考虑冻土—桩动力相互作用的长大桥梁地震响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:桩基桥梁结构是寒区线性交通工程的重要组成部分,其在强地震作用下的抗灾害性能对线路的安全运营具有重要影响。然而一些按照现行抗震规范设计的桥梁结构在近些年历次强地震中仍出现了大量破坏现象,表明了桥梁抗震设计理论及方法还需进一步的研究和发展。目前,在对寒区长大桥梁结构抗震性能进行研究分析时,通常需要综合考虑局部地形效应、桩-土动力相互作用、地震动多点激励以及地表土层冻融变化的影响。由于冻土物理、力学性质的复杂敏感性,使得对冻土环境中桩基动力特性进行深入研究成为分析寒区长大桥梁工程地震响应规律、评估其安全性能中不可或缺的内容。
     本文在国家自然科学基金重大灾变研究计划《强地震作用下冻土区长大桥梁桩-土-结构动力耦合效应研究》支持下,在前人研究的基础上主要完成了以下工作:
     1.开展了冻结粉质黏土的直剪试验及静、动三轴压缩试验,研究了该类冻土的摩擦角、粘聚力、动强度、动弹性模量以及阻尼比等物理量随负温及冻前含水量的变化关系,为相关计算参数的选择提供依据。
     2.研制了冻土-桩动力相互作用模型试验系统,介绍了动力加载系统性能参数的确定及其各组件的设计、模型试验箱的设计及制冷效果分析、加载工作架的设计等。验证试验结果表明该模型试验系统能提供适当的冻土环境,结构牢固,可较好地模拟分析冻土-桩相互作用的动力性能,为该领域及其他一些冻土问题的研究提供了良好的试验平台。
     3.基于自制模型试验系统,对-5℃、-3℃及表层融化冻土中模型桩基进行了水平向循环动力加载试验,研究了均匀冻结及上层融化冻土中模型桩基桩头的位移-荷载关系、桩基水平动刚度变化及桩身弯矩分布情况,并提出了层状冻土中考虑桩-土分离效应及摩擦效应的动力BNWF分析模型。
     4.建立了考虑桩、土材料非线性及二者接触效应的多年冻土地基中桩-墩结构动力耦合二维计算模型,研究了地层条件变化时,不同频谱特性地震动以SV波形式垂直入射下桥墩的动力响应情况。
     5.基于黏-弹性大工边界条件的外源地震动等效荷载输入方法,实现了瞬态平面SV波以不同角度入射时地震波动问题的数值模拟。并对寒区一典型河谷场地在地震动作用下的空间动力响应进行了计算分析,指出了考虑局部地形效应、地震波入射角度、地表融土厚度及地震动频谱特性的必要性,为该场址桥梁结构的地震响应分析提供了输入地震动。
     6.建立了寒区多跨简支梁桥和刚构桥的非线性地震响应分析模型,研究了局部地形效应、桩-土动力相互作用、地震波入射角度以及地表融土厚度对桥梁结构动力响应的影响。计算结果表明局部地形效应和桩-土动力相互作用对桥梁地震响应影响显著。
ABSTRACT:Bridge with pile foundations is an important component of linear traffic engineering, whose anti-seismic performance of has great influence on the safety operation of railway under strong earthquake. However, the earthquake damages of bridge structures designed by current seismic codes in bridge were very serious under some recent earthquakes. This phenomenon indicates that the seismic design theory and method of bridge used in present still need further research and development. At present, local topography effect, dynamic pile-soil interaction, multi-support excitation and frozen and thawed surface soil effect are need to consider when analysis the anti-seismic performance of grand bridge in cold area. Considering the physical and mechanical properties sensitivity of frozen soil, the further study on dynamic characters of pile in frozen soils becomes an indispensable content in analysis the seismic response of grand bridge engineering in cold region.
     In support of National Natural Science Foundation of China (90715013), the main studies in this dissertation are listed as follows:
     1. Direct shear test and static tri-axial and dynamic tri-axial compression tests of frozen sility soil were present, and the relationships of friction angle, cohesion, dynamic strength, dynamic elastic modulus, damping ratio and other physical quantities with temperature and moisture were studied. The test results can provid physical mechanics parameters of frozen sility caly for numerical calculations.
     2. A set of model experimental system for dynamic frozen soil-pile interaction was developed in this dissertation. Determination of performance parameters of dynamic loading system, design of model test chamber, analysis of refrigeration effect, design of loading frame and connection with experimental chamber were also introduced. The results of verification test show that the test system can supply frozen soil environment for experiments, can simulate and analyze the dynamic behaviors of frozen soil-pile preferably. Moreover, this system can be used in other researches on frozen soils.
     3. Based on the self-made model experimental system, experiments about dynamic property of model pile foundation under lateral dynamic loads in-5℃,-3℃and partially thawed permafrost were conducted. The displacement-force relationship of pile head, dynamic stiffness of pile foundation in horizontal direction and bending moment distribution of pile body in different permafrosts mentioned above were studied. At last, a dynamic BNWF model of dynamic frozen soil-pile interaction including separation effect and friction effect of pile and soil was proposed in this dissertation.
     4. A calculation model of dynamic pile-pier interaction system in permafrost considering the pile and soil material nonlinearities and contact effect between them was built, and the dynamic response of pier in different permafrost site under two earthquakes is studied.
