara M, Bondar AN, et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure [J]. J Mol Biol,2004,342(2):571-583.
    [26]Kemp BE, Pearson RB. Protein kinase recognition sequence motifs [J]. Trends Biochem Sci,1990, 15(9):342-346.
    [27]Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides [J]. Annu Rev Biochem, 1985,54:631-664.
    [28]Eggerickx D, Denef JF, Labbe O, et al. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase [J]. Biochem J,1995,309 (Pt 3):837-843.
    [29]Saeki Y, Ueno S, Mizuno R, et al. Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system [J]. FEBS Lett, 1993,336(2):317-322.
    [1]Saeki Y, Ueno S, Mizuno R, et al. Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system [J]. FEBS Lett,1993, 336(2):317-322.
    [2]Tanaka S, Ishii K, Kasai K, et al. Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth [J]. J Biol Chem,2007, 282(14):10506-10515.
    [3]Eggerickx D, Denef JF, Labbe O, et al. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase [J]. Biochem J,1995,309 (Pt 3):837-843.
    [4]Mehlmann LM, Saeki Y, Tanaka S, et al. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes [J]. Science,2004,306(5703):1947-1950.
    [5]Ledent C, Demeestere I, Blum D, et al. Premature ovarian aging in mice deficient for Gpr3 [J]. Proc Natl Acad Sci U S A,2005,102(25):8922-8926.
    [6]Kalinowski RR, Berlot CH, Jones TL, et al. Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway [J]. Dev Biol,2004,267(1):1-13.
    [7]Gallo CJ, Hand AR, Jones TL, et al. Stimulation of Xenopus oocyte maturation by inhibition of the G-protein alpha S subunit, a component of the plasma membrane and yolk platelet membranes [J]. J Cell Biol,1995,130(2):275-284.
    [8]Zhiqin L, Jingbo Z. Cell cycle regulation and tumor [J]. Oncology Progress,2004,2(1):146-150.
    [9]Zhang DX, Cui XS, Kim NH. Molecular characterization and polyadenylation-regulated expression of cyclin B1 and Cdc2 in porcine oocytes and early parthenotes [J]. Mol Reprod Dev,2010,77(1): 38-50.
    [10]Wu C, Rui R, Dai J, et al. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes [J]. Mol Reprod Dev,2006,73(11): 1454-1462.
    [11]Vanderhyden BC, Cohen JN, Morley P. Mouse oocytes regulate granulosa cell steroidogenesis [J]. Endocrinology,1993,133(1):423-426.
    [12]Prochazka R, Nemcova L, Nagyova E, et al. Expression of growth differentiation factor 9 messenger RNA in porcine growing and preovulatory ovarian follicles [J]. Biol Reprod,2004,71(4): 1290-1295.
    [13]Wang W, Wang L, Li XX, et al. Effect of interrupted endogenous BMP/Smad signaling on growth and steroidogenesis of porcine granulosa cells [J]. J Zhejiang Univ Sci B,2010,11(9):719-727.
    [14]Wang W, Chen X, Li X, et al. Interference RNA-based silencing of endogenous SMAD4 in porcine granulosa cells resulted in decreased FSH-mediated granulosa cells proliferation and steroidogenesis [J]. Reproduction,2011,141(5):643-651.
    [15]Tanaka S, Shaikh IM, Chiocca EA, et al. The Gs-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development [J]. PLoS One,2009,4(6):e5922.
    [16]Hinckley M, Vaccari S, Horner K, et al. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes [J]. Dev Biol,2005, 287(2):249-261.
    [17]Mehlmann LM. Oocyte-specific expression of Gpr3 is required for the maintenance of meiotic arrest in mouse oocytes [J]. Dev Biol,2005,288(2):397-404.
    [18]Iismaa TP, Kiefer J, Liu ML, et al. Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system [J]. Genomics,1994,24(2):391-394.
    [19]Thathiah A, Spittaels K, Hoffmann M, et al. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons [J]. Science,2009,323(5916):946-951.
    [20]Tanaka S, Shaikh IM, chiocca EA, et al. Gs-linked receptor GPR3 modulates proliferation and differentiation of cerebellar granule cell precursors [J]. Neuroscience Research,2009,65(Supplement 1):S92-S92.
