几种竹对过量Cu胁迫的生理适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的枯竭,人们越来越关注生物质能源,其中能源植物已经引起各国的高度重视,然而大规模种植能源植物必然会占用大量的耕地,为了解决这个矛盾,本实验利用铜尾矿污染土地来种植能源植物,达到治理环境和开发能源双赢的效果,为以后种植能源植物提供参考依据。
     我国竹资源丰富、种类繁多,竹子属于多年生禾本科竹亚科,且生长迅速、植株高大、用途广泛,被认为是很好的能源植物,而且发现在矿区内有些竹子能正常生长,并能很好的适应铜胁迫环境。本试验先以金镶玉竹(Phyllostachys auresulcataf.spectabilis)、白荚竹(Phyllostachys bissetii)、篌竹(Phyllostachys nidularia f. smoothsheath)、长叶苦竹(Pleioblastus china f.hisauchii)、矢竹(Pseudosasa japonica)、孝顺竹(Bambusa multiplex)六个品种为材料,筛选出了抗冷性较强的五个品种即金镶玉竹(Phyllostachys auresulcataf.spectabilis)、白荚竹(Phyllostachys bissetii)、篌竹(Phyllostachys nidularia f.smoothsheath)、长叶苦竹(Pleioblastus china f.hisauchii)、矢竹(Pseudosasa japonica),然后以筛选出的五个品种为材料,通过土培法研究了不同浓度的Cu对几种竹子的生长、生理指标以及植物体内Cu含量的影响。
     结果表明:
     1.通过模拟铜尾矿污染土壤盆栽矢竹,设置0、500、750、1000和2000 mg·kg-1 CuSO4浓度处理,研究矢竹对铜胁迫的生长生理响应。结果表明随Cu浓度升高,新竹高和叶绿素相对含量和叶绿素荧光Fv/Fm随铜浓度增加而降低,叶相对电导率和MDA含量随铜浓度增加而升高,可溶性含量、根系活力随Cu浓度增加而先升高后降低;光合作用参数Pn、Gs和Tr随Cu浓度增加而降低,Ci先降低后升高,结果说明在低浓度Cu胁迫下光合速率降低主要是气孔因素限制,高浓度Cu胁迫下则归因于非气孔因素限制。根据模拟方程得出Cu胁迫半有效浓度EC50为867.81 mg·kg-1。
     2.本试验通过盆栽土培法,设置O、500、1000、2000mg·kg-1 Cu处理,比较金镶玉竹、白荚竹、篌竹、长叶苦竹对Cu胁迫的生长生理适应性差异。结果表明铜胁迫下竹和笋生长抑制程度:金镶玉竹<白荚竹<篌竹<长叶苦竹。随着Cu浓度升高,四种竹子叶绿素含量、光合作用、叶绿素荧光Fv/Fm均随之下降,而叶片相对电导率、MDA含量和脯氨酸含量均随之升高,可溶性含量随Cu浓度增加而先升高后降低,且表现出各处理与对照、各处理之间及品种间都存在显著差异(P<0.01)。叶绿素含量、叶绿素荧光Fv/Fm下降,相对电导率、MDA含量升高、脯氨酸含量和可溶性含量,长叶苦竹随Cu浓度变化趋势表现最明显,篌竹、白荚竹、金镶玉竹依次之。总之,上述生理生化分析表明可以认定四种竹子对铜耐受性:金镶玉竹>白荚竹>篌竹>长叶苦竹。四种竹子光合作用参数Pn、Gs和Tr随Cu浓度增加而降低,Ci先降低后升高,结果说明它们在低浓度Cu胁迫下光合速率降低主要可能是气孔因素限制,高浓度Cu胁迫下则可能归因于非气孔因素限制。四种竹子体内根茎叶含Cu分析,结果表明Cu主要分布在根部,积累系数BC随铜浓度升高而减小,说明它们可能是排斥型。
Associated with fossil fuels in the growing concern over the depletion of biomass energy plants which have aroused great attention in lots of countries and large-scale cultivation of energy plants takes up a great deal of arable land, to solve this problem, the experiment uses energy plants to repair the copper tailings from contaminating the land, to realize environmental treatments and the development of the energy win-win situation.