     5. Based on the equivalent load method for earthquake input of the viscous-spring artificial boundary theory, numerical simulation of external source wave problem for obliquely incident transient plane SV wave was realized in ANSYS software. Seismic responses analysis of a typical valley site in cold region were carried out by method mentioned above. The results show that considering local topography effect, seismic incident angles, surface thaw soil thickness and seismic spectrum characteristics is very necessary.
     6. Nonlinear seismic response analysis models of a multi-span simply supported bridge and a rigid frame bridge were built, and effects of local topography effect, pile-soil dynamic interaction, seismic wave incident angle and the surface thawed soil thickness on the dynamic response of bridge structures were studied in this dissertation. The results show that the effects of topography and pile-soil dynamic interaction on seismic response of bridges have important influence than thawed soil thickness.
引文
[1]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [2]Gao Yunxue, Yang Yucheng, Tan Yingkai. Earthquake damage to brick buildings and its mitigation in cold region[C]. International Symposium on Cold Region Development. Harbin China,1988,2:1-8.
    [3]刘鸿绪,孙彦福,陈亚明等.季节冻土层对房屋地震破坏的影响[J].冰川冻士,1998,20(1):46-50.
    [4]郜新军.地震及列车竖向荷载作用下大跨桥梁动力响应分析研究[D].北京:北京交通大学博士学位论文,2011.
    [5]Meymand P J. Shanking table scale model tests of nonlinear soil-pile-superstructure interactionin soft clay [D]. Ph.D. Dissertation, University of Califonia Berkeley,1998.
    [6]伍小平.砂土-桩-结构相互作用振动台试验研究[D].上海:同济大学博士学位论文,2002.
    [7]Vinson T S, Chaichanavong T, and Li J C. Dynamic testing of frozen soils under simulated earthquake loading conditions[J]. Dyanmic Geotechnical Testing, ASTM STP 654, American Society for Testing and Materials,1978,196-227.
    [8]徐学燕,仲丛利,陈亚明,等.冻十的动力特性研究及其参数确定[J].岩十工程学报,1998,20(5):77-81.
    [9]王兰民,张冬丽,吴志坚,等.地温对冻土动力特性及其场地地震动参数的影响[J].中国地震,2003,19(3):195-205.
    [10]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [11]王蕾,赵成刚,王智峰.考虑地形影响和多点激励的大跨高墩桥地震响应分析[J].士木工程学报,2006,39(1):50-59.
    [12]韦晓.桩-土-桥梁结构相互作用振动台试验与理论分析[D].上海:同济大学博士学位论文,1999.
    [13]赵建锋.考虑土-结动力相互作用和多点输入的桥梁非线性地震响应分析[D].北京:北京工业大学博士学位论文,2007.
    [14]庄卫林,刘振宇,蒋劲松.汶川大地震公路桥梁震害分析与对策[J].岩石力学与工程学报,2009,28(7):1377-1387.
    [15]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [16]王青桥,韦晓,王君杰.桥梁桩基震害特点及其破坏机理[J].震灾防御技术,2009,4(2):167-173.
    [17]齐吉琳,马巍.冻土的力学性质及研究现状[J].岩土力学,2010,31(1):133-143.
    [18]Chaichanavong T. Dynamic properties of ice and frozen clay under cyclic triaxial loading conditions[D]. Ph.D. Thesis, Michigan State University,1976.
    [19]Singh S, Donovan N C. Seismic response of frozen-thawed soil systems[C]. Proceedings of 6th World Conference on Earthquake Engineering, Sarita Prakashan, Meerut, India,1977, Ⅲ: 2262-2267.
    [20]Vinson T S, Chaichanavong T, Czajkowski R L. Behavior of frozen clays under cyclic axial loading[J]. Journal of the Geotechnical Engineering Division, ASCE,1978,104(7):779-800.
    [21]Li J C, Baladi G Y, Andersland O B. Cyclic triaxial tests on frozen sand[J]. Engineering Geology,1979,13(4):233-246.
    [22]何平.饱和冻结粉土的动力特性[D].兰州:中国科学院硕士研究生学位论文,1992.
    [23]徐学燕,仲丛利.冻土动弹模、动泊桑比的确定[J].哈尔滨建筑大学学报,1997,30(4):23-29.
    [24]沈忠言,张家懿.围压对冻结粉土动力特性的影响[J].冰川冻土,1997,19(3):245-251.
    [25]吴志坚,王兰民,马巍,等.地震荷载作用下冻土的动力学参数试验研究[J].西北地震学报,2003,25(3):210-214.
    [26]王大雁,朱元林,赵淑萍,等.超声波法测定冻土动弹性模量力学参数试验研究[J].岩土工程学报,2002,24(4):612-615.
    [27]徐春华,徐学燕,邱明国,等.循环荷载下冻土的动阻尼比试验研究[J].哈尔滨建筑大学学报,2002,35(6):22-25.
    [28]赵淑萍,朱元林,何平,等.冻土动力学参数测试研究[J].岩石力学与工程学报,2003,22(S2):2677-2681.
    [29]Ling X Z, Zhu Z Y, Zhang F, et al. Dynamic elastic modulus for frozen soil from the embankment on Beiluhe Basin along the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology,2009,57(1):7-12.
    [30]Ting J M, Martin R T, Ladd C C. Mechanisms of strength for frozen sand[J]. Journal of Geotechnical Engineering,1983,109(10):1286-1302.
    [31]张长庆,何平,罗曼,等.振动荷载作用下长期强度评价[J].中国科学院兰州冰川冻十所冻土工程国家重点实验室年报,1993,3:165-172.