    [21]Bjursell M, Gerdin AK, Jonsson M, et al. G protein-coupled receptor 12 deficiency results in dyslipidemia and obesity in mice [J]. Biochem Biophys Res Commun,2006,348(2):359-366.
    [22]Edson MA, Nagaraja AK, Matzuk MM. The mammalian ovary from genesis to revelation [J]. Endocr Rev,2009,30(6):624-712.
    [23]Zhou S, Wang B, Ni F, et al. GPR3 may not be a potential candidate gene for premature ovarian failure [J]. Reproductive BioMedicine Online,2010,20(1):53-55.
    [24]Kovanci E, Simpson JL, Amato P, et al. Oocyte-specific G-protein-coupled receptor 3 (GPR3):no perturbations found in 82 women with premature ovarian failure (first report) [J]. Fertility and Sterility, 2008,90(4):1269-1271.
    [25]Morikawa M, Seki M, Kume S, et al. Meiotic resumption of porcine immature oocytes is prevented by ooplasmic Gsalpha functions [J]. J Reprod Dev,2007,53(6):1151-1157.
    [26]Mehlmann LM. Stops and starts in mammalian oocytes:recent advances in understanding the regulation of meiotic arrest and oocyte maturation [J]. Reproduction,2005,130(6):791-799.
    [27]Jiang X, Yang P, Ma L. Kinase activity-independent regulation of cyclin pathway by GRK2 is essential for zebrafish early development [J]. Proc Natl Acad Sci U S A,2009,106(25):10183-10188.
    [28]Doree M, Galas S. The cyclin-dependent protein kinases and the control of cell division [J]. FASEB J,1994,8(14):1114-1121.
    [29]Russo AJ, Magro PQ Hu Z, et al. E2F-1 overexpression in U2OS cells increases cyclin B1 levels and cdc2 kinase activity and sensitizes cells to antimitotic agents [J]. Cancer Res,2006,66(14): 7253-7260.
    [30]Kuroda T, Naito K, Sugiura K, et al. Analysis of the roles of cyclin B1 and cyclin B2 in porcine oocyte maturation by inhibiting synthesis with antisense RNA injection [J]. Biol Reprod,2004,70(1): 154-159.
    [31]Wehrend A MB. The meiotic cell cycle in oocytes of domestic animals [J]. Reprod Domest Anim, 1998,33:289-297.
    [32]Kuroda T NK. Localization and function of cyclin B1 and cyclin B2 during porcine oocyte maturation [J]. J Mamm Ova Res,2003,20:93-98.
    [1]Richards JS. Hormonal control of gene expression in the ovary [J]. Endocr Rev,1994,15(6): 725-751.
    [2]Elvin JA, Matzuk MM. Mouse models of ovarian failure [J]. Rev Reprod,1998,3(3):183-195.
    [3]De Pol A, Vaccina F, Forabosco A, et al. Apoptosis of germ cells during human prenatal oogenesis [J]. Hum Reprod,1997,12(10):2235-2241.
    [4]Pepling ME, Spradling AC. Female mouse germ cells form synchronously dividing cysts [J]. Development,1998,125(17):3323-3328.
    [5]Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles [J]. Dev Biol,2001,234(2):339-351.
    [6]Edson MA, Nagaraja AK, Matzuk MM. The mammalian ovary from genesis to revelation [J]. Endocr Rev,2009,30(6):624-712.
    [7]Saeki Y, Ueno S, Mizuno R, et al. Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system [J]. FEBS Lett,1993, 336(2):317-322.
    [8]Iismaa TP, Kiefer J, Liu ML, et al. Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system [J]. Genomics, 1994,24(2):391-394.
    [9]Marchese A, Docherty JM, Nguyen T, et al. Cloning of human genes encoding novel G protein-coupled receptors [J]. Genomics,1994,23(3):609-618.
    [10]Mehlmann LM, Jones TL, Jaffe LA. Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte [J]. Science,2002,297(5585):1343-1345.
    [11]Kalinowski RR, Berlot CH, Jones TL, et al. Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway [J]. Dev Biol,2004,267(1):1-13.
    [12]Iiri T, Herzmark P, Nakamoto JM, et al. Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function [J]. Nature,1994,371(6493):164-168.
    [13]Mehlmann LM, Saeki Y, Tanaka S, et al. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes [J]. Science,2004,306(5703):1947-1950.
    [14]Eggerickx D, Denef JF, Labbe O, et al. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase [J]. Biochem J,1995,309 (Pt 3):837-843.
