改性磷矿粉复合保水材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赋肥与保水功能一体化是保水材料研究发展的方向之一,目前已成为国内外研究的热点。本文所制备的改性磷矿粉复合保水材料就是基于此点,将矿物磷肥通过改性后与保水材料复合,使其同时具有赋磷和保水等功能,以期在农林业获得更广泛的应用,同时带动中低品位磷矿的开发和利用。
     本文所做的研究工作主要有如下几点:
     1.研究了磷矿粉的改性,采用的是部分酸化和无机矿物活化相结合的方法,并利用XRD对比分析了改性处理前后矿物的晶体结构变化,阐述了磷矿的改性活化以及释磷机理。
     2.将改性磷矿粉作为主要添加原料与保水剂复合制备改性磷矿粉复合保水材料,通过一系列的五因素四水平正交实验,研究了改性磷矿粉添加量,丙烯酸中合度,丙烯酰胺、交联剂、引发剂的用量对于复合材料吸液性能的影响,经过极差分析得到最佳实验条件。随后,在正交最优条件的基础上进行了一系列的单因素实验,具体考察改性磷矿粉添加量,丙烯酸中合度,丙烯酰胺、交联剂、引发剂的用量对于复合材料吸液性能的影响,找出最优实验制备条件。
     3.对比研究了空白样和添加少量改性磷矿粉复合材料样品的保水性能、吸水速率,以及丙烯酰胺用量,改性磷矿粉用量对复合材料溶胀性能的影响。
     4.重点研究了复合材料的释磷性能:对比分析同一浸泡方法下改性磷矿粉和复合材料的释磷行为,不同浸泡方法下的同一复合材料样品的释磷行为,样品在淋洗柱淋洗下的释磷行为,以及交联剂用量和改性磷矿粉添加量对复合材料释磷行为的影响。
     5.最后从水势的角度对复合材料的吸水能力进行了较深入的研究:用水凝胶液体交换法测定了复合材料制备条件中不同改性磷矿粉添加量对水势变化趋势的影响,并用不同的拟合方法对复合材料水势曲线进行拟合得到关于复合材料水势的两个经验公式,比较了不同拟合方法对水势的影响,通过水势曲线拟合公式外推得到复合材料各样品在吸水时间为0时的极限水势值。最后探讨分析了复合材料水势、吸液倍率和改性磷矿粉添加量之间的关系。
     研究所得结论如下:
     1.通过对比改性前后的XRD图谱发现:通过改性处理后,图谱中除仍保留了磷灰石和石英的特征衍射峰外,磷矿粉主要特征峰峰形钝化,样品中晶相比例减少,无定形态增多,晶粒细化;同时出现了一系列新的特征衍射峰(如CaHPO_4.2H_2O的特征衍射峰(2θ=11.696,20.786,29.161,33,408)和Ca(H_2PO_4)_2.2H_2O的特征衍射峰(2θ=7.595,14.790,22.944,24.165,26.701,29.777),即磷素在改性处理作用下向有效态转变。
     2.采用水溶液聚合法,以丙烯酸和丙烯酰胺为合成单体,改性磷矿粉为主要添加原料,过硫酸钾为引发剂,N,N-亚甲基双丙烯酰胺为交联剂,制备出了改性磷矿粉保水复合材料。正交实验分析结果表明,所制备出的复合材料吸蒸馏水时,几个因素的影响顺序如下:改性磷矿粉含量>中和度>丙烯酰胺含量>交联剂的含量>引发剂的含量。取在满足吸蒸馏水、生理盐水倍率分别大于150g/g、30g/g的条件下,磷矿粉添加量最大为最佳工艺条件,即最佳工艺条件是:单体浓度为25%,反应温度为75℃,改性磷矿粉含量40%,中和度70%,丙烯酰胺含量20%,交联剂含量0.04%,引发剂含量0.3%。在正交实验基础上进行的单因素实验结果表明,最佳合成工艺条件为:单体浓度为25%,聚合温度75℃,交联剂用量0.04%,引发剂用量0.50℃,单体中和度65%,丙烯酰胺用量20%,改性磷矿粉添加量40%。复合材料的最高吸蒸馏水量达335g/g,吸0.9%NaCl达32g/g。
     3.加入一定量的改性磷矿粉可以提高复合材料的保水性能。在恒温60℃的鼓风干燥中。水凝胶在1-3h内失水速率最快,大概失去了50%左右的水分。当时间达到6h后,水凝胶的含水量还为开始时的20-30%左右。在室温下7d时,凝胶的保水率为50%左右,表现出较好的保水性能。所得样品的溶胀特征指数n值都大于1,说明大分子链松弛是控制溶胀速率的主要因素;加入少量的丙烯酰胺可以增加复合材料的吸水速率和溶胀度;改性磷矿粉的加入一方面增大了样品溶胀速率,另一方面降低大分子链松弛对溶胀度的贡献,且随着添加量的增大作用越明显。
     4.同一浸泡法下改性磷矿粉中水溶性磷素在浸泡一天后释放比例高达36%,其后仍有一定量的磷素释放出来,但是很缓慢;复合材料浸泡一天后磷素释放量为29%左右,其后仍保持较好的持续供磷行为;不同浸泡法下,两种浸泡法下初期磷素释放量基本相同,不换液浸泡法后期磷素释放量基本保持不变,换液浸泡法下,后期表现出较好的持续供磷能力。磷素释放量随交联剂用量的变化有先降低,后增加的趋势,但释放量相差并不大。随着改性磷矿粉用量的增大,磷素释放量也增大。
     5.淋洗法下改性磷矿粉中磷素在淋洗作用下很快释放出来,前两天就释放了总量的43%左右,其后仍有一定量的磷素释出但比例很小。复合材料的磷素释放速率在初期相对于改性磷矿粉较小,其后则较大,表现出较好的持续释磷性能。复合材料释磷速率有先升后降的趋势,与在浸泡法下得到的释磷曲线趋势并不完全相同,这可能主要是由于不同测试方法所致。在淋洗法下改性磷矿粉添加量不同的一组样品的磷素释放都表现出先升后降的特征,在前期改性磷矿粉添加量小的样品释放速率大,而后期则刚好相反。在测试的时间内,得到的磷素累计释放率是随着改性添加量的增大而变小,而结合上述两图的曲线发展趋势可以看出,随着时间的延长,磷素总释放率差距缩小并趋于接近。
     6.采用水凝胶液体交换法测定了各个样品在不同吸水时间后的溶液平衡浓度,并换算成相应的水势值。对得到的复合材料在不同改性磷矿粉添加量制备条件下的样品的水势值,采用两种不同的拟合方法得到的复合材料水势的经验公式分别为:ψ=-e~(a+bt)和ψ=a-bc~t。通过比较曲线拟合的相关系数R发现,第二种拟合方法的准确度更高一些。利用第二种拟合方法得到的曲线拟合公式外推得到的六个在不同改性磷矿粉添加量
     即添加少量(5%)的改性磷矿粉,可以降低复合材料的水势(59%),提高吸水能力。但随着改性磷矿粉的添加量继续加大,复合材料的水势升高,吸水能力降低。
     同时还发现:吸水时间对复合材料的水势和吸水倍率的影响趋势相似,随着吸水时间的延长,复合材料水势逐渐升高,吸水能力降低,吸水倍率则随时间的延长而累计增长;复合材料的水势与吸水倍率存在一定得相关性,即极限水势低的复合材料其吸水倍率也相应较大。
Integrating of the function of fertilizer-supplying and water-retention, one of research and development in supperabsorbent plymer materials ,has been the hot spot in home and abroad now.In this paper, the composite prepared by modified phosphate powder and water supperabsorbent polymer is based on this point, having the phosphorus-supplying and water-retention functions with a view to gain a broader application in agriculture and forestry and drive the development and use of middle and low-grade phosphate rock at the same time.