    [32]仲丛利.冻融场地的动力特性研究[D].哈尔滨:哈尔滨建筑大学硕十学位论文,1996.
    [33]王丽霞,凌贤长,徐学燕,等.青藏铁路冻结粉质粘土动静三轴试验对比[J].岩土工程学报,2005,27(2):202-205.
    [34]朱占元,凌贤长,胡庆立,等.中国青藏铁路北麓河路基冻土动应变速率试验研究[J].岩土工程学报,2007,29(10):1472-1476.
    [35]张淑娟,赖远明,李双洋,等.冻土动强度特性试验研究[J].岩土工程学报,2008,30(4):595-599.
    [36]高志华,石坚,张淑娟,等.高含冰量冻土动强度和残余应变的试验研究[J].冰川冻土,2009,31(6):1143-1149.
    [37]吴志坚.温度对动荷载作用下冻土动力特性影响的试验研究[D].兰州:中国地震局硕士学位论文,2002.
    [38]沈忠言,张家懿.振动荷载作用下饱水冻结粉土的单轴抗压强度[J].冰川冻土,1996,18(2):162-169.
    [39]沈忠言,张家懿.冻结粉十的动强度特性及其破坏准则[J].冰川冻土,1997,19(2):141-148.
    [40]沈忠言,张家懿.冻结粉土动强度的荷载效应及长期极限动强度[J].冰川冻土,1998,20(1):42-45.
    [41]Novak M. Piles under dynamic loads[C]. Proceedings of 2nd International Conference on Recent Advances in Geotechnical Enigneering and Soil Dynamics, St. Louis,1991, Vol.3:2433-2456.
    [42]Pender M J. Aseismic pile foundation design analysis[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1993,26(1):49-160.
    [43]卢华喜.成层地基-桩基-上部结构动力相互作用理论分析与试验研究[D].长沙:湖南大 学博士学位论文,2006.
    [44]Stelzer D L. Cyclic load effects on model pile behavior in frozen sand[D]. Michigan:Michigan State University,1989.
    [45]张建明,朱元林,张家懿.动荷载下冻土中模型桩的沉降试验研究[J].中国科学(D辑),1999,29(增1):27-33.
    [46]李强,王奎华,谢康和.冻融作用下基桩竖向振动动力特性研究[J].岩土工程学报,2006,28(1):48-55.
    [47]Vaziri H, Han Y C. Full-scale field studies of the dynamic response of piles embedded in partially frozen soils[J]. Canadian Geotechnical Journal,1991,28(5):708-718.
    [48]Han Y C, Vaziri H, Hubble D. Dynamic response of pile foundations in frozen soils[C]. Canadian Geotechnical Conference. [S.1.]:[s. n.],1991,40:1-7.
    [49]Suleiman M T, Sritharan S, White D J. Cyclic lateral load response of bridge column-foundation-soil systems in freezing conditions[J]. Journal of Structural Engineering,2006, 132(11):1745-1754.
    [50]Sritharan S. White D, Suleiman M T. Bridge column foundation-soil structure interaction under earthquake loads in frozen conditions[C].13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada,2004.
    [51]Sritharan S, Suleiman M T, White D J. Effects of seasonal freezing orr bridge column-foundation-soil interaction and their implications [J]. Earthquake Spectra,2007,23(1): 199-222.
    [52]Wotherspoona L M, Sritharan S, Pender M J. Modelling the response of cyclically loaded bridge columns embedded in warm and seasonally frozen soils[J]. Engineering Structures,2010, 32(4):933-943.
    [53]Xiong F, Yang Z H. Effects of seasonally frozen soil on the seismic behavior of bridges[J]. Cold Regions Science and Technology,2008,54(1):44-53.
    [54]Yang Z H, Dutta U, Xiong F, et al. Seasonal frost effects on the dynamic behavior of a twenty-story office building[J]. Cold Regions Science and Technology,2008,51(1):76-84.
    [55]陈兴冲,高峰,严松宏.多年冻土区桥梁的地震反应[J].世界地震工程,2005,21(4):26-31.
    [56]高峰,陈兴冲,严松宏.季节性冻土区和多年冻土区桥梁结构地震反应分析[J].铁道学报,2006,28(5):71-77.
    [57]李涛,魏庆朝,刘林.青藏铁路多年冻土区桥梁地基融化时的抗震安全性分析[J].铁道学报,2005,27(4):104-109.
    [58]Reissner E S. Axialsymmetrische durch eine schuttelnde masse erregte schwingungen eines homogenen elastischen halbraunes[J]. Ingenieur-Archiv,1936,7(6):381-396.
    [59]Bycroft G N. Forced vibration of rigid circular plate on a semi-infinite elastic space and on elastic stratum philosophical [J]. Trans, Royal soc., London U.K., No.248:327-368.
    [60]Richart F E, Whitman R V. Comparison of footing vibration tests with theory[J]. J SM, ASCE, 1967,93(6):148-168.
    [61]Lysmer J, Richart F E. Dynamic response of footing to vertical loading[J]. J SM, ASCE,1966, 95(4):65-91.
    [62]Wolf J P, Somaini D R. Approximate dynamic model of embedded foundation in time domain[J]. Earthquake Engineering and Structure Dynamic,1986,14:683-703.
    [63]De Barros F C P, Luco J E. Discrete models for vertical vibrations of surface and embedded foundation[J]. Earthquake Engineering and Structural Dynamics,1990,19(2):289-303.
