中国东海和黄海中一氧化碳的生物地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一氧化碳(Carbon monoxide,CO)是大气中一种重要的痕量气体,对全球变暖和大气化学有重要作用。海洋是大气中CO的重要自然排放源,其中河口、海湾和陆架等近岸海域面积虽然只占整个海洋的一小部分,但对海洋排放CO的贡献较大。因此对典型的近岸海洋环境中溶解CO的生物地球化学进行研究,对在全球尺度上准确地估算海洋对大气CO的贡献和在全球范围内正确估计CO的光致生成对海洋中碳循环的影响具有重要意义。
     本文以中国近海有代表性的陆架海区—东海和黄海为研究目标,从海洋和大气两方面入手,率先对这一海域中溶解CO的浓度分布、时空变化、海-气通量、微生物消耗以及光化学生成进行了较为系统的研究,同时对受人类活动影响较大的半封闭的海湾—胶州湾中CO的光致生成进行了考察。本论文的主要研究结果如下:
     1.于2009年4-5月和2009年11-12月对东海和黄海海域不同深度的海水中的溶解CO的分布和海-气通量的时空变化进行了研究。春季和秋季东海表层海水中CO的平均浓度分别为2.42±1.86和0.88±0.52 nmol L-1;黄海表层海水中CO的平均浓度分别为2.23±1.46和0.80±0.56 nmol L-1。由此看出,东海和黄海表层海水中CO浓度呈现明显的季节变化,春季海水中溶解CO明显高于秋季,这主要是由于4、5月份的太阳光辐射明显高于12月所致。东海和黄海中CO的空间分布受到长江等陆源输入和贫营养的黑潮水系及其分支的影响。春季和秋季CO的水平分布大致相似,即从近岸向外海呈逐渐降低的趋势。春季和秋季不同断面不同站位CO浓度的垂直分布特征基本相同,CO浓度最大值一般出现在表层,随深度增加CO浓度逐渐减小。在没有太阳光透过的真光层以下检测到的CO浓度表明,海水中CO可能存在其他来源,如暗反应、垂直混合、上升流以及底层沉积物等。
     2.东海和黄海整个真光层水体中CO浓度均具有明显的周日变化,最大值是最小值的5~50倍。其中,各层CO浓度最小值均出现在凌晨前后,最大值出现时间各不相同。表层CO浓度最大值出现在下午14:00左右,滞后于最大太阳光辐射约2 h,表层以下其它各层CO最大值则出现在中午12:00左右,没有滞后效应。CO明显的周日变化特征进一步证明海水中CO主要是由光化学产生,表层海水中CO浓度主要由太阳光量子通量决定。
     3.春季和秋季CO在东海和黄海所有调查站位基本都是过饱和的,过饱和系数分别为16.05±13.54和3.88±2.95,表明调查期间东海和黄海是大气中CO的源。根据现场风速以及表层海水和大气中CO浓度,利用Wanninkhof公式(W92)计算了CO的海气交换通量。春季的海-气通量(6.67±4.61μmol m-2 d-1)明显大于秋季(0.84±0.82μmol m-2 d-1),这主要是由于春季有较大的过饱和系数(平均为16.05)和风速(平均为7.3 m s-1),而秋季尽管风速也较大(平均为6.3 m s-1),但由于过饱和系数(平均为3.88)明显低于春季,因而其海-气通量明显小于春季。根据春季和秋季计算的CO年平均通量以及东海和黄海的海洋面积,由此初步估算出东海和黄海中CO的年释放量为18.9±13.7 Gg CO-C yr-1。应用此数据进一步计算出全球陆架海域每年向大气释放的CO约为0.49±0.36 Tg CO-C yr-1,占全球释放量的约11%。由此证明尽管陆架海域的面积在全球海洋中所占比例很小(7~10%),但其对大气中CO的贡献较大。
     4.春季和秋季各站位表层海水中CO的微生物消耗大部分为一级反应,其消耗速率与Chl-a浓度呈正相关,而与盐度呈负相关。表层海水中CO的微生物消耗速率具有明显的季节变化,春季的kbio (0.22 h-1)明显大于秋季(0.16 h-1),这主要是由于春季海水中较大的Chl-a浓度和较高的海水温度所致。
     5.CO的光致生成受溶解有色物质(CDOM)来源和温度的影响。CO的表观量子产量(AQY)与254 nm处的比吸光系数(SUVA254)之间有良好的线性关系,表明陆源CDOM发生光化学降解生成CO的效率高于海源CDOM。同时,光脱色会对CO的量子产量产生影响。同一水样,光脱色程度越大,量子产率越小光脱色对陆源CDOM的影响大于海源CDOM。通过多元线性回归分析拟合出了东海和黄海中AQY与SUVA254和温度的关系方程,并计算出东海和黄海中CO的光致生成量为246.32 Gg CO-C yr-1。并进一步由此估算东海和黄海中DOC的总光矿化速率为7.1Tg C yr-1,占初级生产的3.9%。
     6.光脱色会显著降低胶州湾中含陆源CDOM较多的样品中CO的量子产量。同时,胶州湾中CO的表观量子产量与SUVA254和温度也均有线性相关。应用胶州湾秋季的平均太阳光量子通量,计算得到秋季胶州湾中CO的光致生成速率为36.16μmol m-2 d-1。由此进一步计算出胶州湾中DOC的总光矿化速率为12.58 mg C m-2 d-1,占初级生产的5.1%。
Carbon monoxide (CO) is an important atmospheric trace gas, which plays a significant role in the global warming and atmospheric chemistry. Global oceans are net natural sources of atmospheric CO. Although coastal regions such as continental shelves, estuaries and bays only occupy a small part of the world ocean, they appear to be responsible for a large part of the oceanic CO emission. Therefore studies on the biogeochemistry of CO in the coastal waters will be helpful to estimate the contribution of oceanic emissions to the atmospheric CO and the influence to the oceanic carbon cycling on a global scale.