     In this paper, the main research work are as follows:
     1. We have a research on modifying phosphate rock with the method of combinating partly acidification and inorganic mineral activation, and use XRD to characterize the crystal structure of minerals and compare the changes before and after modification to expatiate why the modified Phosphate powder can release phosphorus.
     2.We use the modified phosphate powder as a main added raw materials to supper absorbent polymer to prepare the modified phosphate powder/suppeabsorbent polymer composite. Through a series of five factors and four-level orthogonal experiment,We Study the influence of the addition of modified phosphate powder, neutralization degree of crylic acid and the amount of acrylamide, crosslinker, initiator on absorption properties of the composites, then we get the best experimental conditions after a range analysis analysis.we also set a series of single factor experiment on basis of the optimal conditions of the orthogonal to find the best condition for preparation.
     3. We have a research on the water retention and water absorbent speed of the composite sapmle added 10% modified phosphate powder with pure sample as a contrast.We also have a stuy on the influence of the amount of acrylamide,modified phosphate powder on swelling performance of the composites.
     4. We focus our research on phosphorus-release performance of the composite.at first, we find out the difference of phosphorus-release performance between modified phosphate powder and copmsite sample in the same immersion method,then we get the phosphorus-release performance of the same sample in different immersion method.we also stuy the phosphorus-release performance in shower method and the influence of samples with different amount of crossing linker and modified phosphate powder on phosphorus-release performance.
     5. Finally, we have a deeply research on the absorbency capacity of the composite from the perspective of water potential. we based on the contrast of mechanism of plant cell and superabsorbent, and research the water potential of the composite which compound with modified and polysodium acrylate and acrylamide. We use hydrogel- liquid- exchange method to test water potential of a series of samples with different amount of modified phosphate powder and use different methods to fitg curve fitting on the water potential of composite materials to get empirical formula.then weahve a comparison to the result of water potential got from different methods of fitting. Through the water potential extrapolation formula, we get the limit of water potential value. at last, we have a discuss on the relation of water potential of composite, fluid absorbency rate and the amount of modified phosphate powder.