    [64]栾茂田,林皋.地基动力阻抗的双白由度集总参数模型[J].大连理工大学学报,1996,36(4):477-481.
    [65]Novak M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal,1974,11: 574-598.
    [66]Novak M. Vertical vibration of floating piles[J]. Journal of Engineering Mechanics Division, ASCE,1977,103(EM1):153-168.
    [67]Ettouney M M.; Brennan J A.; Forte M F. Dyanmic behavior of pile groups[J]. Journal of Geotechnical Engineering,1983,109(3):301-317.
    [68]Han Y C. Dyanamic Beahaviour of pile foundations with soil-pile interaction[D]. Newfoundland:Memorial Unversity of Newfoudland.
    [69]Gazetas G, Dobry R. Horizontal response of piles in layered soils[J]. Journal of Geotechnical Engineering,1984,110(1):20-40.
    [70]刘宗贤,李玉亭.桩基础在阻尼与分层弹性地基场地土波动电话号上的横向地震反应分析[J].地震工程与工程振动,1994,14(3):47-59.
    [71]干刚,吴世明.桩基水平振动动力特性研究[J].浙江大学学报,1996,10(5):56-58.
    [72]王慧,杨光辉,张鸿儒.桩-土体系运动想到作用参数分析[J].工程力学,1998,(增):527-533.
    [73]孔德森.桩-土相互作用计算模型及其在桩基结构抗震分析中的应用[D].大连:大连理工大学,2004.
    [74]Matlock H, Foo S H, Bryant L L. Simulation of lateral pile behavior[A]. Proceeding of Earthquake Engineering and Soil Dynamic, ASCE[C]. Pasadens, Calfornia,1978,7:600-619.
    [75]Kagawa T, Kraft J, Leland M.. Seismic p-y responses of flexible piles[J]. Journal of the Geotechnical Engineering Division,1980,106(8):899-918.
    [76]Nogami T, Otani J, Konagai K. Nonlinear soil-pile interaction model for dynamic lateral motion[J]. Journal of Geotechnical Engineering, ASCE,1992,118(1):89-106.
    [77]Nogami T, Konagai K, Otani J. Nonlinear time domain numerial model for pile group under transient dynamic forces[C]. Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dyanmic, St. Louis, Missouri,1991, Vol.1: 11-15.
    [78]El Naggar M, Novak M. Effect of foundation nonlinearity on modal properties of offshore towers[J]. Journal of geotechnical engineering,1995,121(9):660-668.
    [79]Boulanger R W, Curras C J, Kutter B L, et al. Seismic soil-pile-structure interaction experiments and analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999,125(9):750-759
    [80]Curras C J, Bounlanger R W, Kutter B L, et al. Dynamic experiments and analysis of a pile-group-supported structure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001,127(7):585-596.
    [81]El Naggar M H, Shayanfar M A, Kimiaei M, et al. Simplified BNWF model for nonlinear seismic response analysis of offshore piles with nonlinear input ground motion analysis[J]. Canadian Geotechnical Journal,2005,42(2):365-380.
    [82]Allotey N, El Naggar M H. Generalized dynamic Winkler model for nonlinear soil-structure interaction analysis[J]. Canadian Geotechnical Journal,2008,45(4):560-573.
    [83]Allotey N, El Naggar M H. A numerical study into lateral cyclic nonlinear soil-pile response[J]. Canadian Geotechnical Journal,2008,45(9):1268-1281.
    [84]Allotery N, Foschi R. Coupled p-y t-z analysis of single piles in cohesionless soil under vertical and/or horizontal ground motion[J]. Journal of Earthquake Engineering,2005,9(6):755-775.
    [85]朱晞,王大庆.桩基桥墩考虑土-结构相互作用抗震计算方法的研究[J].铁道学报,1992,23(4):81-90
    [86]郑海荣.桩-土-上部结构(桥墩)-流体相互作用体系的地震反应分析[J].桥梁建设,1992,10(3):67-74
    [87]孙利民,张晨南,范立础.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报,2002,30(4):409-415.
    [88]范敏,解明雨,邬瑞峰.土-桩-结构相互作用体系的非线性地震反应分析[J].地震工程与工程振动,1985,5(3):6-12.
    [89]袁万城.大跨度桥梁空间非线性地震反应分析[D].上海:同济大学博士学位论文,1990.
    [90]范立础,袁万城,胡世德.上海南浦大桥纵向地震反应分析[J].土木工程学报,1992,25(3):2-8.
    [91]胡世德,范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报,1994,22(4):433-438.
    [92]胡胜刚.基于p-y曲线模型的桩基非线性性状分析研究[D].武汉:武汉理工大学硕士学位论文,2005.
    [93]李雨润,袁晓铭,梁艳.桩-液化土相互作用p-y曲线修正计算方法研究[J].岩土工程学报,2009,31(4):595-599.
    [94]Clough R, Woodward R. Analysis of Embankment Stresses and Deformations[J]. Journal of Geotechnical and Geoenvironmental Engineering,1966,122(7):578-584.
    [95]Blaney G, Kausel E, Roesset J. Dynamic Stiffness of Piles[C]. Proceedings of 2nd International Conference of Numerical Methods in Geomechanics. Blacksburg,1976, Vol.2:1001-1012.
    [96]Angelides D, Roesset J. Nonlinear Lateral Dynamic Stiffness of Piles[C]. Journal of Geotechnical Engineering, ASCE,1981,107(11):1443-1460.