    [15]Ledent C, Demeestere I, Blum D, et al. Premature ovarian aging in mice deficient for Gpr3 [J]. Proc Natl Acad Sci U S A,2005,102(25):8922-8926.
    [16]Hinckley M, Vaccari S, Homer K, et al. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes [J]. Dev Biol,2005, 287(2):249-261.
    [17]Vanderhyden B. Molecular basis of ovarian development and function [J]. Front Biosci,2002,7: d2006-2022.
    [18]Albertini DF, Barrett SL. Oocyte-somatic cell communication [J]. Reprod Suppl,2003,61:49-54.
    [19]Hawkins SM, Matzuk MM. Oocyte-somatic cell communication and microRNA function in the ovary [J]. Ann Endocrinol (Paris),2010,71(3):144-148.
    [20]Anderson E, Albertini DF. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary [J]. J Cell Biol,1976,71(2):680-686.
    [21]Zhang B, Ding J, Li Y, et al. The porcine Gpr3 gene:molecular cloning, characterization and expression level in tissues and cumulus-oocyte complexes during in vitro maturation [J]. Mol Biol Rep, 2011.
    [22]Edry I, Sela-Abramovich S, Dekel N. Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle [J]. Mol Cell Endocrinol,2006,252(1-2):102-106.
    [23]Jagarlamudi K, Reddy P, Adhikari D, et al. Genetically modified mouse models for premature ovarian failure (POF) [J]. Mol Cell Endocrinol,2010,315(1-2):1-10.
    [24]Norris RP, Freudzon L, Freudzon M, et al. A G(s)-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor-G(s) signaling [J]. Dev Biol,2007,310(2):240-249.
    [25]Norris RP, Ratzan WJ, Freudzon M, et al. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte [J]. Development,2009,136(11):1869-1878.
    [26]Zhang M, Su YQ, Sugiura K, et al. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes [J]. Science,2010,330(6002):366-369.
    [1]Wilson S, Bergsma DJ, Chambers JK, et al. Orphan G-protein-coupled receptors:the next generation of drug targets? [J]. Br J Pharmacol,1998,125(7):1387-1392.
    [2]Howard AD, McAllister G, Feighner SD, et al. Orphan G-protein-coupled receptors and natural ligand discovery [J]. Trends Pharmacol Sci,2001,22(3):132-140.
    [3]Whorton MR, Bokoch MP, Rasmussen SG, et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein [J]. Proc Natl Acad Sci USA, 2007,104(18):7682-7687.
    [4]Hieter P, Boguski M. Functional genomics:it's all how you read it [J]. Science,1997,278(5338): 601-602.
    [5]Hinckley M, Vaccari S, Horner K, et al. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes [J]. Dev Biol,2005, 287(2):249-261.
    [6]Tanaka S, Ishii K, Kasai K, et al. Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth [J]. J Biol Chem,2007, 282(14):10506-10515.
    [7]Saeki Y, Ueno S, Mizuno R, et al. Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system [J]. FEBS Lett,1993, 336(2):317-322.
    [8]Joost P, Methner A. Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands [J]. Genome Biol,2002,3(11):RESEARCH0063.
    [9]Ignatov A, Lintzel J, Kreienkamp HJ, et al. Sphingosine-1-phosphate is a high-affinity ligand for the G protein-coupled receptor GPR6 from mouse and induces intracellular Ca2+release by activating the sphingosine-kinase pathway [J]. Biochem Biophys Res Commun,2003,311(2):329-336.
    [10]Uhlenbrock K, Gassenhuber H, Kostenis E. Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gprl2 family of constitutively active G protein-coupled receptors [J]. Cell Signal,2002, 14(11):941-953.
    [11]Ignatov A, Lintzel J, Hermans-Borgmeyer I, et al. Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development [J]. J Neurosci,2003,23(3):907-914.
    [12]Wittenberger T, Hellebrand S, Munck A, et al. GPR99, a new G protein-coupled receptor with homology to a new subgroup of nucleotide receptors [J]. BMC Genomics,2002,3:17.
    [13]Murakami A, Takasugi H, Ohnuma S, et al. Sphingosine 1-phosphate (SIP) regulates vascular contraction via S1P3 receptor:investigation based on a new S1P3 receptor antagonist [J]. Mol Pharmacol,2010,77(4):704-713.