     Study findings were as follows:
     1 .The char of modified phophate powder still remain the characteristics diffraction peak of apatite and quartz, but the main characteristics of phosphate rock shaped passivation. While the the proportion of crystalline phase reduces, amorphous increases. Crystal size of the sample become smaller.It apears a series of new characteristic diffraction peaks at the same time,such as the characteristic diffraction peak of CaHPO_4.2H_2O(20=11.696, 20.786, 29.161, 33.408) and Ca(H_2PO_4)_2.2H_2O(2θ=7.595,14.790, 22.944, 24.165, 26.701, 29.777 ). It to say that the role of phosphorus in the modification change to the effective state.
     2. A modified phosphate powder/superabsorbent polymer composite was synthesized with acrylic and acrylamide as monomer, modified phosphate powder as main added raw materials, K_2S_2O_8 as initiator, and N,N-methylene-bis-acrylamide as crosslinking agent by means of water solution polymerization. The orthogonal experiment results show that the influence of the factors to composite sample on distilled water absorbency as follows: content of modified phosphate powder> neutralization degree of crylic acid >content of acrylamide>content of crosslinker > content of initiator. We choose the optimum conditions under two conditions which meet the absorbency of distilled water, normal saline ratio is greater than 150g/g, 30g/g respectively and the amount of modified phosphate powder added is largest.The optimum conditions are: 25% monomer concentration, reaction temperature is 75℃, content of modified phosphate powder is 40%, neutralization degree of acry acid is 70 percent, 20% acrylamide, content of crosslinker is 0.04%, initiator content is 0.3%.The results of the single factor experiment based on orthogonal experiment show that the best conditions for synthesis is 25% monomer concentration, polymerization temperature at 75℃, 0.04% cross-linker, 0.50% initiator, neutralization degree of crylic acid by 65%, 20% acrylamide, 40% modified phosphatepowder. Composite materials maximum absorption capacity of distilled water and 0.9% NaCl solution are 335g/g and 32g/g respectly.
     3. The water retention property of the composite can be improved by adding a certain amount of modified phosphate powder. The hydrogel loss about 50% water at the first 3 hours in the blast drying at 60℃,but the water content of hydrogels also around the 20-30% at 6 hours.When put at room temperature, the hydrogel can retain 50% water at 7 days. The swelling characteristics index values of samples are greater than 1,which is to say that relaxation of macromolecular chains is the main factors controlling the swelling ratio. Addiing modified phosphate powder to composite can increase the swelling speed, as well as reduce the contribution macromolecular chain relaxation to swelling ratio, and the influence can be amplifed by addition more modified phosphate powder to composites.
     4. Modified phosphate powder can release phosphorus as much as 36% in one day and there is still a certain amount of phosphorus released but very slow while the composite phosphorus-release is about 29% after soaking in a day in the same immersion method,and it remains the performance of phosphorus-release well.The amount of phosphorus released by the same ocmposite sample is about the same in two different immersion method. The amount of phosphorus remain the same in later in the liquid unchanged immersion method while it keep increasing in the liquid changed immersion method. With the amount of cross-linking agent changes, the amount of phosphorus released begin to reduce at first and become bigger later, but there is no big blank in the amount of phosphorus of the different samples.
     5.The modified phosphate powder can leacha large part of phosphorus under the shower method, the amount of phosphorus reach about 43% at the two days and there is still a certain amount of phosphorus released but very little. The phosphorus release speed of composite materials is slower than modified phosphate powder at the first days, then become faster than the modified phosphate powder, Which is different to the result got from the immersion method mainly due to different testing methods.The phosphorus-release rate of the samples which content less modified phosphate powder is bigger than the sample s content more at first while it become inverse in later. We received the total of phosphorus-release rate is smaller with the addition of modified phosphate powder increasing in the test of time, while combinatiing to the development trend of the two curves of the map can see that the total of phosphorus-release rates will tends to close the gap with the time extented.
     6.We use hydrogel- liquid- exchange method to test the value of equilibrium concentration of the samples soaked for different time, and converted the value into the corresponding water potential value.We use two different fitting method to the values of the samples which content different amount of modified phosphate powder to get the empirical formula.The two empirical formulas areψ=-e~(a+bt) andψ=a-bc'.By comparing the correlation coefficient R of the two fitting curves,we find that the second fitting method is accurater than the first one. The limit water potential value of the six samples content different amount of modified phosphate powder calculated by extrapolation with the second empirical formulas are as follows:
     That is to say adding a small amount (5%) of modified phosphate powder to composite materials can reduce the water potential (59%),and increase the water absorbency capacity. However, the water potential of composite materials increase and water absorption capacity began to reduce with the addition of modified phosphate powder continued to increase.