    [97]Wolf J, Von Arx G. Impedance Functions of a Group of Vertical Piles[C]. Proceedings of ASCE Conference on Earthquake Engineering and Soil Dynamics. Pasadena,1978, Vol.2: 1024-1041.
    [98]Lu X L, Li P Z, Chen B, et al. Computer simulation of the dynamic layered soil-pile-structure interaction system[J]. Canadian Geotechnical Journal,2005,42(3):742-751.
    [99]Chang D D, Boulanger R W, Brandenberg S J, et al. Dynamic analyses of soil-pile-structure interaction in laterally spreading ground during earthquake shaking[C]. Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground-Workshop, 2006,145:218-229.
    [100]Chu D M, Kevin T. Effects of soil plasticity in seismic soil-pile-structure interaction[C].8th US National Conference on Earthquake Engineering 2006, Vol.11:6542-6551.
    [101]赵振东,傅铁铭,土歧宪三.桩头同集中荷载作用下桩-土系统的非线性动力性能分析[J]. 地震工程与工程振动,1997,17(3):100-109.
    [102]卢华喜,梁平英,尚守平.成层地基-桩基-结构动力相互作用体系的计算分析[J].岩土工程学报,2007,29(5):705-711.
    [103]凌贤长,徐鹏举,于恩庆,等.液化场地桩-土-桥梁结构地震相互作用振动台试验数值模拟方法研究[J].地震工程与工程振动,2008,28(3):172-177.
    [104]刘立平.水平地震作用下桩-土-上部结构弹塑性动力相互作用分析[D].重庆:重庆大学博士学位论文,2004.
    [105]李威.桩-土-结构相互作用体系非线性地震反应分析[D].长沙:湖南大学硕士学位论文,2008.
    [106]王满生,周锡元,胡聿贤.桩土动力分析中接触模型的研究[J].岩土工程学报,2005,27(6):616-620.
    [107]卢华喜,尚守平,余俊.桩土动力分析中二维接触模型的研究[J].工程力学,2007,24(9):129-133.
    [108]徐静,李宏男,李钢,等.考虑桩-土-结构动力相互作用的输电塔地震反应分析[J].工程力学,2009,26(9):24-29.
    [109]张亚旭,王修信,庄海洋.接触对桩-土-结构动力相互作用体系的影响[J].地震工程与工程振动,2009,29(6):176-181.
    [110]Kubo K. Vibration Test of a Structure Supported by Pile Foundation[C]. The 4th World Conference on Earthquake Engineering, Santiago.1969, (6):1-12
    [111]Tamura S, Suzuki Y, Tsuchiya T, et al. Dynamic Response and Failure Mechanisms of a Pile Foundation during Soil Liquefaction by Shaking Table Test with a Large-Scale Laminar Shear Box[C]. The 12th World Conference on Earthquake Engineering, New Zealand.2000.
    [112]Tokimatsu K, Suzuki H. Pore Water Pressure Response around Pile and its Effects on p-y Behavior during Soil Liquefaction[J]. Soils and Foundations.2004,44(6):53-63.
    [113]Chau K T, Shen C Y, Guo X. Nonlinear seismic soil-pile-structure interactions:Shaking table tests and FEM analyses[J]. Soil Dynamics and Earthquake Engineering,2009,29(2): 300-310.
    [114]Liu H, Chen H. Test on Behavior of Pile Foundation in Liquefiable Soils[C]. The 2nd International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics, Saint Louis Missouri.1991,1(1):233-235
    [115]Wilson D, Boulanger R, Kutter B, et al. Dynamic centrifuge tests of pile supported structures in liquefiable sand[R]. University of California, Davis,1995.
    [116]Brandenberg S J, Boulanger R W, Kutter B L, et al. Behavior of Pile Foundations in Laterally Spreading Ground during Centrifuge Tests [J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(11):1378-1391.
    [117]韦晓,范立础,王君杰.考虑桩-土-桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97.
    [118]陈跃庆,吕西林,李培振,等.不同土性的地基-结构动力相互作用振动台模型试验对比研究[J].土木工:程学报,2006,39(5):57-64.
    [119]凌贤长,郭明珠,王东升,等.液化场地桩基桥梁震害响应大型振动台模型试验研究[J].2006,27(1):7-22.
    [120]唐亮,凌贤长,徐鹏举,等.液化场地桥梁群桩基地震响应振动台试验研究[J].岩土工程 学报,2010,32(5):672-680.
    [121]唐亮,凌贤长,徐鹏举.承台型式对液化场地桥梁桩-柱墩地震响应影响振动台试验研究[J].地震工程与工程振动.2010,30(1):155-160.
    [122]苏栋,李相菘.可液化土中单桩地震响应的离心机试验研究[J].岩土工程学报,2006,28(4):423-427.
    [123]苏栋,李相菘.水平多向荷载下桩-士相互作用初探[J].岩土力学,2008,29(3):603-608.
    [124]马亢,裴建良.桩筏基础-土动力相互作用的离心机模型试验研究[J].岩石力学与工程学报,2011,30(7):1488-1495.
    [125]Yao S, Kobayashi K, Yoshida N, et al. Interactive behavior of soil-pile-superstructure system in transient state to liquefaction by means of large shake table tests[J]. Soil Dynamics and Earthquake Engineering,2004,24(5):397-409.