     In the present dissertation, we choose the East China Sea (ECS) and the Yellow Sea (YS) as the study areas. The spatial and temporal variations of distributions of CO, sea-to-air fluxes, microbial consumption and photoproduction are systematically studied for the first time. The photoproduction of CO in Jiaozhou Bay that is affected seriously by human activities was also examined. The main conclusions are drawn as follows:
     1. The distributions and sea-to-air fluxes of CO are determined in the ECS and YS during April-May and Nov-Dec,2009. The surface water concentrations of CO in ECS in spring and autumn are 2.42±1.86 and 0.88±0.52 nmol L-1, respectively The surface concentrations of CO in YS in spring and autumn are 2.23±1.46 and 0.80±0.56 nmol L-1, respectively. CO concentrations show a notable seasonal variation, with those in spring higher than those in autumn, which corresponds with the solar photon irradiance higher in April-May than those in December. The spatial distributions of CO in the ECS and YS are obviously influenced by the Yangtze River import and the oligotrophic Kuroshio waters. When the distribution patterns are compared with each other in spring and autumn, they are nearly synoptic and decreased from inshore to offshore sites. Vertical profiles of concentration of CO along different transects and at different stations were similar. The highest concentrations of CO were generally found at the sea surface, concentrations of CO in the water column gradually decreased with depth. However, CO could be detected even at depths under euphotic zone, where the light intensity was under detection limit, indicating the existence of other sources of CO such as dark production, diffusion, deep water current, sediment, etc.
     2. CO concentrations exhibited obvious diurnal variations in almost the entire euphotic zone in the ECS and YS, with maximum values 5-50 folds higher than minimum values at two anchor stations. Minimal concentrations of CO all occurred before dawn. However, there were differences of the maximum concentrations of CO between the sea-surface and other depths. The peak of concentrations of CO was observed in the early afternoon (about 14:00), a time lag about 2 hours at the surface and at noon at other depths, respectively. Marked diurnal variation of concentrations of CO in seawater indicated that CO was produced primarily by photoreaction and the concentrations of CO in surface seawater were mainly related to the solar irradiance.
     3. CO supersaturation was ubiquitous at all investigated sites in the ECS and YS in spring and autumn, the supersaturation factors were 16.05±13.54 and 3.88±2.95, respectively, which indicated that the ECS and YS are net sources of atmospheric CO. A short-term estimate of near-instantaneous flux was based on the concentration of CO in surface water and in situ wind speed for each time point by the arithmetic of W92. The sea-to-air flux in spring (6.67±4.61μmol m-2 d-1) was much higher than that in autumn (0.84±0.82μmol m-2 d-1), mainly due to the higher supersaturation factors in spring (the average is 16.05μmol m-2 d-1) than those in autumn (the average is 3.88μmol m-2 d-1). In connection with the area of the ECS and YS, the preliminary CO emission from the ECS and YS is estimated to be 18.9±13.7 Gg CO-C yr-1. Extrapolation of the mean flux of the ECS and the YS to the global coastal surface area provides coastal emission of about 0.49±0.36 Tg CO-C yr-1, accounting for approximately 11% of the global oceanic CO emission, though it occupies a small part (7-10%) of the world ocean. Our results indicated that the coastal contribution to the global CO emissions should not be negligible.
     4. Microbial consumption of CO in sea-surface in the ECS and YS in spring and autumn typically followed first-order kinetics in most cases. The microbial CO consumption rate constants (kbio) covaried with chlorophyll a concentrations and diminished with salinity. CO consumption rates show obvious seasonal variations, with those in spring (0.22 h-1) higher than those in autumn (0.16 h-1), primarily due to relatively higher Chl-a concentrations and seawater temperatures.
     5. For CO photoproduction, effects of water temperature and the origin of CDOM on the apparent quantum yields of CO (AQYCO) were examined. AQYco showed a strong positive correlation with the dissolved organic carbon-normalized absorption coefficient at 254 nm (SUVA254), suggesting that terrestrial CDOM is more efficient at photochemically producing CO than marine origin CDOM. CDOM photobleaching dramatically decreased AQY on the most terrestrial CDOM, but had little effect on the most marine samples. An empirical equation was derived for predicting the CO photoproduction efficiency in the ECS and YS based on SUVA254 and water temperature. Annual CO photoproduction in the ECS and YS was estimated to be 246.32 Gg CO-C yr-1.