     We also find that the absorbent time have the similar inluency on water potential and water absorbency of the composites at the same time. with the suction time goes, water potential of the composites become bigger and water absorption capacity becomme weaker while water absorbency ratio become bigger. there must be relevant relationship between the water potential and water abosrbency ratio. Composites which have the least water potential can absorbentnthe largest amount of water.
引文
[1]盛学斌.关于土壤磷素研究的现状与趋势[J].环境科学进展,1995,3(2):11-21
    [2]沈善敏.中国土壤肥力[M].北京:中国农业出版社.1998.
    [3]杨文治.黄土高原区域治理与评价[M].北京:科学出版社.1992.
    [4]赵其国.我国现代农业发展中的若干问题[J].土壤学报,1997,34(1):1-9
    [5]Marschner H. Mineral Nutrition of Higher Plants[M]. London:Academic Press. 1995.
    [6]鲁如坤,史陶钧.土壤磷素在利用过程中的消耗与积累[J].土壤通报,1980,5:6-8
    [7]沈善敏.论我国磷肥的生产与应用对策[J].土壤通报,1985.3:97-103;4:145-161
    [8]安藤淳平.世界磷矿资源与日本磷工业进展[J].土壤学进展,1985,13(3):52-55
    [9]曾先坤.中国化肥工业的现状与展望[J].土壤学报,1995,32(2):117-125
    [10]李庆逵,蒋柏藩,鲁如坤.中国磷矿的农业利用[M],江苏:江苏科学技术出版社,1992.
    [11]中国农业信息网,2005.
    [12]中国化肥信息网,2005.
    [13]李亚娟,改性磷矿粉在石灰石土壤上的肥效及其作用机理的研究[D].甘肃农业大学,2005.
    [14]时正元.我国不同类型磷矿粉直接施用的后效[J].土壤,1981,13:177-182
    [15]郭荣发,廖宗文,陈爱珠.活化磷矿粉在砖红壤上的施用效果[J].湖南农业大学学报(自然科学版),2004(30):233-235
    [16]魏静等.石灰性土壤上利用天然沸石活化磷矿粉的初步探讨[J].河北农业大学学报,1999,22(3):25-27
    [17]魏静等.不同活化剂对磷矿粉的活化作用[J].河北农业大学学报,2001,24(1):13-16.
    [18]王志玉.农用高吸水树脂的制备及其吸水/保水作用机制[D].中国科学院研究生院,2004.
    [19]邹新禧.超强吸水剂(第二版)[M].北京:化学工业出版社.2001.
    [20]吴季怀,林建明,魏月琳等.高吸水保水材料[M].北京:化学工业出版社,2005.
    [21]何绪生,廖宗文,黄培钊,葛仁山,李洪波,赵建华.保水剂与肥料互作及保水缓/控释肥料研究展望[J].土壤通报,2006.08,37(4):799-802
    [22] Batyuk V P, Malakhova Zh V, Fenenko L M. Use of polymers to maintain soil fertility I[A]. Oroshaemykh P, Egorov V, Kruskii N K. Probl. Genezisa Melior. Moscow: Pochv. Inst.1973:75-84
    [23]李长荣,邢玉芬,朱健康,等.高吸水性树脂与肥料相互作用的研究[J].北京农业大学学报,1989,15(2):187-192
    [24]李雅丽.含微量元素土壤保水剂的合成研究[J].化工时刊,2003,17(3):21-23
    [25]王莉莉,温国华,塔娜,等.含钾、氮的吸水保水剂的合成与性能研究[J].胶体与聚合物,2005,23(2):32-33
    [26]叶云,崔英德,尹国强等.保水长效复合肥的生产与应用[J].广州化工,2000,28(4):91-93,78
    [27]周斌.保水长效复合肥的生产及其应用[J].化肥工业,2003,30(4):55-56
    [28]沈上越,范力仁,凌辉等.粉煤灰-伊利石/PAA-AM高吸水复合材料的吸液性与释钾性能研究[J].矿物岩石,2007.09,27(3):6-11
    [29] Varisan V, Patel H.H. Aspergillus aculeatus as a rock phosphate solubilizer[J]. Soil Biology&Biochemistry, 2000(32): 559-565
    [30] Massimiliano F.Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphrite[J]. Bioresource Technology, 2000(73): 157-162
    [31] Philippe H, Gilkes R. J. Dissolution of phosphate rock in the rhizosphere of five plant species grown in an acid, P-fixing mineral substrate[J]. Geoderma, 1997, 75(3-4): 231-249
    [32] Schweiger P.F., Thingstrup L., Jakobsen L.Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi[J], Mycorrhiza. 1999(8): 207-213
    [33]赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与PH及分泌有机酸的关系[J].2003(23):5-7
    [34] Eklou A, Somado T. Combine effects of legumes with rock phosphorus on rich in west Africa[J].Agronomy Journal, 2003(95):1172