    [126]Shirato M, Nonomura Y; Fukui J, et al. Large-scale shake table experiment and numerical simulation on the nonlinear behavior of pile-groups subjected to large-scale earthquakes[J]. Soils and Foundations,2008,48(3):375-396.
    [127]Haigh S K, Gopal M. Centrifuge modelling of pile-soil interaction in liquefiable slopes[J]. Geomechanics and Engineering,2011,3(1):1-16.
    [128]Gao X, Ling X Z, Tang L, et al. Soil-pile-bridge structure interaction in liquefying ground using shake table testing[J]. Soil Dynamics and Earthquake Engineering,2011,31(7): 1009-1017.
    [129]Scott R, Tsai C, Steussy D, et al. Full-scale dynamic lateral pile tests[C]. The 12th Offshore Technology Conference, OTC 4203, Houston,1982, Vol.1:435-450.
    [130]Ting J, Scott R. Static and dynamic lateral group action[C]. Proceedings of 8th World Conference on Earthquake Engineering, San Francisco,1987, Vol.3:641-643.
    [131]Han Y C, Novak M. Dynamic behavior of single piles under strong hamonic excitation[J]. Journal of Canadian Geotechnical,1988,25(3):523-534.
    [132]El-Marsafawi, Han Y C, Novak M. Dynamic experiments on two pile groups[J]. Journal of Geotechnical Engineering, ASCE,1992,118(4):576-592.
    [133]王海东.地基-桩(筏)-上部结构动力相互作用分析与大比例模型试验研究[D].长沙:湖南大学博士学位论文,2005.
    [134]武芸.大比例士-桩基-框架模型动力相互作用试验模拟分析[D].长沙:湖南大学硕士学位论文,2005.
    [135]杜修力,李立云.饱和多孔介质近场波动分析的一种粘弹性大工边界[J].地球物理学报,2009,51(2):575-581.
    [136]钱文福.高墩大跨连续钢构桥的地震反应分析[D].西安:长安大学硕十学位论文,2005.
    [137]夏志华.大跨度连续刚构桥地震反应分析[D].成都:西南交通大学硕士学位论文,2003.
    [138]Yamamura N, Tanaka H. Response analysis of flexible MDOF system for multiple-support seismic excitation[J]. Earthquake Engineering and Structural Dynamics,1992, (19): 345-357.
    [139]Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations[J]. Earthquake Engineering and Structural Dynamics,1992,21(8):1107-1128.
    [140]Heredia-Zavoni E, Vanmarcke E H. Seismic random vibration analysis of multi-support structural systems[J]. Journal of Engineering Mechanics, ASCE,1994,120(5):1107-1128.
    [141]刘洪兵,朱晞.大跨度斜位桥多支撑激励地震响应分析[J].土木工程学报,2001,34(6):38-44.
    [142]林家浩,张亚辉(著).随机振动的虚拟激励法[M].北京:科学出版社,2006.
    [143]Lin J H, Zhang Y H, Li Q S, et al. Seismic spatial effects for long-span bridges using the pseudo excitation method[J]. Engineering Structures,2004,26(9):1207-1216.
    [144]王涉波.大型桥梁抗震反应谱分析理论与应用研究[D].上海:同济大学博士学位论文,1997.
    [145]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213-1219.
    [146]Carassale L, Tubino F, Solari G. Seismic response of multi-supported structures by proper orthogonal decomposition[C]. Proceeding International Conference on Advances in Structural Dynamic, Hong Kong:Elsevier Science Ltd,2000,827-834.
    [147]Dumanoglu A A, Severn R T, Stochastic response of suspension bridges to earthquake forces[J]. Earthquake Engineering and Structural Dynamics,1990,19:133-152.
    [148]李建俊,林家浩,张文首,等.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用,1995,12(4):445-451.
    [149]林家浩,李建俊,张文首.结构受多点非平稳随机地震激励的响应[J].力学学报,1995,27(5):567-576.
    [150]钟万勰,林家浩.大跨度桥梁分析方法的一些进展[J].大连理工大学学报,2000,40(2):127-135.
    [151]Triunac M D. Surface motion of semi-cylindrical alluvial valley for incident plane SH waves[J]. Bulletion of Seismological Society of America,1971,61(6):1755-1770.
    [152]Lee V M. Three dimensional diffraction plane P, SV and SH wave by a hemispherical alluvial valley[J]. Soil Dynamics and Earthquake Engineering,1984,3(3):133-144.
    [153]Lee V M, Cao H. Diffraction of SV by circular canyons of various depth[J]. Journal of Engineering Mechanics, ASCE,1989,115(9):2035-2056.
    [154]Cao H, Lee V M. Scattering and diffraction of plane P waves by circular-cylindrical canyons with variable depth to width ration[J]. Soil Dynamic and Earthquake Engineering,1990,9(3): 275-284.
    [155]崔志刚,邹永超,刘殿魁.SH波对圆弧型凸起地形的散射[J].地震工程与工程振动,1993,18(4):8-14.
    [156]袁晓铭,廖振鹏.任意回弧型凸起地形对平面SH波的散射[J].地震工程与工程振动,1996,16(2):1-13.
    [157]李伟华,赵成刚.圆弧形凹陷饱和土场地对平面P波散射问题的解析解[J].地球物理学报,2003,46(4):539-546.
    [158]李伟华,赵成刚.饱和土半空间圆柱形孔洞对平面P波的散射[J].岩土力学,25(12):1868-1872.