     6. CDOM photobleaching could dramatically decreased AQY on the most terrestrial CDOM samples in. AQYco in Jiaozhou Bay had a linear correlation with SUVA254 and water temperature. Based on the average solar photon irradiance in autumn, the photoproduction rate of CO in Jiaozhou Bay was estimated to be 36.16μmol m-2 d-1 in autumn. The total photomineralization of DOC in Jiaozhou Bay was estimated to be 12.58 mg C m-2 d-1, representing 5.1% of the primary production in autumn.
引文
1. Air Quality Criteria for Carbon Monoxide, National Center for Environmental Assessment Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711,2000。
    2. Aluwihare, L. I., Repeta, D. J., Chen R. F., Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight, Deep-Sea Research. Part Ⅱ-Topical Studies in Oceanography,2002,49(20):4421~4437
    3. Andreae, M. O. and R. J. Ferek. Photochemical production of carbonyl sulfide in seawater and its emission to the atmosphere. Global Biogeochemical Cycles,1992,6,175~183.
    4. Andrews S. S., Caron S., Zafiriou O. C. Photochemical oxygen consumption in marine waters: A major sink for colored dissolved organic matter? Limnology and Oceanography,2000, 45(2):267~277
    5. Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., Hoepffner, N. Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 2003,108 (C7). Doi 10.1029/2001jc000882
    6. Bartholomew G. W., M. Alexander, Soil as a sink for atmospheric carbon monoxide. Science, 1981.212(4501):1389~1391
    7. Bates, T. S., Kelly, K. C., Johnson, J. E. Concentrations and fluxes of dissolved biogenic gases (DMS, CH4, CO, CO2) in the equatorial pacific during the Saga-3 experiment. Journal of Geophysical Research-Atmosphere,1993,98 (D9):16969~16977
    8. Bates, T. S., Kelly, K. C., Johnson, J. E., Gammon, R. H. Regional and seasonal variations in the flux of oceanic carbon monoxide to the atmosphere. Journal of Geophysical Research-Atmosphere,1995.100(D11):23093~23101
    9. Blough. N. V. and R. del Vecchio. Chromophoric DOM in the coastal environment, In "Biogoechemistry of Marine Dissolved Organic Matter". (Eds Hansell, D. A. and Carlson, C. A.) pp.509-546. (Acadamic Press:San Diego.) 2002
    10. Bourbonniere R. A., W. L. Miller and R. G. Zepp. Distribution, flux and photochemical production of carbon monoxide in a boreal beaver impoundment. Journal of Geophysical Research,1997,102(D24):29321~39329
    11. Brinkmann T., Philip Horsch, Daniel Sartorius and Fritz H. Frimmel. Photoformation of Low-Molecular-Weight Organic Acids from Brown Water Dissolved Organic Matter. Environmental Science and Technology,2003.37,4190~4198.
    12. Buiteveld H., Hakvoort J. M. H. and Donze M. The optical properties of pure water. In:Jaffe J. S. (eds) SPIE proceedings on ocean optics Ⅻ.1994,2258:174~183
    13. Bushaw K. L., R. G. Zepp, M. A. Tarr, D. Schulz Jander, R. A. Bourbonniere, R. E. Hodson. W. L. Miller, D. A. Bronl and M. A. Moran. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature,1996,381(6581),404~407.
    14. Butler J. H., Jones R. D., Garber J. H., Gordon L. I. Seasonal distribution and turnover of reduced trace gas and hydroxylamine in Yaquina Bay, Oregon. Geochim Cosmochim Acta, 1987,51:697~706
    15. Carder K. L., Steward R. G., Harvey G. R., Ortner P. B. Marine humic and fulvic acids-their effects on remote-sensing of ocean chlorophyll. Limnology and Oceanography,1989,34(1): 68~81
    16. Cicerone, R. J. How has the atmospheric concentration of CO changed? In:F.S. Rowland and I.S.A. Isaksen (Editors), The Changing Atmosphere. John Wiley and Sons, pp.49~61,1988
    17. Claude Belzile, John A. E. Gibson, Warwick F.Vincent. Colored dissolved organic matter and dissolved organic carbon exclusion from lake ice:Implications for irradiance transmission and carbon cycling. Limnol.oceanogr,47(5),2002:1283~1293
    18. Coble P. G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry,1996,51:325~346.
    19. Coble P. G., Castillo C. E., Avril B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Research. Part Ⅱ-Topical Studies in Oceanography,1998,45:2195~2223
    20. Conrad R., Seiler W. Utilization of traces of carbon monoxide by aerobic oligotrophic microorganisms in ocean, lake, and soil. Arch Microbiol,1982,132:41~46
    21. Conrad R., W. Seiler, G. Bunse, et al. Carbon Monoxide in seawater (Atlantic Ocean). Journal of Geophysical Research,1982,87(C11):8839~8852
    22. Conrad, R., Aragno, M., Seiler, W. Production and consumption of carbon monoxide in a eutrophic lake. Limnology and Oceanography,1983,28 (1),42-49.