    [14]Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells [J]. Biochem J,2000, 349(Pt 2):385-402.
    [15]Clemens JJ, Davis MD, Lynch KR, et al. Synthesis of para-alkyl aryl amide analogues of sphingosine-1-phosphate:discovery of potent SIP receptor agonists [J]. Bioorg Med Chem Lett,2003, 13(20):3401-3404.
    [16]Hla T. Physiological and pathological actions of sphingosine 1-phosphate [J]. Semin Cell Dev Biol, 2004,15(5):513-520.
    [17]朱海燕,达万明.1磷酸鞘氨醇及其G蛋白偶联受体的免疫调节功能研究进展[J].中国实验血液学杂志,2007,15(6):1317-1324.
    [18]Im DS, Heise CE, Nguyen T, et al. Identification of a molecular target of psychosine and its role in globoid cell formation [J]. J Cell Biol,2001,153(2):429-434.
    [19]Xu Y, Zhu K, Hong G, et al. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1 [J]. Nat Cell Biol,2000,2(5):261-267.
    [20]Kabarowski JH, Zhu K, Le LQ, et al. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A [J]. Science,2001,293(5530):702-705.
    [21]Costa T, Herz A. Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins [J]. Proc Natl Acad Sci U S A,1989,86(19):7321-7325.
    [22]Ledent C, Demeestere I, Blum D, et al. Premature ovarian aging in mice deficient for Gpr3 [J]. Proc Natl Acad Sci U S A,2005,102(25); 8922-8926.
    [23]Padmanabhan S, Myers AG, Prasad BM. Constitutively active GPR6 is located in the intracellular compartments [J]. FEBS Lett,2009,583(1):107-112.
    [24]Valverde O, Celerier E, Baranyi M, et al. GPR3 receptor, a novel actor in the emotional-like responses [J]. PLoS One,2009,4(3):e4704.
    [25]Bohm SK, Grady EF, Bunnett NW. Regulatory mechanisms that modulate signalling by G-protein-coupled receptors [J]. Biochem J,1997,322 (Pt 1):1-18.
    [26]Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis:the role in receptor desensitization and signaling [J]. Pharmacol Rev,2001,53(1):1-24.
    [27]Trejo J, Coughlin SR. The cytoplasmic tails of protease-activated receptor-1 and substance P receptor specify sorting to lysosomes versus recycling [J]. J Biol Chem,1999,274(4):2216-2224.
    [28]Tsao PI, von Zastrow M. Type-specific sorting of G protein-coupled receptors after endocytosis [J]. J Biol Chem,2000,275(15):11130-11140.
    [29]Tsao P, Cao T, von Zastrow M. Role of endocytosis in mediating downregulation of G-protein-coupled receptors [J]. Trends Pharmacol Sci,2001,22(2):91-96.
    [30]Conway BR, Minor LK, Xu JZ, et al. Quantification of G-Protein Coupled Receptor Internatil-ization Using G-Protein Coupled Receptor-Green Fluorescent Protein Conjugates with the ArrayScantrade mark High-Content Screening System [J]. J Biomol Screen,1999,4(2):75-86.
    [31]Xiao MF, Xu JC, Tereshchenko Y, et al. Neural cell adhesion molecule modulates dopaminergic signaling and behavior by regulating dopamine D2 receptor internalization [J]. J Neurosci,2009, 29(47):14752-14763.
    [32]Tanaka S, Shaikh IM, Chiocca EA, et al. The Gs-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development [J]. PLoS One,2009,4(6):e5922.
    [33]Mehlmann LM, Saeki Y, Tanaka S, et al. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes [J]. Science,2004,306(5703):1947-1950.
    [1]Wang SB, Xing BS, Yi L, et al. Expression of Frizzled 2 in the mouse ovaiy during oestrous cycle [J]. J Anim Physiol Anim Nutr (Berl),2010,94(4):437-445.
    [2]Le Good JA, Joubin K, Giraldez AJ, et al. Nodal stability determines signaling range [J]. Curr Biol, 2005,15(1):31-36.
    [3]Wang W, Wang L, Li XX, et al. Effect of interrupted endogenous BMP/Smad signaling on growth and steroidogenesis of porcine granulosa cells [J]. J Zhejiang Univ Sci B,2010,11(9):719-727.