     Bamboo is a perennial grass in Bambusoideae, and bamboo has its advertages:abundant resources in China, a lot of varieties, fast growth, tall plants, wide uses and so on. Bamboo is considered as a very good energy plant, in the mining area it can be found in some of the normal growth of bamboo. Phyllostachys auresulcataf.spectabilis, Phyllostachys bissetii, Phyllostachys nidularia f. smooths heath, Pleioblastus china f.hisauchii, Pseudosasa japonica, Bambusa multiplex were used to compare cold resistance; Again stronger cold resistance in Nanjing:Phyllostachys auresulcataf.spectabilis, Phyllostachys bissetii, Phyllostachys nidularia f. smoothsheath, Pleioblastus china f.hisauchii, Pseudosasa japonica, the soil culture method is applied to study the different concentrations of Cu on the growth of several bamboo varieties, physiological indicators, as well as objects within these plantations Cu content.
     The main results were as follows:
     1. A pot experiment was carried out to study the responses of Pseudosasa japonica to Cu stress at the treatments of 0,500,750,1000 and 2000CuSO4 mg-kg-1.The main results showed with increasing concentration of Cu, height of new bamboo, chlorophyll relative content and Fv/Fm, and uptrend of relative conductance and MDA content in Pseudosasa japonica were obvious, while soluble sugar content and root activity increased under the low concentration and reduced under the high concentration. Photosynthetic parameters:Pn, Gs and Tr decreased, while Ci firstly decreased then increased with increasing concentration of Cu. The results suggested that under the low concentration of Cu the decrease of Pn could be the result of stomatal limitation, and the reduction of Pn could contribute to non-stomatal limitation under higher Cu. According to the simulation equation could derive EC50 867.81 mg-kg-1.
     2. Through pot experiment, it was carried out to study the responses of Phyllostachys auresulcata f. spectablis, P. bissetii, P. niduaria f. smoothsheath, P.leioblastus chian f. hisauchii to Cu stress at the treatments of 0,500,1000,2000 mg-kg-1. As to the growths of bamboo and shoot, they were inhibited by copper stress:Phyllostachys auresulcataf.spectabilis< Phyllostachys bissetii< Phyllostachys nidularia f. smoothsheath < Pleioblastus china f.hisauchii.Their chlorophyll contents and Fv/Fm were decreased but relative conductance, MDA and proline contents were increased with the increasing Cu concentration, while soluble sugar content increased under the low concentration and reduced under the high concentration, there were the most significant differences between per treatment and the control, among all treatments and four varieties(P<0.01), among the chlorophyll content and Fv/Fm decreased, and relative conductance, MDA contents and proline contents increased, Pleioblastus china f.hisauchii performed the most obvious changes in the trend with the increasing Cu concentration, Phyllostachys nidularia f. smoothsheath, Phyllostachys bissetii, Phyllostachys auresulcata f. spectablis followed by it. In a word, the growth and physiological analysis illustrated that the tolerance of the four species of bamboo in order of Phyllostachys auresulcata f. spectablis> Phyllostachys bissetii> Phyllostachys nidularia f.smoothsheath> Pleioblastus china f.hisauchii. Photosynthetic parameters:Pn, Gs and Tr decreased, while Ci firstly decreased then increased with increasing concentration of Cu. The results suggested that under the low concentration of Cu. Four kinds of bamboo decrease of Pn was the result of stomatal limitation, and the reduction of Pn contributes to non-stomatal limitation under higher Cu. Four kinds of bamboo stems and leaves with root Cu in vivo analysis, results showed that Cu might be mainly distributed in the roots, for the accumulation of BC coefficient increased with increasing concentration of Cu, they might be the type of exclusion.
引文
1. 曾虹燕,蒋丽娟,李昌珠.生物质能源-能源可持续利用之路[J].中国医学生物技术应用杂志,2003,3(4):31-34.
    2. 常振明,韩平,曲春洪.可再生能源利用现状与未来展望[J].当代石油化工,2004,12(12):19-25.
    3. 陈峰,尹春芹,蒋新等.基于GIS的南京市典型蔬菜基地土壤重金属污染现状与评价[J].中国环境监测,2008,24(2):40-44.
    4. 陈嵘遗.竹的种类及栽培利用[M].中国林业出版社,1984,2-20.
    5. 陈亚华,丁锋,沈振国等.南京地区农田土壤和蔬菜重金属污染状况研究[J].长江流域资源与环境,2006,15(3):356-360.
    6. 陈英明,肖波,常杰.能源植物的资源开发与应用[J].氨基酸和生物资源,2005,27(4):l-5.
    7. 陈玉华,宋丁全.篌竹出笋成竹生长规律研究[J].南京林业大学学报,2005,29(4):109-112.