    23. Cooperative Atmospheric Data Integration Project-Carbon Monoxide. CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path:ccg/co/GLOBALVIEW],2009.
    24. Corin N., Backlund P. and Kulovaara M. Degradation products formed during UV-irradiation of humic waters. Chemosphere,1996,33(2),245~255.
    25. Crutzen, P. J. Role of the tropics in atmospheric chemistry. In:R.E. Dickinson (Editor), The Geophysiology of Amazonia. John Wiley, New York,1987,107~130
    26. Day D. A. and I. Faloona. Carbon monoxide and chromophoric dissolved organic matter cycles in the shelf waters of the northern California upwelling system. Journal of Geophysical Research,2009,114(C01006). doi:10.1029/2007JC004590
    27. Derwent R.G. Air chemistry and terrestrial gas emissions:A global perspective. Phil. Trans. R. Soc. London, Ser. A,1995,351,205~217.
    28. Ducklow H. W., Carlson C. A. Oceanic bacterial production. In:Marshall KC (ed) Advances in microbial ecology, Vol 12. Plenum Press, New York,1992,113~167
    29. Erickson D. J. A stability dependant theory for air-sea gas exchange. Journal of Geophysical Research.1993,98:8471~8488
    30. Field, C. B., Behrenfeld. M. J., Randerson, J. T., Falkowski, P. Primary production of the biosphere:integrating terrestrial and oceanic components. Science,1998,281 (5374), 237~240.
    31. Frank E. Hoge, Anthony Vodacek, Neil V. Blough. Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurement. Limnology and Oceanography,1993,38 (7):1394~1402
    32. Gammon R. H. and K. C. Kelly, Photochemical production of carbon monoxide in surface waters of the Pacific and Indian oceans. In Effects of solar Ultraviolet Radiation of Biogeochemical Dynamics in Aquatic Environments, edited by N. V. Blough and R. G. Zepp, Woods Hole Oceanogr. Insti., Woods Hole, Mass.,1990
    33. Gan W. B., H. M. Chen, and Y. F. Han. Carbon transport by the Yangtze (at Nanjing) and Huanghe (at Jinan) Rivers, Peoples Republic of China, in Transport of Carbon and Minerals in Major World Rivers, part 2, SCOPE/UNEP, vol.55, edited by E. T. D egens, Germany,1983
    34. Gao H. and Zepp R. G. Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environmental Science and Technology,1998, 32,2940~2946.
    35. Gueymard, C. SMARTS, A simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Professional Paper FSEC-PF-270-95. Florida Solar Energy Center.1995.
    36. Gueymard, C. Parameterized Transmittance Model for Direct Beam and Circumsolar Spectral Irradiance, Solar Energy,2001,71(5):325~346.
    37. Hansell, D. A., Carlson, C. A. Preface. In:Hansell, D.A., Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, London,2002, 21~22.
    38. Hedges, J. I., Keil, R. G., Benner, R. What happens to terrestrial organic matter in the ocean? Organic Geochemistry,1997,27:195~212.
    39. Herndl G. J., Muller-Niklas G, Frick J. Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature,1993,361:717~719
    40. Hertkorn N., Benner R., Frommberger M., et al., Characterization of a major refractory component of marine dissolved organic matter. Geochimica et Cosmochimica Acta,2006, 70(12):2990~3010
    41. Hubbard V. A., A. Stubbins and K. Mopper. Evaluating CO photoproduction pathways from DOM using simple aromatics and lignin phenolics as model DOM chromophoric sites. Eos Transactions of the American Geophysical Union,2006,87(36), Ocean Sci. Meet. Suppl., Abstract OS26Q-05
    42. Jenkins, B. M., Kennedy, S. Q., Turn, R. B., et al., Wind tunnel modeling of atmospheric emissions from agricultural burning:influence of operating configurationon flame structure and particle emission factor for a spreading-type fire, Environmental Science and Technology. 1993,27(9):1763~1776
    43. Johannessen S. C. H. A photochemical sink for dissolved organic carbon in the ocean:[Ph. D thesis]. Halifax, Nova Scotia:Dalhousie University (Canada),2000
    44. Johannessen S. C., Miller W. L. Quantum yield for the photochemical production of dissolved inorganic carbon in seawater, Marine Chemistry,2001,76:271~283
    45. Johnson J. E., T. S. Bates. Sources and sinks of carbon monoxide in the mixed layer of the tropical South Pacific Ocean. Global Biogeochemistry Cycles,1996,10:347~359
    46. Jones R. D., Amador J. A. Methane and carbon monoxide production, oxidation, and turnover times in the Caribbean Sea as influenced by the Orinoco River. Journal of Geophysical Research,1993,98:2353~2359
    47. Jones R. D., Morita R. Y. Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers. Can J Microbiol,1983,29:1545~1551
    48. Jones R. D., Morita R. Y. Effects of various parameters on carbon monoxide oxidation by ammonium oxidizers. Can J Microbiol,1984,30:894~899
    49. Jones R. D. Carbon monoxide and methane distribution and consumption in the photic zone of the Sargasso Sea. Deep-Sea Research,1991,38,625~635.