    [159]李伟华,赵成刚.饱和土沉积谷场地对平面SV波的散射问题的解析解[J].地球物理学报,2004,47(5):912-919.
    [160]梁建文,严林隽.圆弧形层状沉积谷地对入射平面SV波散射解析解[J].固体力学学报,2003,24(2):235-242.
    [161]梁建文,尤红兵.层状半空间中洞室对入射平面P波的放大作用[J].地震工程与工程振 动,2005,25(2):16-22.
    [162]董俊,赵成刚.三维半球形凹陷饱和土场地对平面P波散射问题的解析解[J].地球物理学报,2005,48(3):681-688.
    [163]董俊,赵成刚.半球形凹陷饱和土半空间对平面SV波三维散射问题的解析解[J].地球物理学报,2005,48(6):1423-1431.
    [164]张郁山.圆弧状多层沉积谷地在平面P波入射下稳态响应的解析解[J].地球物理学报,2008,51(3):869-880.
    [165]张郁山.圆弧状多层沉积谷地在平面SV波入射下的动力响应[J].地球物理学报,2009,52(6):1547-1555.
    [166]王蕾.大跨度刚构桥地震响应分析及振动台试验研究[D].北京:北京交通大学,2010.
    [167]Ashford S A, Si tar N. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff[J]. Bulletin of the Seismological Society of America,1997,87(3):701-710.
    [168]Bouckovalas G D, Papadimitriou A G. Numerical evaluation of slope topography effects on seismic ground motion[J]. Soil Dynamic and Earthquake Engineering,2005,27(7-10): 547-558.
    [169]李山有,马强,韦庆海.地震体波斜入射下的断层台阶地震反应分析[J].地震研究,2005,28(3):277-281.
    [170]车伟,罗奇峰.复杂地形条件下地震波的传播研究[J].岩土工程学报,2008,30(9):1333-1337.
    [171]周国良,李小军,侯春林,等.SV波入射下河谷地形地震动分布特征分析[J].岩土力学,2012,33(4):1161-1166.
    [172]刘必灯,周正华,刘培玄,等.SV波入射情况下V型河谷地形对地震动的影响分析[J].地震工程与工程振动,2011,31(2):17-24.
    [173]Bonganoff J L, Goldberg J E, Schiff A J. The effect of ground transmission time on the response of long structures[J]. Bulletin of the Seismological Society of America,1965,55: 627-634.
    [174]Nakamura Y, Kiureghian A D, Liu D. Multiple-support response spectrum analysis of the Golden Gate bridge[R]. Earthquake Engineering Research Center, California Univ., Richmond,1993.
    [175]Allam S M, Datta T K. Analysis of cable-stayed bridges under multi-component random ground motion by response spectrum method[J]. Engineering Structure,2000,20: 1367-1377.
    [176]Allam S M, Datta T K. Response spectrum analysis of suspension bridges for random ground motion[J]. Journal of Bridge Engineering,2000,325-337.
    [177]刘洪兵,范立础.大跨桥梁考虑地形及多点激励的地形响应分析[J].同济大学学报,2003,31(6):641-646.
    [178]项海帆.斜张桥在行波作用。下的地震响应分析[J].同济大学学报,1983,2:1-9.
    [179]陈幼平,周宏业.斜拉桥地震反应的行波效应[J].土木工程学报,1996,29(6):63-68.
    [180]Dumanogiu A A, Severn R T. Seismic response of modern suspension bridge to asynchronous vertical ground motion[J]. Proc. instnCiv. Engrs. Part2,1987,83(4):701-730.
    [181]Dumanogiu A A, Severn R T. Seismic response of modern suspension bridge to asynchronous longitudinal and lateral ground motion[J]. Proc. InstnCiv. Engrs. Part2,1989,87(1):73-86.
    [182]刘吉柱.大跨度拱桥地震响应的行波效应分析[D].上海:同济大学博士学位论文,1987.
    [183]袁万城,王玉贵,杨玉民.曲线梁桥空间地震响应分析[C].第十二届全国桥梁学术会议文集,广州,1996.
    [184]李忠献,史志利.行波激励下大跨连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(2):68-76.
    [185]李永波,张鸿儒,郜新军.考虑桩-土相互作用的多年冻土区多跨简支梁桥地震响应分析[J].工程力学,2012,29(11):183-190.
    [186]周国良,李小军,李铁萍,等.SV波入射下峡谷地形对多支撑大跨桥梁地震反应影响分析[J].岩土力学,2012,33(5):1572-1578.
    [187]Zerva A. Response of multi-span beams to spatially incoherent seismic ground motions[J]. Earthquake Engineering and Structural Dynamics,1990,19(6):819-832.
    [188]Harichandran R S, Hawwari A, Sweidan B N. Response of long-span bridges to spatially varying ground motion[J]. Journal of Structural Engineering,1996,122(5):476-484.
    [189]Betti R, Abdel-Ghaffar A M, Niazy A S. Kinematic soil-structure interaction for long-span cable-supported bridges[J]. Earthquake Engineering and Structural Dynamics,1993,22(5): 415-430.
    [190]Soyluk K, Dumanoglu A A. comparison of asynchronous and stochastic dynamic response of cable-stayed bridges[J]. Engineering Structures,2000,22(5):435-445.
    [191]王君杰,王前信,江近仁.大跨拱桥在空间变化地震动下的响应[J].振动工程学报,1995,8(2):119-126.
