表面处理技术强化CPU散热器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子设备性能的日益提高,CPU消耗功率不断增大,导致传统以增大散热片面积和提高风扇风量为主的散热方式已不能满足热控制需求。本文研究采用表面处理技术改善散热器性能,具有工艺简单、结构紧凑、成本低廉等优势,能够很好的解决电子设备空间不足难题,对提高电子设备运行、可靠和安全性能具有重大意义。
     以常用CPU铝合金散热片为基础,提出了一种复合表面处理工艺,结合理论分析,建立了散热片表面强化散热模型;在综合考虑对流散热和辐射散热的基础上,研究了表面微观结构和辐射散热涂料对CPU散热性能的影响。主要研究内容如下:
     (1)以边界层理论为基础,在综合考虑对流和热辐射的基础上,推导出了肋片式散热片散热量的计算方法;结合工程实践应用,推导出涂料热辐射传输方程,为涂料热设计提供参考基础;
     (2)运用化学抛光、化学磨砂、机械喷丸、化学氧化等加工工艺在散热片表面加工出不同的微观结构,并详细描述了各中加工工艺的机理。
     (3)用表面粗糙度仪测量了各试样表面粗糙度的变化;并线切割分离部分试样后借助扫面电镜观察经表面处理后各试样表面的结构变化。
     (4)采用冷喷涂技术在处理后试样表面喷涂辐射散热涂料,详细叙述了喷涂工艺及涂料成膜机理;
     (5)利用红外热成像仪标定表面处理后试样表面辐射率并研究辐射率与表面微观相貌的关系;
     (6)建立CPU散热片实验模拟装置和风洞实验平台,改变输入功率进行对比试验,研究强制对流散热下各种试样的散热性能。
With the increasing performance of electronic devices, CPU consumed power is increasing. As a result, the traditional radiator cannot fill the need of thermal control by increasing the area of radiator and improving fan air volume. So the cooling of high heat flux chip becomes the key issues of electronic products currently, which should be overcome in the first. At present, the mainstream way of heat dissipation is still radiator installed fin. In this paper, the performance of CPU radiator was strengthened by surface treatment technology. The technology has the characteristic of simple process, no need for extra room, low cost, and so on, overcomes the need for room, and has a significant effect in CPU radiator.
     On the basis of aluminum heat-sink common used in CPU, a compound surface treatment technology was developed. The enhanced heat dissipation model of radiator was made based on theoretical analysis. And considering the thermal convection and thermal radiation, the influence of microscopic surface texture and radiation heat coating on CPU radiator was studied. The mainly research works are summarized as follows:
     (1) On the basis of boundary layer theory, and considering the effect of thermal convection and thermal radiation, heat dissipating capacity of finned radiator was deduced; the thermal radiator transfer equation was also deduced, and supplied theory foundation for coating design.
     (2) The CPU radiator was treated by chemical polishing, chemical coursing, mechanical shot penning and chemical oxidation, afterward, microscopic surface texture was got in the surface of the CPU radiator. The mechanism of every processing technology was described in detail.
     (3) The surface roughness was measured by the portable surface roughness. Little parts of test samples were separated by wire-electrode;The microscopic surface texture of processed samples was observed by SEM.
     (4) The cold gas dynamic spray was used to prepare the radiation heat coating and the spray process and filming mechanics was narrated in detail.
     (5) Using the thermal infrared imager to determine the radiance of the test samples, and studied the relationship between the Surface microscopic appearance and radiance;
     (6) The experimental simulation device of CPU radiator was established, input power was changed in the contrast test, and the performance of samples was studied in the case of forced convection.