    [4]Mehlmann LM, Saeki Y, Tanaka S, et al. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes [J]. Science,2004,306(5703):1947-1950.
    [5]Lee WS, Otsuka F, Moore RK, et al. Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat [J]. Biol Reprod,2001,65(4):994-999.
    [6]Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development [J]. Nat Cell Biol,2000,2(2):70-75.
    [7]Han SJ, Chen R, Paronetto MP, et al. WeelB is an oocyte-specific kinase involved in the control of meiotic arrest in the mouse [J]. Curr Biol,2005,15(18):1670-1676.
    [8]Hirano T, Yamauchi N, Sato F, et al. Evaluation of RNA interference in developing porcine granulosa cells using fluorescence reporter genes [J]. J Reprod Dev,2004,50(5):599-603.
    [9]Mehlmann LM. Oocyte-specific expression of Gpr3 is required for the maintenance of meiotic arrest in mouse oocytes [J]. Dev Biol,2005,288(2):397-404.
    [10]Ledent C, Demeestere I, Blum D, et al. Premature ovarian aging in mice deficient for Gpr3 [J]. Proc Natl Acad Sci U S A,2005,102(25):8922-8926.
    [11]Matsuura I, Denissova NG, Wang G, et al. Cyclin-dependent kinases regulate the antiproliferative function of Smads [J]. Nature,2004,430(6996):226-231.
    [12]Roquemore EP. Analysis of siRNA Knockdown of Cell-Cycle Control Genes in G1/S and G2/M Cell-Cycle Phase Marker Cell Lines Using Multiplexed High-Content Analysis [J]. CSH Protoc,2007, 2007:pdb prot4898.
    [13]Tripathi A, Kumar KV, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes [J]. J Cell Physiol,2010,223(3):592-600.
    [14]Li J, Meyer AN, Donoghue DJ. Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation [J]. Proc Natl Acad Sci U S A,1997,94(2):502-507.
    [15]Wong WW, Puthalakath H. Bcl-2 family proteins:the sentinels of the mitochondrial apoptosis pathway [J]. IUBMB Life,2008,60(6):390-397.
    [16]卢翠玲,杨巍,胡召元等.颗粒细胞的增殖分化及其在卵泡发育中的作用[J].科学通报,2005,21(50):2341-2347.
    [17]周孟华.G蛋白偶联受体的二聚化及其意义[J].现代医药卫生,2007,23(7):1005-1006.
    [18]Hinckley M, Vaccari S, Homer K, et al. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes [J]. Dev Biol,2005, 287(2):249-261.
    [1]Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus [J]. Proc Natl Acad Sci U S A,1990,87(6):2211-2215.
    [2]Verma IM, Somia N. Gene therapy -- promises, problems and prospects [J]. Nature,1997, 389(6648):239-242.
    [3]He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses [J]. Proc Natl Acad Sci U S A,1998,95(5):2509-2514.
    [4]Mehlmann LM, Saeki Y, Tanaka S, et al. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes [J]. Science,2004,306(5703):1947-1950.
    [5]Ledent C, Demeestere I, Blum D, et al. Premature ovarian aging in mice deficient for Gpr3 [J]. Proc Natl Acad Sci U S A,2005,102(25):8922-8926.
    [6]Lee WS, Otsuka F, Moore RK, et al. Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat [J]. Biol Reprod,2001,65(4):994-999.
    [7]Smith SD, Mikkelsen A, Lindenberg S. Development of human oocytes matured in vitro for 28 or 36 hours [J]. Fertil Steril,2000,73(3):541-544.
    [8]Tanaka S, Ishii K, Kasai K, et al. Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth [J]. J Biol Chem,2007, 282(14):10506-10515.
    [9]Tanaka S, Shaikh IM, Chiocca EA, et al. The Gs-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development [J]. PLoS One,2009,4(6):e5922.
    [10]欧阳五庆,李谱华,林成招等.细胞周期及调控研究进展[J].中国兽医科技,2003,33(2):35-40.
    [11]Fang F, Orend G, Watanabe N, et al. Dependence of cyclin E-CDK2 kinase activity on cell anchorage [J]. Science,1996,271(5248):499-502.
    [12]黄晓卉,张端莲,张昌军等.卵巢颗粒细胞凋亡相关蛋白Bax的表达与妊娠的关系[J].武汉大学学报,2003,24:41-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700