    50. Kagan, J. Organic photochemistry, Principles and Applications. Chapter 4. Academic Press: San Diego, CA,1993:55~64
    51. Kandpal, J. B., R. C. Maheshwari, and T. C. Kandpal, Indoor air pollution from combustion of wood and drug cake and their processed fuels in domestic cookstoves, Energe Conservation and Manangement,1995,36(11):1073~1079
    52. Kettle A. J. A model for the temporal and spatial distributions of carbon monoxide in the mixed layer. [Master thesis] MIT/WHOI Joint Program, Woods Hole.1994.
    53. Kettle A. J. Diurnal cycling of carbon monoxide (CO) in the upper ocean near Bermuda. Ocean Modelling,2005,8,337~367.
    54. Khalil M. A. K., Rasmussen R A. Carbon monoxide in the earth's atmosphere:Increasing trend, Science,1984,224:54~55.
    55. Khalil M. A. K. and R. A. Rasmussen, Carbon monoxide in the earth's atmosphere: indications of a global increase, Nature,1988,332:242~245
    56. Khalil M. A. K. and R. A. Rasmussen, The global cycle of carbon monoxide:Trends and mass balance. Chemosphere,1990,20(1-2):227~242
    57. Khalli M. A. K. and R. A. Rasmussen. Global decrease in atmospheric carbon monoxide concentration. Nature,1994,370:639~641。
    58. Kieber D. J., Yocis B. H., Mopper K. Free-floating drifter for photochemical studies in the water column. Limnology and Oceanography,1997,42(8):1829~1833
    59. Kieber, D. J. and K. Mopper. Photochemical formation of glyoxylic and pyruvic acids in seawater. Marine Chemistry,1987,21:135~149.
    60. Kieber, D. J., X. Zhou, and K.Mopper. Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters:Fates of riverine carbon in the sea. Limnology and Oceanography,1990,35:1503~1515.
    61. Lamontagne R. A., Swinnerton J W, Linnenbom V J. Nonequilibrium of carbon monoxide and methane at the air-sea surface, Journal of Geophysical Research,1971,76:5117~5121.
    62. Large, W. G., and S. Pond, Open ocean momentum flux measurements in 329 moderate to strong winds, J. Phys. Oceanogr.,1981,11,324~336
    63. Law C. S., T. N. Sjoberg and R. D. Ling, Atmospheric emission and cycling of carbon monoxide in the Scheldt Estuary, Biogeochemistry,2002,59:69~94
    64. Leifer A. The kinetics of Environmental Aquatic Photochemistry. American Chemical Society, Washington, DC,1988,366.
    65. Levine J. S., C. P. Rinsland and G. M. Tennille, The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985, Nature,1985,318:254~257
    66. Linnenbom V. J., J. W. Swinnerton and R. A. Lamontagne. The ocean as a source for atmospheric carbon monoxide. Journal of Geophysical Research,1973,78:5333~5340
    67. Liss P. S., Merlivat L. The ocean as a source of atmospheric sulphur compounds. In: Buat-Menard P, ed. The role of air-sea exchange in geochemical cycling. Reidel, Dordrecht, Holland,1986.113~127
    68. Liss P. S., Slater P. G. Flux of gases across the air-sea interface. Nature,1974.247:181~184.
    69. Liu K. K., Peng T. H., Shaw F. K., et al. Circulation and biogeochemical processes in the East China Sea and the vicinity of Taiwan:An overview and a brief synthesis. Deep-Sea Research 11,2003,50:1055~1064
    70. Logan J. A., Prather M. J., Wofsy S. C., McElroy M. B. Tropospheric chemistry:A global perspective. Journal of Geophysical Research,1981,86,7210~7254.
    71. Loh A. N., Bayer J. E. and Druffel, E. R. M. Variable ageing and storage of dissolved organic components in the open ocean. Nature,2004,430,877~881
    72. Longhurst, A., Sathyendranath, S., Platt, T., Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research,1995,17 (6),1245~1271.
    73. Lv X. G., F. L. Qiao, C. S. Xia, J. R. Zhu and Y. L. Yuan. Upwelling of Yangtze River estuary in summer. Journal of Geophysical Research,2006,111(C11S08), doi:10.1029/2005JC003250
    74. Mannino A., Harvey H. R. Biochemical composition of particles and dissolved organic matter along an eatuarine gradient:Sources and implications for DOM reactivity, Limnology and Oceanography,2000,45(4):775~788
    75. Marenco A., and J. C. Delaunay, Experimental evidence of natural sources of CO from measurements in the troposphere, Journal of Geophysical Research,1980,85:5599~5613
    76. Markager S. Dark uptake of inorganic 14C in oligotrophic oceanic waters. J Plankton Res 1998,20:1813~1836
    77. Mcknight, D. M., Harnish, R., Wershaw, R. L. et al., Chemical characteristics of particulate, colloidal and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park, Biogeochemistry,1997,36(1):99~124
    78. Miller. W. L. and Zepp, R. G. Photochemical production of dissolved inorganic carbon from terrestrial organic-matters significance to the oceanic organic-carbon cycle. Geophysical Research Letters,1995,22,417~420.