    [35] Hagin J, Shelly K. Effectiveness of partially acidulated phosphate rock as a source to plants in calcareous soils [J]. Nutrient Cycling in Agroecosystems (Historical Archive), 1985(8),2:117-127
    [36] Vanlauwe B.et al. Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by maize to previous herbaceous legume cropping and rock phosphate treatments[J].Soil Biology& Biochemistry, 2000(32): 2079-2090
    [37] Li Y., Zhang N., Xing W.Y Major factors influencing phosphorus use efficiency of winter wheat [J],Plant Nutri.&Ferti. Sci. 2002, 4:424-427
    [38] White P F, Nesbitt H J, Ros c. Local rock phosphate deposits are a good source of phosphorus fertilizer for rice production in Cambodia [J], Soil Science and Plant Nutrition, 1999,45(1): 51-63
    [39] Barrosoa C.B., Ahasb E. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates [J]. Applied Soil Ecology, 2005(29): 73-83
    [40] KpomblekouA K., Tabatabaib M.A. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils[J]. Agriculture, Ecosystems and Environment. 2003(10):275-284
    [41] 钟传青,黄为一.磷细菌P17对不同来源磷矿粉的溶磷作用及机制[J],土壤学报, 2004,41(6):96-102
    [42]赵小蓉,林启美,赵紫鹃,李保国.一株节杆菌溶解磷矿粉的动态[J],微生物学杂志,2003.26(5):16-18
    [43]王光华,周德瑞,杨谦,周克琴,赵英.低分子量有机酸对磷矿粉的释磷效应[J],农业环境科学学报,2004,23(1):81-85
    [44]赵冰,郑晓怀,张福锁,毛达如.肥田萝卜根分泌物对活化酸性土壤中低品位磷矿粉的作用[J],中国农业大学学报j 1999,4(3):63-66
    [45]吕松杰,朱晓卫.土壤磷素活化剂[J],农家参谋2005,8(7):9
    [46]王萍,王罡,季静,许景钢.土壤磷素活化剂对大豆的增产作用[J],作物杂志,2005,21(6):26-28
    [47]单德鑫,王光喜,许景钢.土壤磷素活化剂和专用肥对马铃薯产量及效益的影响[J],中国马铃薯,2002,16(5):16-17
    [48]范玉梅,巩存来,李长河.倍丰水稻专用肥、土壤磷素活化剂增效剂配合施用试验初报[J].农资科技,2002,17(2):14-160
    [49]王兆龙.表面吸附层对磷矿是磷素释放的影响[J].土壤学报,1998,35(1):65-69
    [50]陆景陵主编植物营养学(上册).北京:北京农业大学出版社,2003.
    [51]胡霭堂主编植物营养学(下册).北京:北京农业大学出版社,2003.
    [52] Hagin J.and Harrison R.Phosphate rocks and partially-acidulated phosphate rocks as controlled release P Fertilizers [J]. Nutrient Cycling in Agroecosystems (Historical Archive), 1993 (35) ,2:25-31
    [53] Haque I.,Lupwayi N.Z.and Sali H.Agronomic evaluation of unacidulated and partially acidulated Minjingu and Chilembwe phosphate rocks for clover production in Ethiopia[J]. European Journal ofAgronomy,1999(10):37-47
    [54]童云清,赵敏,李卫东.混合酸分解金河磷矿制富过磷酸钙[J],四川化工,1994(S1):3-7
    [55]吴平霄,毛小云,廖宗文.几种改性磷肥的X射线衍射特征初报[J],土壤与环境,1999.8(4):316-317
    [56]吴平霄,毛小云,廖宗文.改性磷肥的红外光谱谱学特征初报[J].华南农业大学学报,2000,21(2):20-21
    [57]吴平霄,廖宗文.高表面活性矿物——一类新型的控释材料[J].磷肥与复肥,2000,15:62-63
    [58] Allen,E.et al.Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures[J].Soil Sci.Soc.Am.l993(57):1368-1374
    [59] Allen,E.et al.Growth and nutrient uptake of wheat in clinoptilolite-phosphate rock substrates[J].Agro.J.1995(87):1052-1059
    [60] Allen,E.et al.Release rates of phosphorus,ammonium,and potassium in clino- ptilolite phosphate rock systems [J].Soil Sci.Soc.Am.J.1996(60): 1467-1472
    [61] 吴平霄.有机和无机(矿物)控释材料及其控释机理的研究(R).华南农业大学博士后 研究工作报告,2000.
    [62]毛小云,吴平霄,廖宗文.几种改性磷肥肥效研究初报[J].土壤与环境,1999,8(4):318-320
    [63]马涛等.造纸黑液木素在农业领域的应用研究近况[J].广东造纸,1997:125-127
    [64]乐学义等.造纸黑液木素在肥料中的应用[J].再生资源研究,2000(3):38-40
    [65]新型木质素缓释肥料氮磷利用率研究.
