煤粉空气分级和再燃技术机理、应用和模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业化进程的不断推进,大气污染问题已经成为摆在我们面前的严峻挑战之一。近几年随着SO2排放逐渐得到控制,氮氧化物排放逐渐成为主要的大气污染物。我国能源以煤炭为主,煤燃烧排放的氮氧化物成为氮氧化物主要来源之一,控制煤燃烧过程中氮氧化物生成意义重大。
     本文以探索煤燃烧过程中NOx生成控制最佳途径为研究目标,按照“固定床机理试验—>沉降炉模拟试验—>应用研究—>计算模型”的思路研究了煤粉燃烧过程中NOx的生成与控制规律。
     固定床试验主要研究煤粉燃烧和煤粉还原NOx过程机理,试验同时测量了燃烧过程中NO、HCN、NH3等的生成量,提出了通过对比燃料N向NO、HCN、NH3转化率与向N2转化率来综合评价燃烧过程中NOx控制效果的方法。本文试验条件下,氧浓度在1%~2%时,挥发份燃烧阶段NOx控制效果最佳,而且此气氛下挥发份还原烟气中NOx效果最佳;焦炭燃烧阶段NOx的生成和抑制受多种因素影响,其中氧浓度的影响最为明显,氧浓度的升高不利于焦炭燃烧过程中NOx的控制。
     在沉降炉上模拟了空气分级燃烧和煤粉再燃过程。在煤粉燃烧初期,富氧和欠氧条件下的燃烧过程相似,都有大量NO生成,燃烧后期NO会得到部分还原,欠氧条件下的NO还原率要高于富氧条件;采用空气分级燃烧技术控制NOx生成时,一次燃烧区域空气系数应取0.8左右,过低的空气系数会大大增大飞灰含碳量;综合考虑经济性和NOx排放控制,建议煤粉再燃技术再燃区空气系数取0.8~0.85。
     在大型电站锅炉上实施了空气分级燃烧和煤粉再燃,对比了技术改造前后锅炉的炉膛温度、蒸汽参数、NOx排放浓度、锅炉效率等,分析了运行方式对低NOx燃烧技术的影响规律。大型电站锅炉示范试验NOx脱除率超过50%。
     最后,建立了大型锅炉低NOx燃烧计算模型,模型包括煤粉热解和燃烧、炉膛传热计算、NOx生成与还原等计算模块。模型计算结果与大型电站锅炉试验结果吻合;采用模型计算优化了三次风、再燃风、燃尽风布置方式,计算结果对低NOx燃烧技术工程设计具有重大指导意义。
With the industry development, the air pollution is becoming a austere challenge for people. In resent years, the emission of SO2 has been controlled gradually, and the nitrogen oxygen (NOx) emission becomes the main air pollution. In our country, coal is the primary energy, and the NOx emission during coal combustion is the main source of NOx. Its reduction is very significative.
     Aiming at exploring the best way to control the NOx emission during coal combustion, the NOx producing and reducing law during coal combustion is researched in this thesis. The experiment is carried out in a fixed-bed reactor firstly, then a drop tube reactor, and on the big boilers finally. An computing model is also made basing on the experiment result.
     In the fixed-bed reactor, the mechanism on NOx during the coal combusting and reburning is studied. The field quantity of NO, HCN and NH3 is measured and the conversion rate of the fuel-N to NO, HCN, NH3 and N2 is computed, which can represent the NOx reduction efficiency during coal combustion more exactly. At the experiment condition in this thesis, 1%-2% is the best concentration of oxygen at which the NOx emission is controlled best during the volatile combustion and NOx is reduced most by volatile during the volatile reburning. When the char combusting, the NOx emission and reduction is affected by many factors, in which the oxygen concentration effect is the most obvious. The higher the oxygen concentration, the more NOx emitted during char combustion.
     The air-staged combustion and reburning process is simulated in the drop tube reactor. In the initial stage of pulverized coal combustion, lots of NO is fielded at both air-rich atmosphere and fuel-rich atmosphere. The NO fielded will be reduced partially in the subsequent time. The reduction rate is higher at fuel-rich atmosphere than that at air-rich atmosphere. The optimal air coefficient in the first combustion zone is about 0.8 for air-staged combustion. Lower air coefficient will make the carbon content in fly ash increase quickly. Considering both the NOx controlling and the economic benefits, the optimal air coefficient in reburn zone is in the range of 0.8-0.85 for pulverized coal reburning.
     Both the air-staged combustion technology and the conventional pulverized coal reburning technology are utilized on large-scale plant boliers. The furnace temperature, the steam parameter, the NOx emission concentration and the boiler efficiency before and after the technical reformation is compared. The effect of the operation mode on the NOx control is also analyzed. The NOx reduction efficiency of the pulverized coal reburning technology exceeds 50% in the demonstration engineering.