    79. Miller, W. L., Moran, M. A., Sheldon, W. M., Zepp. R. G., and Opsahl, S. Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts. Limnology and Oceanography,2002,47,343~352.
    80. Momzikoff A., Dallot S., Gondry G., Distribution of seawater fluorescence and dissolved flavins in the Almeria-Oran Front (Alboran Sea, Western Mediterranean-Sea). Journal of Marine Systems,1994,5:361~376
    81. Mopper, K. and D. J.Kieber, Marine photochemistry and its impact on carbon cycling. In:de Mora, S., Demers, S., Vernet, M., Eds, The Effects of UV Radiation in the Marine Environment, Cambridge University Press, Cambridge,2000,101~129
    82. Moran M. A., Zepp R.G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnology and Oceanography,1997,42, 1307~1316.
    83. Moran, M. A. and Hodson, R. E. Support of bacterioplankton production by dissolved humic substances from three marine environments. Marine Ecology Progress Series,1994,110, 241~247.
    84. Moran, M. A., Miller, W. L. Resourceful heterotrophs make the most of light in the coastal ocean. Nature Reviews Microbiology,2007,5(10):792~800
    85. Najjar R., Long R., Zafiriou O., Johnson J. Impact of physical processes on the diurnal cycle of carbon monoxide. Ocean Sci Meet Suppl, Abstract 0532H-IO, EOS Trans AGU, 2003,84(52).
    86. Nelson, N. B., Siegel, D. A., Michaels, A. F. Seasonal dynamics of colored dissolved organic material in the Sargasso Sea. Deep-Sea Research I,1998,45 (6),931~957.
    87. Ohta K., Inomata Y., Sano A., Sugimura K., Photochemical degradation of dissolved organic carbon to carbon monoxide in coastal seawater. In:Dynamics and Characterization of Marine Organic Matter, edited by Handa N., Tanoue E., Hama T. Terra Scientific Publishing, Tokyo. 1999.
    88. Ohta, K. Diurnal variations of carbon monoxide concentration in the equatorial Pacific upwelling region, Journal of Oceanography,1997,53,173~178.
    89. Palmer, J. R., Totterdell, I. J. Production and export in a global ocean ecosystem model. Deep-Sea Research I,2001,48 (5),1169~1198.
    90. Parlanti P., Worz K., Geoffroy L., Lamotte M. Dissolved organic matter fluorescence spectroscopy as a tool of estimate biological activity in a coastal zone submitted to anthropogenic inputs, Organic Geochemistry,2000,31:1765~1781
    91. Parsons T. R., Maita Y., Lalli C. M. A Manual for Chemical and Biological Methods for Seawater Analysis. Oxford:Pergamon Press,1984.23~58
    92. Pope R. M. and Fry E. S. Absorption spectrum (380-700 nm) of pure water. Integrating cavity measurements. Applied Optics,1997,36(33):8710~8723
    93. Pos W. H., Riemer D.D., Zika R. G. Carbonyl sulfide (OCS) and carbon monoxide (CO) in natural waters:evidence of a coupled production pathway, Marine Chemistry,1998, 62:89~101
    94. Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., Wang, M.,2001. Chapter 4:Atmospheric chemistry and greenhouse gases. In:Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), Climate Change 2001:The Scientific Basis. Contribution of working group 1 to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 239~287.
    95. Qiao F. L., Y. Z. Yang, X. G. Lv, C. S. Xia, X. Y. Chen, B. D. Wang and Y. L. Yuan. Coastal upwelling in the East China Sea in winter, Journal of Geophysical Research,2006, 111(C11S06), doi:10.1029/2005JC003264
    96. Rivkin R. B., Anderson M. R. Inorganic nutrient limitation of oceanic bacterioplankton. Limnology and Oceanography,1997,42:730~740
    97. Rivkin R. B., Anderson M. R., Lajzerowicz C. Microbial processes in cold oceans. Ⅰ. Relationship between temperature and bacterial growth rate. Aquat Microb Ecol,1996, 10:243-254
    98. Seiler W, Junge C. Carbon monoxide in the atmosphere. Journal of Geophysical Research, 1970,75:2217~2226.
    99. Seiler W, Schmidt U. Dissolved nonconservative gases in seawater [M]. Wiley Interscience, Goldberg E D, John Wiley ed., The Sea, New York:1974,5:219~243.
    100. Seiler W. The cycle of atmospheric CO, Tellus ⅩⅩⅥ,1974, (1-2):117~135.
    101. Seiler W. The influence of the biosphere on the atmospheric CO and H2 cycles [C]. Krumbein W E, ed. Environmental Biogeochemistry and Geomicrobiology, Ann Arbor, Michigan: Ann Arbor Science Publishers,1978,3:773~810.