    [66]朱启红,伍钧.朱兆华,王德汉,廖宗文.改性造纸黑液木质素——氨氧化木质素(AOL)作为缓释氮肥的肥效研究[J].农业环境保护2001,20(2):98-100,119
    [67]张清东.木质素对土壤-磷吸附作用的影响[J].农业环境科学学报,2006,25(1):152-155
    [68]郑超,刘可星,廖宗文,等.改性木质素对砖红壤磷素有效性的影响[J].华中农业大学学报,2004,23(5):528-562
    [69]陈倩,穆环珍,黄衍初,等.木质素复合肥的研制及其对肥料氮磷有效性的影响[J].农业环境科学学报,2003,22(1):41-43
    [70]刘可星,王德汉,廖宗文.造纸黑液及木素对磷矿粉活化的研究初报[[J],广东造纸,1997:14-15
    [71]李淑仪.沙田柏使用活化处理磷肥的效果研究[J].生态科学,2001,20,(3):63-69
    [72]冯兆滨,张夫道,刘秀梅等.活化磷矿粉的生物学效果研究初报[J].土壤肥料,2006(2):38-41
    [73]魏建民,徐忠文,韩润林,李立民,武挨厚利用低品位磷矿粉生产腐植酸复合肥的研究[J].内蒙古农业大学学报(自然科学版),1996,40(3):95-98
    [74]杨春英.怎样施好过磷酸钙[J],江西农业科技,1987,(10):13
    [75]郭春艳,李恩荣,程荣军.浅谈土壤磷素活化剂[J].黑龙江农业,2002,6:44.干旱区研究,1996,17(3):78-79
    [76]张清东,张利等.木质素对土壤吸磷特性的影响[J].绵阳经济技术高等专科学校学报,1998,15(4):23-26
    [77]邱慧珍,张福锁.活化钙、镁磷肥对不同磷效益基因性冬小麦生长及磷效率影响[J].土壤通报,2002,33(4):295-299
    [78]李淑仪,廖新荣等.有机磷素活化剂对磷矿化活化效果研究[J].生态科学,2001,20(1,2):51-55
    [79] D.S.Ouyang,A.F.Mackenize,M.X.Fan,Avaliability of baned triple superphosphate with urea and phosphorus use efficiency bucron[J]. Nutrient cyling in agroeco- systems, 1999,53: 237-247
    [80]冯秀兰,李亚州.沸石作为N、P、K肥料增效剂实验研究[J].河北农业科学,1997,1(4):39-41
    [81]刘世亮,骆永明,介晓磊,等.ABT生根粉提高作物磷素利用率的效果探讨[J].土壤,2002,3:152-155
    [82] Mortvedt JJ,Mikkelsen RL. Mieronutrient fertilizer delivery systems using hydrophilic Polyacrylamides[J],US Patent,5221313(1993)
    [83]熊又升,张行峰,等.包膜缓释肥料养分释放速率评价方法的探讨[J].磷肥与复肥,1999,14(1):21-22
    [84]张士楚,傅积平,陈卫东.新型土壤保水调理剂.中国发明专利,1339552(2002).
    [85]武志杰,刘自江.无环境污染的花卉专用肥的生产.中国发明专利,1240781(2000).
    [86] Angel P. Water-retaining fertilizers, Britain Patent, 9800385 (2000).
    [87] Smith JD, Harrison HC. Evaluation of Polymers for control release Properties When incorporated with nitrogen fertilizer solutions[J].Commun.Soil SCI. Plant Anal. 1991, 22, 559-573
    [88]陈双基,李楠,李福绵.高吸水树脂对稀土元素的吸收释放及其对植物生长的影响[J].稀土.1991,6,45-48
    [89] Willianms KR, Conway ME.Control-release fertilizer incorporated into super- absorbent polyacrylate hydrogel,World Patent,9812154(1998)
    [90] Norio O,Arihiro S,Naoichi S. Water-absorbent Polymer gels as controlled- release agrochemical carriers [J].Jpn.Kokai Tokkyo Koho. JP 60141693A (1985)
    [91] Katsuji 0. Controlled-release solid fertilizers for hydroponics, Jpn. Kokai Tokkyo Koho. JP 61031377A(1986)
    [92] 罗学刚,杨勤.高吸水树脂在农业上的应用研究一NPK肥料对高吸水性聚合物吸水率的的影响及其吸附[J].西南农业学报.1992,5(3):59-64.