    8. 陈志澄,陈海珍,黄辉等.铝对亚热带果树幼苗生长影响的模拟研究[J].农业环境科学学报,2005,24(增刊):3437.
    9. 储玲,刘登义,王友保等.铜污染对三叶草幼苗生长及活性代谢影响研究[J].应用生态学报,2004,l(15):120-122.
    10.崔爽,周启星,晁雷.某冶炼厂周围8种植物对重金属的吸收与富集作用[J].应用生态学报,2006,17(3):512-515.
    11.费世民,张旭东,刘福云等.国内外能源植物资源及其开发利用现状[J].四川林业科技,2005,3(7):21-26.
    12.官会林,段庆钟,高旭红.金沙江干热河谷去麻疯树资源开发潜力分析[J].农机化研究,2008,10:171-174.
    13.郝秀珍,周东美,王玉军,陈怀满.不同改良剂对铜矿尾矿砂的改良效果研究[J].农村生态环境,2002,18(1):11-15.
    14.贺玉姣,刘兴华,蔡庆生.C4植物甜高粱和玉米幼苗对Zn胁迫的响应差异[J].生态环境,2008,17(5):1839-1842.
    15.胡春霞,汤洁.重金属对蒲公英种子萌发及叶片渗透调节物质含量的影响[J].北方园艺,2008,11:27-30.
    16.胡筑兵,陈亚华,王桂平,沈振国.铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶活性的影响.植物学通报,2006,23(2):129-137.
    17.滑丽萍,华珞,王学东.芦苇对白洋淀底泥重金属污染程度的影响效应研究[J].水土保 持学报,2006,2(20):102-105.
    18.黄玉山,邱国华.紫羊茅抗铜和敏感品种在发育早期对铜离子反应的生理差异[J].应用与环境生物学报,1998,4(2):126-131.
    19.黄长干,邱业先.江西德兴铜矿污染状况调查及植物修复研究[J].土壤通报,2005,36(6):991-992.
    20.江行玉,王长海,赵可夫.芦苇抗镉机理研究[J].生态学报,2003,5(23):856-862.
    21.江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    22.蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J].植物生理学报,1997,23(4):347-352.
    23.孔祥海.重金属离子对植物的毒害及其机理[J].龙岩师范学报,2005,23(3):83-87.
    24.李功潘,蔡琬平,吴亚君等.叶绿体结构状态与光化学活性的关系[J].植物生理学报,1987,(3):295-301
    25.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    26.李荣春Pb及其复合污染对烟叶生理生化指标的影响[J].云南农业大学报,1997,12(1):45-50.
    27.李元,王焕校,吴玉树Cd,Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153.
    28.梁伟.竹植物发电技术[J].企业科技与发展,2008,15:47-48.
    29.林匡飞,张大明等.苎麻吸镉特性及镉土的改良实验[J].农业环境保护,1996,15(1):1-4.
    30.林义章,徐磊.铜污染对高等植物的生理毒害作用研究[J].中国生态农业学报,2007,15(1):201-204.
    31.刘春生,史衍玺,马丽.过量铜对苹果树生长及代谢的影响[J].植物营养与肥料学报,2000,6(4):451-456.
    32.刘道平.中国竹业产业化现状及展望[J].林业科技开发,2001,15(5):3-5.
    33.刘亮,朱明,朱太平.芒荻类植物资源的开发利用[J].自然资源学报,2001,16(6):562-563.
    34.刘明慧,王钊,王西红.甜高粱的综合利用与开发[J].农产品加工,2005,9(1):30-31.
    35.罗春玲,沈振国.植物对重金属的吸收和分布[J].植物学通报,2003,20(1):59-66.
    36.马引利,杨纯,闫桂琴等.土壤水分对翅油果树幼苗生理生化特性的影响[J].植物西北学报,2008,28(7):1397-1403.
    37.潘瑞炽.植物生理(第四版)[M].北京:高等教育出版社,2000.
    38.邱丹,万晓红,王崇圣.南京市郊区基本农田保护土壤重金属污染调查[J].环境监测管理
    与技术,2002,14(5):18-20.
    39.曲贵伟,依艳丽,郭德金.聚丙烯酸铵对外源复合重金属污染的土壤修复效果的研究[J].安徽农业科学,2007,35(20):6211-6212,6215.
    40.束文圣,杨开颜.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报,2001,7(1):7-12.