    102. Sherr E. B., Sherr B. F., Cowles T. J. Mesoscale variability in bacterial activity in the Northeast Pacific Ocean off Oregon, USA. Aquat Microb Ecol,2001,25:21~30
    103. Sierra M. D., Giovanela M., Parlanti E., et al. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques, Chemosphere,2005,58:715~733.
    104. Sommaruga R., Obernosterer I., Herndl G. J., Psenner R. Inhibitory effect of solar radiation on thymidine and leucine incorporation by freshwater and marine bacterioplankton. Appl Environ Microbiol,1997,63:4178~4184
    105. Stubbins A. Aspects of aquatic CO photoproduction from CDOM. [Ph. D thesis]. University of Newcastle-upon-Tyne. U.K.,2001
    106. Stubbins A., Uher G., Kitidis V., Law C., Upstill-Goddard R.C., Woodward E.M.S., The Open ocean source of atmospheric carbon monoxide. Deep-Sea Research Ⅱ,2006b,53, 1685~1694.
    107. Stubbins, A., Uher, G., Law, C. S., Mopper, K., Robinson, C. and Upstill-Goddard, R. C. Open-ocean carbon monoxide. Deep-sea Research Ⅱ,2006a,53,1695~1705
    108. Swinnerton J W, Lamontagne R A, Linnenbom V J. Carbon Monoxide in rainwater,. Science,1971,172:943~945.
    109. Swinnerton J W, Linnenbom V J, Cheek C H. Distribution of methane and carbon monoxide between the atmosphere and natural waters, Environmental Science and Technology,1969, 3:836~838.
    110. Swinnerton J. W., Linnenbom V. J., Lamontagne R. A. Ocean:A natural source of carbon monoxide, Science,1970,167:984~986.
    111. Swinnerton J. W., R. A. Lamontagne and J. S. Bunt. Field study of carbon monoxide and light hydrocarbon production related to natural biological processes. U. S. Naval Res. Lab. Washington D. C. Rep.1977,8099,1~9
    112. Thomas, D. N. and Lara, R. J. Photodegradation of algal derived dissolved organic carbon. Marine Ecology Progress Series,1995,116,309~310.
    113. Thompson A. M. and R. J. Cicerone, Possible perturbations to atmosperic CO, CH4 and OH, Journal of Geophysical Research,1986,91:10853~10864
    114. Thompson A. M. The oxidizing capacity of the Earth's atmosphere:Probable past and future changes, Science,1992,256:157~165.
    115. Tolli J. D. Identity and dynamics of the microbial community responsible for carbon monoxide oxidation in marine environments. PhD thesis, WHOI/MIT Joint Program, Woods Hole, MA,2003.
    116. Tolli J. D., Taylor C. D. Biological CO oxidation rates in the Sargasso Sea and in Vineyard Sound, Massachusetts. Limnology and Oceanography,2005,50:1205~1212.
    117. Vahatalo A. V., Salkinoja-Salonen M., Taalas P. Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in humic lake, Limnology and Oceanography,2000,45(2):664~676.
    118. Valentine R. L., Zepp R. G. Formation of carbon monoxide from the photodegradation of terrestrial dissolved organic carbon in natural waters, Environmental Science and Technology,1993,27(2):409~412
    119. Ver, L. M. B., Mackenzie, F. T., Abraham, L. Carbon cycle in the coastal zone:effects of global perturbations and change in the past three centuries. Chemical Geology,1990,159, 283~304.
    120. Wanninkhof R. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 1992,97:7373~7382.
    121. Ward, D. E., and W. M. Hao, Air toxic Emissions from burning of biomass globally-preliminary estimates, in 85th Annual Meeting and Exhibition of the Air and Waste Manegement Association. Kansas City. Missouri,1992
    122. Wetzel, R. G., P. G. Hatcher, and T. S. Bianchi. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnology and Oceanography,1995,40,1369~1380.
    123. Wiesenburg, D. A. and N. L. Guinasso, Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water, Journal of Chemical and Engineering Data, 1979,24:356~360.
    124. Wu F., Tanoue E. Geochemical characterization of organic ligands for copper (Ⅱ) in different molecular size fractions in Lake Biwa. Japan, Organic Geochemistry,2001a, 32:1311~1318.
    125. Xie H. X., O. C. Zafiriou. T. P. Umile, D. J. Kieber. Biological consumption of carbon monoxide in Delaware Bay, NW Atlantic and Beaufort Sea. Marine Ecology Progress Series.2005,290:1~14.
    126. Xie H. X., Simon Belanger, Serge Demers, Warwick F. Vincent, Tim N. Papakyriakou. Photobiogeochemical cycling of carbon monoxide in the southeastern Beaufort Sea in spring and autumn. Limnology and Oceanography,2009,54(1):234~249
    127. Xie H. X., Steven S. Andrews. William R. Martin et al., Validated methods for sampling and headspace analysis of carbon monoxide in seawater, Marine Chemistry, 2002.77:93~108
    128. Xie H. X., Y. Zhang, K. Lemarchand and P. Poulin. Microbial carbon monoxide uptake in the St. Lawrence estuarine system. Marine Ecology Progress Series,2009,389:17~29
    129. Xie H., Zafiriou O. C., Wang W., Taylor C. D. A Simple automated continuous-flow-equilibration method for measuring carbon monoxide in seawater. Environmental Science and Technology,2001,35:1475~1480.
