机械化学改性CaCO_3填充PVC的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用机械化学改性CaCO_3粉体表面,研究了其填充PVC的力学性能和物理性能。采用扫描电镜、能谱、X射线衍射和红外光谱等分析方法,探讨了机械化学改性碳酸钙的制备及影响因素。结果表明:碳酸钙含量少时,研磨后颗粒分散效果不好;随着碳酸钙含量的增加,分散均匀,达到95%时分散最好,此时由扫描电镜和能谱分析可发现两者发生包覆现象;当碳酸钙含量增大到100%时,颗粒发生团聚;从XRD分析可以看出,经机械化学研磨后物质由晶态向着非晶态转变;从红外光谱图可以看出,研磨后PVC与CaCO_3以很强的化学键结合在一起。
     通过不同研磨时间、不同配方的塑料填料进行机械化学改性后的一系列检测结果表明:改性后CaCO_3粉体与PVC的结合性和分散性明显优于未被改性的CaCO_3粉体;随着研磨时间的延长,复合粉体的分散性、结合性都显著降低;随着配方中CaCO_3含量的增加,两种材料的结合强度显著提高,并达到最优化。
     将改性后的CaCO_3以不同填料配方、不同成型配方与不同塑料基体的混合物料注塑成型的结果表明:当成型配方相同而填料配方不同时,其拉伸强度、冲击强度、弯曲强度等力学性能在CaCO_3含量为95%时达到最佳,密度、吸水率等物理性能在95%时也达到最佳;当填料配方相同而成型配方不同时,其拉伸强度、冲击强度、弯曲强度等力学性能在CaCO_3含量为20%时达到最佳,密度、吸水率等物理性能在20%时也达到最佳。
Changes the surface of calcuim carbonate by mechanochemistry ,studies the mechanics and physics capabilities after it filled in PVC in the paper. The preparation and influence factors of PVC filled by calcium carbonate are analyzed by means of scanning electron microscope, energy spectrum, XRD and infrared spectrum analysis. The results indicate that when the component of calcium carbonate is few, the decentralization of grains after milling is bad; as the component of calcium carbonate increases, the decentralization is uniform, when it increases to 95%, the effect is the best, this time the two grains are wrapped together from EDS analysis; when the component of calcium carbonate increases to 100%, the grains reunite; according to the results of X-ray, calcium carbonate changes from crystal to noncrystal after milling; according to the results of IR spectra, calcium carbonate and PVC hang together with strong chemical bond.
     It indicates that the decentralization and combination of PVC and CaCO_3 wich is changed are better than no changed ones from the test results with different milling time and different component. As the milling time increases, the decentralization and combination of the composite powders reduce. As the content of CaCO_3 increases, the combination intensity of the two materials improves largely and has a best value.
     After molding among the plastic of different filling component, different molding component and different plastic, the results indicate that: when the filling component is different, the mechanics capabilities such as extention intensity, impact intensity and incurvation intensity are the best as the content of CaCO_3 is 95%, the physics capabilities such as density and drinking rate are also best of all; when the molding component is different, the mechanics capabilities such as extention intensity, impact intensity and incurvation intensity are the best as the content of CaCO_3 is 20%, the physics capabilities such as density and drinking rate are also best of all.