    41.孙浩,张艳英,宋金敏等.Cu胁迫对烟草幼苗生长发育的影响[J].贵州农业科学2008,36(5):34-36.
    42.田春龙,郭斌,刘春朝.能源植物研究现状和展望[J].生物加工过程,2005,2(1):14-19.
    43.王春涛,施国新,徐勤松等.外源钕减轻了重金属镉对菹草的毒害作用[J].中国稀土学报,2004,22(6):821-824.
    44.王林,史衍玺.镉、铅及其复合污染对辣椒生理生化特性的影响[J].山东农业大学学报(自然科学版),2005,36(1):107-1 12.
    45.王松华,杨志敏,徐朗莱.植物铜素毒害及其抗性机制研究进展[J].生态环境,2003,12(3):336-341.
    46.王炜,成拴狮,黄增强等.复合茵肥对锌污染土壤中油菜生长的影响[J].环境工程学报,山西农业科学,2008,36(1):73-75.
    47.王学,徐恒戬.外源亚精胺缓解荇菜生物膜的保护作用[J].植物生理学通讯,2008,44(3):449-453.
    48.王学,施国新,徐勤松等.外源多胺对铜胁迫下荇菜叶片生物膜(Nymphoides peltatum) Cr毒害的生理研究[J].环境科学学报,2003,22(5):689-693.
    49.王艳秋,朱翠云,卢峰等.甜高粱的用途及其发展前景[J].杂粮作物,2004,24(1):55-56.
    50.王兆茹,宋秋华.钨矿污染土壤中植物受重金属污染情况的调查[J].科技情报开发与经济,2005,15(22):150-151.
    51.韦朝阳,陈同斌.重金属超富集植物及植物修复研究进展[J].生态学报,2001,21(7):1196-1203.
    52.吴甘霖.镉对花生幼苗生长及生理生态特性的影响[J].生物学杂志,2008,25(5):31-33.
    53.吴国江,刘杰,娄治平等.能源植物的研究现状及发展建议[J].科技与社会,2006,21(1):53-57.
    54.夏建国,兰海霞.镉胁迫对蒙山茶树生长及叶片生理指标的影响[J].茶叶科学.2008,28(1):56-61.
    55.肖波,周英彪,李建芬.生物质能循环经济技术[M],北京:化学工业出版社,2006.
    56.谢寅峰,杨万红,陆梅蓉等.模拟酸雨胁迫下硅对髯毛箬竹光合特性的影响[J].应用生态学报,2008,19(6):1179-1184.
    57.杨丹慧.镉离子对菠菜叶绿体光和系统Ⅱ的影响[J].植物学报,1989,31:702-707.
    58.杨世诚.绿色能源:植物是明天[J].森林与人类,2000,5(1):11-12.
    59.杨文华.甜高粱在我国绿色能源中的地位[J].中国油料,2004,3(2):57-59.
    60.姚益云,赵振纪,刘永厚等.铜对紫云英根结构危害研究[J].江西农业大学学报,1997,12,19(4):71-74
    61.叶海波.东南景天(Sedum alfredii Hanee)对锌、镉、铅复合污染的响应与金属积累特性[D].浙江:浙江大学硕士论文,2003.
    62.游为贵.明溪竹类图志[M].南京:东南大学出版社.1998,171-172,230-233.
    63.张东为,崔建国.金属矿山尾矿废弃地植物修复措施探讨[J].中国水土保持,2006,3(2):40-42.
    64.张茜,徐明岗,张文菊,陈苗苗.磷酸盐和石灰对污染红壤与黄泥土中重金属铜锌的钝化作用[J].生态环境,2008,17(3):1037-1041.
    65.张孝飞,林玉锁,俞飞等.城市典型工业区土壤重金属污染状况研究[J].长江流域资源与环境,2005,14(4):512-515.
    66.张义贤,李晓科.镉、铅及其复合污染对大麦幼苗部分生理指标的影响[J].植物研究,2008,28(1):43-45。
    67.张义贤,张丽萍.重金属对大麦幼苗膜脂过氧化及脯氨酸和可溶性含量的影响[J].农业环境科学学报,2006,25(4):857-860.
    68.张永春,汪吉东,俞美香等.南京地区典型农业试验基地土壤肥力、环境质量调查与评价[J].江苏农业学报,2006,22(4):415-420.
    69.张志权,束文圣.土壤种子库与矿业废弃地植被恢复研究:定居植物对重金属的吸收和再分配[J].植物生态学报,2001,25(3):306-311.