引文
[1]唐金沙.CPU风冷散热器的实验研究及流场和温度场的数值模拟[D].湘潭:湘潭大学机械工程学院,2009
    [2]Sartre V., Lallemend M.. Enhancement of thermal contact conductance for electronic systems [J]. Appl Thermal Eng, 2001,21(21):221-235
    [3]Yeh L.T.. Review of heat transfer technologies in electronic equipment[J]. Electronic Packaging,1995,10(8): 333-339
    [4]Riesman R..System-on-a-chip:design and test [M]. Artech Publish,2000:233-246
    [5]引火虫.新手玩超频-认识电子迁移的危害[J].硬件新天地,2002,12:61-63
    [6]罗亚镔.CPU发热与散热性能分析[J].湖南税务高等专科学校学报,2004,17(4):51-52
    [7]张建臣. CPU风冷散热器散热性能分析与研究[J].福建电脑,2008,(2):69-70
    [8]高翔,凌惠琴,李明等.CPU散热技术的最新研究进展[J].上海交通大学学报,2007,41(4):48-54
    [9]王黎明,侯德鹏,路远等.基于帕尔帖效应的红外仿真屏驱动电路[J].红外技术,2008,30(5):263-269
    [10]扶新,高潮,贺俊杰等.基于半导体制冷器的CPU散热研究[J].制冷技术,2009,37(3):48-53
    [11]谢健全.常用CPU散热方式及散热性能分析[J].电脑知识与设计,2005,3(17):69-73
    [12]强焜.不同类型元件对个人电脑水冷散热的影响[J].科技风,2009,(12):220-224
    [13]殷际英.热管式CPU散热器总传热能力的研究[J].机械设计与制造,2004,15(1):45-50
    [14]孙志军.新型CPU集成热管散热技术研究[D].大连:大连理工大学,2006
    [15]刘静,周一欣.芯片强化散热研究最新领域-低熔点液体金属散热技术的提出与发展[J].电子机械工程,2006,22(6):7-12
    [16]李腾,刘静.芯片冷却技术的最新研究进展及其评价[J].制冷学报,2004,(3):22-32
    [17]徐超,何雅玲,杨卫卫.现代电子器件冷却方法研究动态[J].制冷与空调,2003, 3(4):10-14
    [18]胡志鹏,张洪涛.CPU散热器现状和发展趋势[J].江西蓝天学院学报,2009, 4(4):28-32
    [19]张远波.风冷式CPU散热片的热分析及其优化设计[D].武汉:华中科技大学,2006 [ 20 ]纪腾腾,赵慧莲,徐亮等.CPU散热器的电磁辐射仿真分析[J].电子科技,2010,5(23):51-54
    [21]陆正裕,熊建银,屈治国等.CPU散热器换热特性的实验研究[J].工程热物理学报,2004,25(5):861-863
    [22]李燚,张永恒.CPU散热器换热特性的数值研究[J].制冷与空调,2007,21(4): 98-100
    [23]周建辉,杨春信.CPU散热器结构设计与热分析[J].电子机械工程,2006,22(6):16-21
    [24]张亚平,冯全科,余晓玲.CPU散热器散热效果分析[J].制冷技术,2008,3(10):73-78
    [25]胡艳,郭广思,尚新泉. CPU散热器数值模拟分析[J].制冷技术,2009,37(9):60-67
    [26]王宏伟,葛增杰,顾元等. CPU散热片温度场模拟分析及其材料和尺寸选择的研究[J].计算力学学报,2008,37(1):86-91
    [27]张建臣,周智刚,杨文彬.新型铜铝爆炸复合CPU散热器的研制[J].计算机工程与应用,2006,92-97;
    [28]余鹏,孙晓伟,曾艳等.垂直均匀射流下CPU散热器换热性能的数值分析[J].工程热物理学报,2003,24(3):415-420
    [29]S.Kitajo. Development of a high performance air cooled heat sink for multi-chip modules[J]. Eighth IEEESEMI-THERMTSymposium,1992:119-124
    [30]Kyle A., Brucker, Joseph Majalani.. Equivalent thermal conductivity for compact heat sink models based on the churchill and chu correlation[A] . IEEE Transaction On Components And Packaging[C] ,26 (1):253-257
    [31]Ozturk. E., Tari. I.. Forced Air Cooling of CPUs With Heat Sinks: A Numerical Study[A],Components and Packaging Technologies[C]. IEEE Transactions On Components And Packaging, 2008, 31(3):650-660