    [93] Mikkelsen RL, Behel AD,Williams HM. Addition of gel-forming hydrophilic polymers to nitrogen fertilizer solution [J].Fert.Res. 1993,36:55-61
    [94] Bajpai AK, Anjali G Water sorption behavior of highly swelling(Carboxy Methylcellulose-g-Polyacrylamide) hydrogel sand release of Potassium nitrate as agrochemical [J].Arbohyd.polym.2003,53:271-279
    [95] Bajpai AK,Anjali GSwelling dynamics of a macromolecular hydrophilic network and evaluation of its Potential for controlled release of agrochemicals, React. Funct.Polym. 2002,53:125-141
    [96]何佺,湛东中,陈庆民,余学海.乙丙三元胶磺酸型离聚物作为缓释化肥包膜材料的应用研究[J].高分子材料科学与工程.2000,16(5):64-66
    [97] Nobuaki T, Noriaki S, Kazuhisa E.Coating of fertilizer granules containing Polymeric water absorbents[J]. Jpn.Kokai Tokkyo Koho. JP2001328891A (2001)
    [98] Mazazumi U, Miehiyuki A.Delayed-action fertilizer granules coated with water-absorbing Polymers[J].Jpn.Kokai Tokkyo Koho.Jp 09309785A (1997)
    [99] Abraham J, Pillai VNR.Membrane-encapsulated controlled-release urea fertil- izers based on acrylamide copolymers[J]J. Appl.Polym.Sci.l996,60:2347-2351
    [100]吴春华,安鑫南.淀粉基缓释肥料的研制[J],南京林业大学学报.2002,26(5),21-23
    [101] Liu MZ, zhan FL, WuL,Guo MY.Preparation of slow release urea fertilizer with Preservation of soil moisture, J.Polym.Mater.2004,21:213-220
    [102] Liu MZ,Liang R,Zhan FL,LiuZ, Niu AZ.Synthesis of as low-release and super absorbent nitrogen fertilizer and its Properties, Polym. Ady. Teehnol. 2006, 17:430-438
    [103] Guo MY, Liu MZ, Hu Z, Zhan FL.Preparation and Properties of a slow release NP Compound fertilizer with superabsorbent and moisture preservation[J] , J.Appl. Polym.Sci. 2005, 96: 3132-3138
    [104] Guo MY, Liu MZ, Liang R, Zhan FL.Granular urea-formaldehydes low-release fertilizer with super absorbent and moisture preservation,J.Appl.Polym.Sci. 2006,99:3230-3235
    [105] Guo MY, Liu MZ, Zhan FL, Wu L.Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation [J].Ind. Eng,Chem.Res. 2005,44:4206-4211
    [106]何绪生.保水型包膜尿素肥料的研制及评价[D].北京:中国农业科学院研究生院,2004.
    [107] HelalyFM, Essawy HA, EI-nasharDE. Slow release of urea as a source of nitrogen from some acrylamide and acrylicacid hydrogels, polym-plast technol. 2005,44(2),253-263
    [108] Karadag E, Saraydin D, Caldiran Y, Guven O.Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses[J], PolyⅢ. Adv. Technol. 2000,11:59-68
    [109] Zhan FL, Liu MZ, Guo MY,Wu L.Preparation of superabsorbent polymer with slow-release phosphate fertilizer[J].J.Appl.Polym.Sci. 2004,92:3417-3421
    [110]穆环珍,曾文,黄衍初.木素氮肥增效剂研制与增产效应研究[J].农业环境保护.1998,18(6):251-253
    [111] Li A, Zhang JP, Wang AQ. Synthesis, characterization and water absorbency properties of poly(acrylicacid)/sodium humate superabsorbent composite, Polym. Adv. Teehnol. 2005,16:675-680
    [112] Zhang JP, Li A and Wang AQ.Study on superabsorbent composite.V.Synthesis, swe- lling behaviors and application of poly(acrylicacid-co-acrylamide)/sodium hum-ate/attapulgite superabsorbent composte,Polym.Adv.Teehnol. 2005,16:813- 820
    [113] Lunt OR, Oertli TJ.Controlled release of fertilizer minerals by encapsulating membrane: Ⅱ .Efficiency of soil moisture,mode of application, and other considerations related to use, Soil Science Soeiety Proceeding. 1962,584-587
    [114] Blouin M.Sulfur-coated fertilizers from controlled release: Pilot Plant Production, J.Agric.Food Chem. 1971,19:801-809
    [115]段平.缓效多营养包硫尿素氮溶出速率的实验研究[J].磷肥与复肥,2000,15(2):21-22