    70.赵菲佚,翟禄新,陈荃等.Cd、Pb复合处理下对植物膜的伤害初探[J].兰州大学学报(自然科学版),2002,38(2):115-120.
    71.郑海龙,陈杰,邓文靖等.南京城市边缘带化工园区土壤重金属污染评价[J].环境科学学报,2005,25(9):1182-1188.
    72.中国油脂植物编写委员会.中国油脂植物[M].北京:科学出版社,1987.
    73.周本智,杨校生,李正才等.我国能源竹类植物资源及其开发潜力[J].世界林业研究,2006,6(19):50-52.
    74.周朝彬,胡庭兴.铅胁迫对草木樨抗氧化系统的影响[J].草业科学,2006,3(23):43-46.
    75.周芳纯.20世纪竹业的回顾和21世纪的展望[J].竹子研究文刊,1999,18(4):1-4.
    76. Alaoui-Sosse B, Vinit-Dunand F, Genet P, et al. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents [J]. Plant Science,2004,166:1213-1218.
    77. Alia K V, Prasad S K, Saradffi PP. Effect of Zinc on free radicads and praline in Brassica and Cajanas[J]. Phytochemistry,1995,39:45-51.
    78. Andrade S, Contreras L, Moffett J W, Correa JA. Kinetics of copper accumulation in Lessonia nigrescens (Phaeophyceae) under conditions of environmental oxidative stress [J]. Aquat.Toxicol,2006,78:398-401.
    79. Atkinson C J. Establishing perennial grass energy crops in the UK:A review of current propagation options forMiscanthus [J]. Biomass and Bioenergy,2009,5:752-759.
    80. Augus S. Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux [J]. Plant Phsiolgy,1999,121:1375-1382.
    81. Aust SD, Marehouse L A, Thomas CE. Role of metals in oxygen radical reaction [J]. J. Free Radic. Biol. Med.1985,1:3-25.
    82. Baker AJM. Accumulatiors and excluders strategies in the response of plants to heavy metals [J], Plant Nuture,1981,3:643-654.
    83. Borghi M, Tognetti R, Monteforti G, Sebastinani L. Responses of two poplar species(Populous alba and Populous x canadensis) to high copper concentration[J]. Environmental and Experimental Botany,2008,62:290-299.
    84. Brooks R R, Lee J, Reeves R D, et al. Detection of nick eliferous rocks by alysus of herbarium species of indicator plants [J]. Journal of Geo chemical Exploration,1977,7:49-57.
    85. Cook, C.M., Kostidou, A., Vardaka, E., Lanara, T.:Effects of copper on the growth, photosynthesis and nutrient concentration of phuseolus plants [J]. Photosynthetica,1997, 34:179-193.
    86. Demidchik, K., Sokolik, A., Yurin, V.:The effects of Cu2+ on ion transport systems of the pant cell plasmolemma. Plant Physiol,1997,114:1313-1325.
    87. Demmilg AB, Adams WW. Photoprotection and other responses of plants to high light stress [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599-626.
    88. Didierjan L, Frendo P, Heavy metal responsive genes in maize:identification and comparison of their expression upon various forms of abiotic stress [J]. Plant 1996,199 (1):1-8.
    89. Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology,1982,33:317-345.
    90. Fike JH., Parrish DJ., Wolf DD. et al. Long-term yield potential of switch grass for biofuel systems [J]. Biomass and Bioenergy,2006,30 (3):198-206.
    91. Griffin JJ, Ranney TG, Pharr DM. Photosynthesis, chlorophyll fluorescence, and carbohydrate content of Illicium taxa grown under varied irradiance [J]. Journal of the America Society for Horticultual science,2004,129:(1):46-53.
    92. Guo T R, Zhang G R, Zhang Y H. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium [J]. Colloids and Sufaces B:Biointerfaces,2007, 57:182-188.
    93. Kennedy, C.D., Gonsalves, F.A.N. The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H+ efflux of excised roots [J]. Joural Experment Botaty,38: 800-817,1987.
    94. Lidon, F.C., Ramalho, J.C., Henriques, F.S. Copper inhibition of rice photosynthesis [J]. Jounal Plant Physiolgy,142:12-17,1993.
    95. Liu, T.F., Wang, T., Sun, C., et al. Single and joint toxicity of cypermethrin and copper on Chinese cabbage (Pakchoi) seeds [J]. Jounal Hazardous Materials,2009,1:344-348.