    [32]Saini .M,Webb. R.L..Heat rejection limits of air cooled plane fin heat sinks for computer cooling[A].Thermal and Thermomechanical Phenomena in Electronic Systems[C] . 2002, The Eighth Intersociety Conference, 28(4):1- 8
    [33] Jer-Huan Jang ,Experimental study on visualization of a longitudinal heat sink withtop-mounted fan by particle tracking[J].Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems 2004,EuroSimE 2004. Proceedings of the 5th International Conference on , 2004, (5):505- 508
    [34]张玉文,陈钟.辐射对流条件下肋片散热的数值计算[J].工程热物理学报,1989,10(1):69-73
    [35]邢菲,林吉靓.基于ANSYS的CPU散热片的散热及温度场分析[J].机械工程师,2010.3(5):66-68
    [36]张兴旺.计算机设备的热设计[J].电子工艺技术,2001,22(1):36-40
    [37]程尚模.传热学[M].北京:高等教育出版社,1990:38-40
    [38]孙百生.长肋散热的计算[J].北京邮电学院学报,1991, 14(1):88-94 [ 39 ]欧阳德刚,周明石,张奇光等.红外辐射涂料的组成与性能[J].钢铁研究,1999,(1):30-34
    [40]吴永红,夏德宏.材料的选择性热辐射机理[J].冶金能源,2003,22(6):15-19
    [41]徐文兰,罗宁胜,张眠等.非均匀涂层的热辐射[J].红外研究,1990,(5):384-388
    [42]江浦薇,陈陆峰.铸铝件涂装前的表面处理[J].华通技术,2006,(2):35-37
    [43]薛寿昌.金属零件涂装前的表面处理工艺[J].涂装与电镀, 2009,(5):45-50 [ 44 ]许振明,徐孝勉.铝和镁的表面处理[M].上海:上海科技技术文献出版社,2005:77-92;
    [45]朱彦海.铝及铝合金常温化学砂面处理剂[J]. MATERLALS PROTECTION,1993, 26(12):44-46
    [46]连宁,王新翔.铝件化学砂面工艺[J].电镀与精饰,1997, 2(19):44-46
    [47]吕建华.铝型材表面碱蚀磨砂工艺及其缺陷分析[J].铝加工,1999,22(21):49-53
    [48]李珍芳,李康宁.铝合金化学抛光工艺研究[J].博士·专家论坛
    [49]范晓岚,邵明娜,倪生良.铝合金材料工件化学抛光液的配置研究[J].内蒙古石油化工,2010,(16):22-24 [ 50 ]杨若凡.6531铝合金喷丸层微结构的热松弛行为[J].热加工工艺,2008,14(37):25-27
    [51]孙宝应,姚铁吉,乔明杰.金属零件喷丸强化中的几个工艺问题[J].新工艺·新技术·新设备, 1998,(6):30-33
    [52]李伯奎,刘远伟.表面粗糙度理论发展研究[J].工具技术,2004,38(1):63-68
    [53]覃奇贤,刘淑兰.表面粗糙度[J].电镀和精饰, 2009, 31(6):45-50
    [54]TR200手持式粗糙度仪使用说明书[EB/OL],北京时代集团公司,2006
    [55]王宏伟.表面粗糙度的测量与数据处理[J].科技信息, 2009,(35):728-732
    [56]陈镇平,刘强.不确定度表示体系的误差分析和数据处理方法[J].工程物理,1999,9(5):27-32
    [57]刘建,刘文金.应用格罗布斯准则判定测量结果中粗大误差[J].木工机床, 2006,(2):20-25
    [58]刘智敏,刘风.测量不确定度的评定与表示[J].物理, 1996,25(2):96-100
    [59]郭晓松,红全.测量不确定度和测量误差的区别与联系[J].计量与测试技术,2006,33(12):47-50
    [60]朱鹤年.物理实验研究[M].北京:清华大学出版社,1994,75-80
    [61]金捷.不确定度在普通物理实验数据处理中的应用[J].温州师范学院学报(自然科学版),2003,24(2):55-59
    [62]刘润茹.测量不确定度的概念和计算方法在物理实验中的应用[J].长春大学学报,1999,9(3):55-59
    [63]张学敏.涂装工艺学[M].第二版.北京:化工出版社, 2007,102-113
    [64]张家生,王黔平.陶瓷涂层的热震稳定性及界面结合机理[J].河北理工大学学报(自然科学版),2007,29(3):91-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700