    [192]范立础,王君杰,陈玮.非一致地震激励下大跨度斜位桥的响应特征[J].计算力学学报,2001,18(3):358-363.
    [193]史志利,李忠献,陈平.大跨度斜拉桥多点激励地震反应分析[J].特种结构,2004,21(2):46-50.
    [194]马小杰,张建明,常小晓,等.高温-高含冰量冻结黏土强度试验研究[J].岩士力学,2008,29(9):1498-2502.
    [195]高志华,赖远明,熊二刚,等.循环荷载作用下高温-高含冰量冻土特性试验研究[J].岩土力学,2010,31(6):1744-1751.
    [196]张淑娟.静动荷载及冻融作用下冻土力学性质研究[D].中国科学院寒区旱区环境与工程研究所博士学位论文,2007.
    [197]吴紫汪,马巍.冻土强度与蠕变[M].兰州:兰州大学出版社,1994.
    [198]马巍,吴紫汪,张长庆.冻土的强度与屈服准则[M].冰川冻土,1993,15(1):129-133.
    [199]陈肖柏,刘建坤,刘鸿绪,等.土的冻结作用与地基[M].北京:科学出版社,2006.
    [200]施烨辉.列车荷载和冻融循环作用下冻土路基稳定性研究[D].北京:北京交通大学博十学位论文,2011.
    [201]HA崔托维奇(著),张长庆,朱元林(译).冻土力学[M].北京:科学出版社,1985.
    [202]Stevens H W. Viscoelastic properties of frozen soil under vibratory loads[C]. North American Contribution to the Second International Conference on Permafrost. National Academy of Sciences, Washington, D.C.,1973,400-409.
    [203]孙学先,张慧,田明.多年冻士区灌注桩竖向抗拔承载力试验研究[J].岩士力学,2007,28(10):2110-2114.
    [204]Neukirchner R J. Analysis of laterally loaded piles in permafrost[J].Journal of Geotechnical Engineering,1987,113(1):15-29.
    [205]Foriero A, St-laurent N, Ladanyi B. Laterally loaded pile study in permafrost of northern Quebec, Canada[J]. Journal of Cold Regions Engineering,2005,19(3):61-84.
    [206]汪仁和,王伟,陈永锋.冻土中单桩抗压承载力模型试验研究[J].冰川冻士,2005,27(2):188-193.
    [207]程永锋,鲁先龙,刘华清,等.青藏铁路110kV输电线路冻土桩基模型试验研究[J].岩石力学与工程学报,2004,23(增1):4378-4382.
    [208]唐松涛.DX旋挖挤扩灌注桩单桩及群桩承载机理及沉降研究[D].北京:北京交通大学博士学位论文,2012.
    [209]日本铁道技术综合研究所铁道构造物等设计标准同解说.基础构造物·抗土压构造物[R].东京:日本铁道技术综合研究所,2000.
    [210]郭恩栋,王东升,陆鸣.青新交界8.1级地震生命线工程震害[J].地震工程与工程振动,2002,22(3):77-81.
    [211]陈永明,王兰民,代炜,等.2001年昆仑山口西8.1级地震区的冻土及地震破坏特征[J].中国地震,2004,20(2):161-169.
    [212]蔡中民,朱元林,张长庆.冻土的粘弹塑性模型以及材料参数的确定[J].冰川冻土,1990,12(1):31-40.
    [213]张建民,谢定义.饱和砂土动力理论研究进展[J].力学进展,1994,24(2):187-201.
    [214]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理由与应用[M].上海:同济大学出版社,1997.
    [215]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [216]杜修力,赵密,王进廷.近场波动模拟的人工应力边界条件[J].力学学报,2006,28(1):49-56.
    [217]陆鸣,李小军.青藏铁路四座主要桥梁工程场地地震安全评估报告[R].哈尔滨:中国地震局工程地震研究中心,2001.
    [218]马立峰.动荷载条件下多年冻土区斜坡路基稳定性研究[D].北京交通大学博士学位论文,2010.
    [219]Zhao C G, Dong J, Gao F P. An analytical solution of three-dimensional diffraction of plane P waves by a hemispherical alluvial valley with saturated soil deposits[J]. Acta Mechanics Solida Sinica,2006,19(3):141-151.
    [220]Zhao C G, Dong J, Gao F P. Seismic responses of a hemispherical alluvial valley to S V waves: a three-dimensional analytical approximation[J]. Acta Mechanics Sinica,2006,22(6): 547-557.
    [221]Zhang C H, Zhao C B. Effects of canyon topography and geological conditions on strong ground motion[J]. Int Journal of Earthquake Engineering and Structural Dynamics,1988, 16(1):81-97.
    [222]Zhao C B, Valliappan S. Incident P and SV wave scattering effects under different canyon topographic and geological conditions[J].Soil Dynamic and Earthquake Engineering 1993, 12(3):129-143.
    [223]高峰,陈兴冲,严松宏.季节性冻土和多年冻土对场地地震反应的影响[J].岩石力学与工程学报,2006,25(8):1639-1644.
    [224]Lysmer J, Udaka T, Tsai C F. FLUSH a computer program for approximate 3-D analysis of soil-structure systems [R]. Report No. EERC75-30, Earthquake Engineering Research Center, University of California, Berkeley,1975.
    [225]Kim S H, Mha H S, Lee S W. Effects of bearing damage upon seismic behaviors of a multi-span girder bridge [J]. Engineering Structures,2006,28(7):1071-1080.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700