引文
[1] 戴金辉,葛兆明.无机非金属材料概论(第一版).哈尔滨:哈尔滨工业大学出版社,1999:1-2
    [2] 黎学东,陈鸣才,黄玉惠.塑料的刚性填料增韧.广州化学,1996,3:7
    [3] 尹洪峰,任耘,罗发.复合材料及其应用.陕西:科学技术出版社,2003:3-9
    [4] 王成云,张伟亚,杨亚军等.聚氯乙烯纳米塑料研究进展.化工学报,2001,6:1-4
    [5] 杨眉,沈上越,谭晓军等.方解石型重质碳酸钙的表面改性及其在橡胶中的应用研究.岩石矿物学杂志,1999,18(2):164
    [6] 徐立铨.前景广阔的矿物填料工业.中国建材,1997:44-45
    [7] 汪镜亮,塑料生产与非金属矿,矿产保护与利用,1996,1:42-46
    [8] 李竞先,黄康明,吴基球.无机非金属材料制备中机械力化学效应的基础研究及表征技术.硅酸盐学报,2002,30:141
    [9] 张景昌,江世璟,李冬霞等.塑料中纳米填料静电及力学性能的研究和应用.中原工学院学报,2003,14(S1):8
    [10] 张强,张高科.重质碳酸钙在塑料工业中的应用.矿产保护与利用,2000,4:27-30
    [11] 束德林.金属力学性能(第二版).北京:机械工业出版社,1994,214-216
    [12] 陈小英,蒋军华.塑料填料级重质碳酸钙加工工艺的研究.矿物工程,1998,7(2):48-49
    [13] 林桦.碳酸钙作为塑料的填料使用浅谈.江西煤炭科技,2004,3:44-45
    [14] 刘英俊.塑料填充改性发展动向及对非金属矿材料的要求.中国非金属矿工业导刊,2002,28(4)8-11
    [15] Bernd Weidenfeller, Michael Hofer, Frank R. Schilling. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites(Part A), 2002, 35: 423-429
    [16] 杜仕国.填料的改性作用及其表征.塑料工业,1994:48-50
    [17] 董发勤,张宝述,白忠等.超细矿物填料的特性及在塑料中的应用.非金属矿,1999,22:70-72
    [18] 方斌.我国塑料管道产业的现状和发展趋势.现代工业,2003,23(8):7
    [19] 李珍,沈上越,王文起.超细重质碳酸钙粉表面改性与充填聚丙烯试验研究.岩石矿物学杂志,1999,18(2):172-177
    [20] 钱军民,金志浩.我国CaCO_3填料表面改性及在塑料中的应用合成树脂及塑料.无机材料学报,2002,19(3):59
    [21] 张克惠.塑料材料学.西安:西北工业大学出版社,2000:16-20
    [22] 刘英俊.非金属矿物填料在我国塑料工业中的应用.中国非金属矿工业导刊,1999,10(4):4-5
    [23] 杨华明,欧阳静,张科等.机械化学合成纳米材料的研究进展.化工进展,2005,24(3):240-241
    [24] 林师沛.塑料配制与成型(第二版).北京:化学工业出版社,2004:109-130
    [25] 郑水林,佟福林.中国超细重质碳酸钙生产现状与发展趋势.中国非金属矿工业导刊,2002,25(25)10-15
    [26] Rosoff Morton. Nano-Sufface Chemistry.. New York: Marcel Dekker, 2002
    [27] 高俊刚,杨丽庭,李燕芳.改性聚氯乙烯新材料.北京:化学工业出版社,2002,185-189
    [28] 李宝智,超细非金属粉体母粒加工及其在塑料制品中的应用.非金属矿,2003,26(2):5-6
    [29] 唐艳军,李友明,宋晶等.纳米CaCO_3的表面改性及在水中的分散性能,中国造纸,2006,25(10):11
    [30] 何益艳,杜仕国.无机填料的改性及其在复合材料中的应用.化工新型材料,2001,29(12):4-7
    [31] 丁浩,超细粉体在复合材料中的功能作用及加工技术.矿产保护与利用,1998,6:14-16
    [32] 张蕾,张丹凤,于桂英等.纳米微粒的表面改性及表征方法研究.当代化工,2005,34(1):49-51
    [33] 林海,松全元.矿物表面改性研究的现状与发展.矿产综合利用,1997,5:30
    [34] 丁浩,卢寿慈,张克仁等.矿物表面改性研究的现状与前景展望(Ⅰ).矿产保护与利用,1996,3:27-29
    [35] 肖瑜,杨国清,张淑华.填料对废旧聚丙烯塑料改性性能的影响.环境工程,2003,21(2):46
    [36] A. Zoltan Juhasz. Aspects of mechanochemical activation in terms of comminution theory. Physicochemical and Engineering Aspects, 1998, 141: 449-452
    [37] 杨玉芬,盖国胜,樊世民等.矿物填料表面无机包覆改性研究.中国矿业大学学报,2005,34(3):280-282
    [38] 曹光明,罗廉明,叶菁.一种评价塑料填料粉体改性效果的新方法.化工矿物与加工,2002,4:25-29