    130. Yocis B. H., Kieber D. J., Mopper K. Photochemical production of hydrogen peroxide in Antarctic waters, Deep-Sea Research. Part I,2000,47:1077~1099
    131. Zafiriou O. C., Andrews S. S. and Wang W. Concordant estimates of oceanic carbon monoxide source and sink processes in the Pacific yield a balanced global "blue-water" CO budget. Global Biogeochemical Cycles,2003,17(1),1015, Dio 10.1029/2001gb001638
    132. Zafiriou O. C., H. Xie, N. B. Nelson, R. G. Najjar and W. Wang. Diel carbon monoxide cycling in the upper Sargasso Sea near Bermuda at the onset of spring and in midsummer. Journal of Limnology and Oceanography,2008,53(2):835-850
    133. Zepp, R.G., Cline, D.M. Rates of direct photolysis in aquatic environments. Environmental Science and Technology,1977,11,359~366.
    134. Zhang J. B. Marine Atlas of Bohai Sea, Yellow Sea, East China Sea:Marine Biology (in Chinese). China Ocean Press, Beijing,1991,250.
    135. Zhang Y., Xie H. X., Chen G. H. Factors affecting the efficiency of carbon monoxide photoproduction in the St. Lawrence estuarine system (Canada). Environmental Science and Technology,2006,40(24):7771~7777
    136. Ziolkowski L. A. Marine photochemical production of carbon monoxide. [M. Sc. Thesis]. Dalhousie University.2000
    137. Ziolkowski, L. A., and W. L. Miller. Variability of the apparent quantum efficiency of CO photoproduction in the Gulf of Maine and Northwest Atlantic. Marine Chemistry.2007,105: 258~270.
    138. Zuo Y and Jones R D. Formation of Carbon monoxide by photolysis of dissolved marine organic material and its significance in the carbon cycling of the ocean. Naturwissenschaften,1995,82(10):472~474.
    139.傅献彩,沈文霞,姚天扬,侯文华。物理化学,高等教育出版社,北京,2006,200
    140.国家海洋局北海分局海洋环境检测中心.胶州湾环境综合调查与研究.海洋通报,1992,11(3):1~67.
    141.蒋凤华,杨黄浩,黎先春,王小如,王修林,殷月芬。胶州湾海水溶解有机物三维荧光特征研究,光谱学与光谱分析,2007,127(19):1765~1769
    142.刘瑞玉。胶州湾自然环境特点。胶州湾生态学和生物资源。北京,科学出版社,1992,2~3
    143.楼涛.溶解有机物的光化学过程模拟及其对环境污染物结合性质的影响研究[D].中国海洋大学.2005.
    144.陆小兰,杨桂朋,王晓蒙,王为磊,任春艳。顶空法测定海水中一氧化碳。分析化学,2010,38(3):352~356
    145.钱国栋,汉红燕,刘静,梁生康,石晓勇,王修林。近30年胶州湾海水中主要化学污染物时空变化特征,中国海洋大学学报,2009,39(4):781~788
    146.沈志良.胶州湾营养盐的现状和变化。海洋科学,1997(1):60~64.
    147.孙松,张永山,吴玉霖,张光涛,张芳,蒲新明。胶州湾初级生产力周年变化,海洋与湖沼,2005,36(6):481~486.
    148.孙湘平.中国近海区域海洋.北京:海洋出版社,2006
    149.王江涛,关哈斯高娃,赵卫红.海洋荧光溶解有机物质的研究.中国海洋大学学报,2007,37(5):801~806
    150.卫百潮,李红光。机动车辆尾气污染及控制对策。山西化工,2002,22(2):72~74
    151.吴永森,张士魁,张绪琴等.海水黄色物质光吸收特性实验研究,海洋与湖沼,2002,33(4):402~406
    152.夏达英,李宝华,吴永森等.海水黄色物质荧光特性的初步研究.海洋与湖沼,1999,30(6):719~725
    153.姚云,郑世清,沈志良.胶州湾营养盐及富营养化特征.海洋通报,2007,26(4):91~98
    154.于非,张志欣,刁新源,郭景松,汤毓祥。黄海冷水团演变过程及其与邻近水团关系的分析。海洋学报,2006,28(5):26~34
    155.张绪琴,吴永森,张士魁等.胶州湾海水黄色物质荧光分布初步研究.遥感学报,2002,6(3):229~232
    156.张永,陈国华,楼涛,谢惠祥.海水中CO的光致生成和生物氧化的研究进展.安全与环境学报,2005,3(6):60~64.
    157.张永.加拿大圣劳伦斯河口水中一氧化碳的生物地球化学循环.[D].中国海洋大学.2008
    158.邹景忠,董丽萍,秦保平.富营养化和赤潮问题的初步研究.海洋环境科学,1983,2(2):41~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700