    [116] Savant NK, James AF.Urea release from osmoeote fertilizers in water and simulated Wet land rice soil, Commun.Soil Sci.plant Anal.l985,16(10):1071-1078
    [117] Gandeza AT, Shoji S, Yamada I.Simulation of crop response to Polyolefin coated urea I.field dissolution, Soil sci.Soc.Am.J.1991,55:1462-1467
    [118] Vallejo A. Nitrogen availability of soluble and slow release nitrogen fertilizer as assessed by electroultrafiltration, Fert.Res. 1993, 23:121-126
    [119] 廖松,樊小林,贺训平.包膜控释尿素保肥供肥效果及其机理的研究,西北农林科技大学学报.2001,29(6):13-17
    [120] 陈立军.复合缓释肥料中NP释放速度的红外光谱分析,西南农业大学学报2000,22(1):62-64
    [121] Woodhouse J, Johnson MS.Effect of superabsorbent polymers on survival and growth of crop seedlings, Agr.Water Manage.l991,20(1):63-70
    [122] Huttermann A, Zommorodi M, Reise K.Addition of hydrogels to soil for prolonging the survival of pinus halePensis seedlings subjeeted to drought, Soil Till. es.1999,50:295-304
    [123] Bakass KM, Mokhlisse A, Lallemant M.Absorption and desorption of liquid water by a superabsorbent Polynler: Effect of Polymer in the drying of the soil and the quality of certain plants, J.Appl.Polym.Sci.2002,83:234-243
    [124]范力仁,田惠卿,等.吸水材料的水势及非金属矿物/高分子吸水保水复合材料的水势研究[J].功能材料,2007增刊38卷:3291-3295
    [125]鲁如坤.我国的磷矿资源和磷肥生产消费-Ⅰ磷矿资源和磷肥生产[J],土壤,2004,36(1):1-4
    [126]吴初国.我国磷矿资源与磷肥工业的可持续发展(J],化肥工业,2002,29(4):19-21
    [127]鲁如坤.我国的磷矿资源和磷肥生产消费-Ⅱ磷肥消费和需求[J],土壤,2004,36(2):113-116
    [128]中国化学矿业协会.我国磷矿供需形势分析及对策建议[J],化工矿物与加工,2004,(5):1-3
    [129]柳正.我国磷矿资源的开发利用现状及发展战略[J],中国非金属矿及工业导刊,2006,1:21-23
    [130]田升平.中国磷矿基本特征及分布规律[J],化工矿产地质,2000,22(1):11-16
    [131]李亚娟,邱慧珍指导.改性磷矿粉在石灰性士壤上的肥效及其作用机理的研究[D],甘肃农业大学,2005.6:32-36
    [132]雷涵锡,王光火指导.三种磷矿粉的结构组成、化学活性及其在稻田土壤中的溶解动态规律[D],浙江大学,2004.6:3-6
    [133]吴平霄,廖宗文,毛小云.改性磷肥的结构特征及其增效机理的研究[J],植物营养与肥料学报,2000.6(3):287-292
    [134]冯兆滨,张夫道指导.活化磷矿粉的土壤反应和植物有效性研究[D],中国农业科学院,2006.6:3
    [135]杨于兴.X射线衍射分析[M].上海:上海交通大学出版社,1988:95-104
    [136]沈上越,范力仁,凌辉,陆丽辉.粉煤灰-伊利石/PAA-AM高吸水复合材料的吸液性与释钾性能研究[J],矿物岩石,2007.09,27(3):6-11
    [137]林松柏,林建明,吴季怀等.纤维素接枝丙烯酰胺/高岭土高吸水性复合材料研究[J]矿物学报,2002,22(4):299-302
    [138] 林松柏,林建明,吴季怀,魏月琳.聚丙烯酸/绢云母吸水性复合材料的合成与性能研究[J],2003.23(1):1-6
    [139] 李玲,丙烯酸/丙烯酰胺共聚超吸水性树脂的合成及其肥料缓释性能研究[D].华侨大学,2006.
    [140] Ryo Yoshida, Yukinari Okuyama, Kiyotaka Sakai, et al. Sigmoidal swelling profiles for temperature-responsive poly(N-isopropylacrylamide-co-butyl methacrylate)[J]. JMembrane Science, 1994, 89: 267-277
    [141] Enscore D J, Hopfraberg H B, Stannett V T. Effect of particle size on the mechanism controllingn-hexane sorption in glassy poly-styrene microspheres [J]. Polymer, 1977, 18:793-800
    [142]矿物岩石分析编写组.岩石矿物分析[M]。北京:地质出版社,1991.
    [143]郝建军,康宗利.植物生理学[M].北京:化学工业出版社,2005.
    [144]戈家英.水势概念的引入[J].高等函授学报(自然科学版),2000,13(5):53-54
    [145]郝建军,康宗利,于洋.植物生理学实验技术[M].北京:化学工业出版社,2007.
    [146]廖建良.“小液流法”测定植物组织水势初探[J].惠州大学学报(自然科学版),1996,12(4):98-99
    [147]王振英.小液流法测定植物水势毛细玻璃滴管的改进[J].实验技术与管理.1998,15(6):60-61
    [148]郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004
    [149]王军,阵祥增.热电偶水势测定仪[J].传感器技术,1997,16(5):41-45
    [150]杜建军,王新爱,廖宗文等.不同浸提条件对包膜控/缓释肥水中溶出率的印象[J].植物营养与植物学报.2005,11(1):71-78
    [151] Furuya M, Nakajima Y, Tanaka T. Theoretical analysis of closed-circuit grinding system based on comminution kinetics. Ind Eng Chem Progress Desevelop,1971,10(4):449-456
    [152]石艳丽,李珍,张高奇,马敬红,梁伯润.CMC/PNIPAAm半互穿网络水凝胶的溶胀动力学研究[J].功能高分子学报.2005.3,18(1):111-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700