    [39] Woon Tae Jeong, Kyung Sub Lee. Synthesis and structural characteristics of LiCo_2 powders prepared by mechanical alloying of LiOH·H_2O and Co(OH)_2. Journal of Alloys and Compounds, 2001, 322: 205-210
    [40] 万双华,孙广,欧阳惠.塑料改性中界面改性的研究与应用.精细化工中间体,2003,33(5):43
    [41] 盖国胜,杨玉芬,樊世民.超微粉体的表面与修饰.粉体与工业,2005(1):12-15
    [42] 徐炽焕.纳米塑料的应用开发.现代塑料加工应用,2002,14(4):57
    [43] 崔明,刘振东,李立平.橡胶纳米填料应用研究进展.橡胶工业,2004,51(4):249-250
    [44] 刘英俊.粉体填料在塑料中的应用现状及面临的问题.现代化工,2001,21(12):9-12
    [45] L. Takcs, V. Soika, EBalaz. The effect of mechanical activation on highly exothermic powder mixtures. Solid State ionics, 2001, 141: 641-647
    [46] Zhao Jiruo, Feng Ying, Chen Xinfang. A new kind of material obtained by the mechanochemistry reaction Modified CPE with maleio anhydride and styrene. Material Letters, 2002, 56: 543-545
    [47] 张金柱,汪信,陆路德.纳米无机粒子在塑料高性能化改性中的应用.工程塑料应用,2001,29(5):44-46
    [48] B. N. Mordyuk, G. I. Prokopenko. Mechanical alloying of powder material by ultrasonic milling. Ultrasonic, 2004, 42: 43-46
    [49] A. L. N. da Silva, M. c. G. Rocha, M. A. R. Moraes, C. A. R. Valente. Mechanica and rheological properties of composites based on polyolefin and mineral additives. Polymer Testing 21(2002)57-60
    [50] 张伟,王树林.机械合金化的研究和发展.矿山机械,2003,8:50-53
    [51] T. Molder, O. Trass. Grinding of waste paper and rice hulls with the Szego Mill for use as plastics fillers. Int. Miner. Process, 1996, 44: 583-595
    [52] 李凡,吴炳尧.机械合金化—新型的固态合金化方法.机械工程材料,1999,23(4):22-24
    [53] 任强,武秀兰,朱振峰.机械化学制备陶瓷及复合材料粉体的研究进展.中国陶瓷,2003,39(5):3
    [54] 宋晓岚,邱冠周,杨华明.超细功能粉体的机械化学合成研究进展.金属矿山,2004,337(7):25-30
    [55] F. Cavalieri, F. Padella, S. Bourbonneux. High-energy mechanical alloying of Thermoplastic polymers in carbon dioxide. Polymer, 2002, 43: 1155-1161
    [56] B.EHaPOB等.以表面光学方法对聚氯乙烯中的增塑剂稳定化.合成化学老化与应用,1996,4:42
    [57] V. V. Boldyrev, T. P. Shakhtshneider, S. A. Chizhik. On the mechanism of solubilization of drugs in the presence of poorly soluble additives, Intermational Jounal of Pharmaceutics, 2005, 295: 177-182
    [58] 李希明,陈家镛.机械化学在资源和材料化工及环保中的应用.化工冶金,2000,21(4):443-444
    [59] 王培铭,许乾慰.材料研究方法.北京:科学出版社,2005:262
    [60] 厉蕾,左逢兴等编.塑料技术标准手册.北京:化学工业出版社,1996:912-938
    [61] 吕荣山,王国顺,施清照等.分析化学手册(第三分册).北京:化学工业出版社,1980:616-658
    [62] 中西香尔,P.H.索罗曼.红外光谱分析100例.北京:科学出版社,1984:44-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700