    96. Macfarlane GR, Burchett MD. Toxicity growth and accumulation relationships of copper lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh [J]. Marine Environmental Research,2002,6,54(1):65-84
    97. Magdalena V M, Jose A S A, Maria L P, Daniel A W. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus[J]. Environment Pollution,2009,2:1-7.
    98. Maksymiec W, Bednara J, Bazynski T. Responeses of runner plants to excess copper as a function of plant growth stages:effects on morphology and structure of primary leaves and their chloroplast ultra-structure [J]. Photosynthetica,1995,31:427-435.
    99. Mwtha S K, Gaur J P. Heavy-metal-induced praline accumulation and its role in ameliorating metal toxicity in chlorella vulgris [J]. New phytol,1999,143:253-259.
    100. Ohrnberger D. The bamboos of the world:annotated nomenclatureand literature of the species and the higher and lower taxa [J]. Amsterdam:Elsevier,1999.
    101. Peter M A, Karl L, Ruth P. Modification of the lipid-protein interaction in human low-density lipoprotein destabilizes ApoB-100 and decreases oxidizability [J]. Biochemistry,1999,38: 3401-3408.
    102. Pierce J. Determinants of substrate specificity and the role of metal in the reaction of ribulosebisphosphate carboxylase/oxygenase [J]. Plant Physiolgy,1983,81:934-945.
    103. Pitsikki E,Kairavuo M, Deren F, Aro E M,Tyystjiirvi E. Excess copper predisposes photosystem Ⅱ to photo-inhibition in vivo by outcompeting iron and causing decrease in leaf chlorophy[J]. Plant Physiolgy,2002,129:1359-1367.
    104. Prasad, M.N.V., Malec, P., Waloszek, A., Bojko, M., Strzalka, K. Physiogical responses of Lemna trisulcal L. (duckweed) to cadmium and copper bioaccumulation [J]. Plant Science, 2001,161:881-889.
    105. Ptitsikkti E, Aro E M, Tyystjiirvi E. Increase in the quantum yield of photo-inhibition contributes to copper toxicity in vivo[J]. Plant Physiolgy,1998,117:619-627.
    106. Rauser W E, Meuwly P. Retention of cadmium in roots of maize seedlings:role of complexation by phytochelatins and thiol-peptides [J]. Plant Physiol,1995,109:195-202.
    107. Sahi S V, Israr M, Srivastava A K, et al. Accumulation speciation and cellular localization of copper in Sesbania drummondii [J]. Chemosphere,2007,67(11):2257-2260.
    108. Sheoran IS, Singal HR, Singh, R. Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.) [J]. Photosynses Res.1990,23:345-351.
    109. Stobart AK.The effect of Cd on the biosynthesis of chlorophyll leaves of barley [J]. Physiologia Plantarum,1985,63:293-298
    110. Strange J, Macnair M R. Evidence for a role for the cell membrance in copper tolerance of mimulus guttatu Fishex D C [J]. New physoil,1991,119:383-388.
    111. Takabayashi A, et al. Chioropstic NAD (P) H dehydrogense in tobacco leaves functions in alleviatin of oxidative damage caused by temperature stress [J]. Plant Physiology,2006, 141(2):465-474.
    112. Tanhan P, Kruatrachuc M, Pokethitiyook P, et al, Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson] [J], Chemosphere,2007, 68:323-329.
    113. Taylor, G.J., For, C.D. Differential uptake and toxicity of ionic and chelated copper in Triticum aestivu [J]. Can.J.Bot.1985,63:1271-1275.
    114. Vivek D. Differenntial antioxidative response to cadmium in roots and leaves of pea [J] Journal of Experimental Botany,2001,5(52):1101-1109.
    115. Wang H H, Li LQ, Wu X M, et al. Distribution of Cu and Pb in particle size fractions of urban soils from different city zones of Nanjing, China. Journal of Environmental Sciences,2006, 18(3):482-487.
    116. Wang Q, Dong Y, Cui Y, et al. Instances of soil and crop heavy metal contamination in China [J]. Soil and Sediment Contamination,2001,10(4):39-43.
    117. Wong M H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils [J]. Chemosphere,2003,50:775-780.
    118. Zhao FJ, McGrath SP, Crosland AR. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectrometry [J]. Communications in soil science & plant analysis,1994,25:407-418.
    119. Zhou Z Y, Fan Y P,Wang M J. Heavy metal contamination invegetables and their control in China[J]. Food Rev Int,2000,16 (2):239-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700