     Finaly, a computing model is made up. It contains the pyrogenation and combustion model, the furnace temperature computing model and the NOx production and reduction model. The computing result of the model is consistent with the experiment. Using the engineering computing model, the nozzle position of the tertiary air, the reburn air and the burnout air is optimized. And the result can be used to direct the engineering design of the low NOx combustion technology.
引文
[1]郭东明.硫氮污染防治工程技术及其应用[M].北京:化学工业出版社、环境科学与工程出版中心,2001.
    [2]黄诗坚.NOx的危害及其排放控制[J].电力环境保护,2004,20(1):24-25.
    [3]岑可法,姚强.高等燃烧学[M].杭州:浙江大学出版社,2002.
    [4]秦文新,程熙,叶霭云.汽车排气净化及噪声控制[M].北京:人民交通出版社,2000.
    [5]董敬,庄志,常思勤.汽车拖拉机发动机[M].北京:机械工业出版社,1999.
    [6]苟湘.直流煤粉低NOx燃烧和再燃技术的试验、理论与数值模拟研究[D].杭州:浙江大学博士学位论文,2007.
    [7]国家统计局.2007国家统计年鉴[M].北京:中国统计出版社,2008.
    [8]贺吉明,张国斌.中国氮氧化物排放现状、趋势及控制对策[C].全国氮氧化物污染控制研讨会,2003.
    [9]国家环境保护总局,国家质量监督检验检疫总局.GB13223—2003中华人民共和国国家标准[M].北京:中国环境科学出版社,2003.
    [10]Pio Forzatti. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General,2001,222(1-2):221-236.
    [11]Matthew E. Kahn. Regional growth and exposure to nearby coal fired power plant emissions[J]. Regional Science and Urban Economics, In Press, Corrected Proof
    [12]Athanasios I. Chatzimouratidis, Petros A. Pilavachi. Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process[J]. Energy Policy,2007,35(8):4027-4038.
    [13]熊蔚立,张国斌.火电厂氮氧化物(NOx)的危害和防治[J].湖南电力,2002,22(1):61-62+52.
    [14]刘汉涛,李慧,李英杰,路春美.煤粉燃烧燃料氮析出研究进展[J].山东建筑工程学院学报,2004,19(4):69-72,80.
    [15]P. Glarborg, A.D.Jensen, J.E.Johnsson. Fuel nitrogen conversion in solid fuel fired systems[J]. Progress in Energy and Combustion Science,2003,29 (2):89-113.
    [16]L.D.Smoot, D.T.Pratt.煤粉燃烧与气化[M].清华大学出版社,1983.6.
    [17]Shinji Kambara, Takayuki Takarada, Masaru Toyoshima, Kunio Kato. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion[J].Fuel,1995,74(9):1247-1253.
    [18]Yinhe Liu, Defu Che. Releases of NO and its precursors from coal combustion in a fixed bed[J]. Fuel Processing Technology,2006,87(4):355-362.
    [19]Ping Lu, Shengrong Xu, Xiuming Zhu. Pyrolysis property of pulverized coal in an entrained flow reactor during coal reburning[J]. Chemical Engineering and Processing: Process Intensification, In Press, Corrected Proof
    [20]Hai-feng Liu, Yin-he Liu, Yan-hua Liu, De-fu Che. Experimental investigation on the conversion of nitrogenous gas products during coal pyrolysis [J]. Journal of Fuel Chemistry and Technology,2008,36(2):134-138.
    [21]R. P. van der Lans, P. Glarborg, K. Dam-Johansen. Influence of Process Parameters on Nitrogen Oxide Formation in Pulverized Coal Burners[J]. Prog. Energy Combust. Sci.,1997,23:349-377.
    [22]陆智.420t/h锅炉SOFA低NOx燃烧技术改造研究[D].杭州:浙江大学硕士学位论文,2008.
    [23]Marek A. W o jtowicz, Jan R.Pels, Jacob A.Moulijn. The fate of nitrogen functionalities in coal during pyrolysis and combustion[J]. Fuel,1995,74 (4):507-516.
    [24]C.K.Man, J.R.Gibbins, J.G.Witkampb, J.Zhang. Coal characterisation for NOx prediction in air-staged combustion of pulverised coals[J]. Fuel,2005,84:2190-2195.
    [25]W. de Jong, G.Di Nola, B. C. H. Venneker, H. Spliethoff, M. A. W o jtowicz. TG-FTIR pyrolysis of coal and secondary biomass fuels:Determination of pyrolysis kinetic parameters for main species and NOx precursors [J]. Fuel,2007,86 (15):2367-2376.
    [26]Naoto Tsubouchi, Yasuo Ohtsuka. Nitrogen chemistry in coal pyrolysis:Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen[J]. Fuel Processing Technology,2008,89(4):379-390.
    [27]Naoto Tsubouchi, Yasuo Ohtsuka. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation[J]. Fuel,2002,81(18): 2335-2342.
    [28]Qiong Jia, Defu Che, Yinhe Liu, Yanhua Liu. Effect of the cooling and reheating during coal pyrolysis on the conversion from char-N to NO/N2O[J]. Fuel Processing Technology, In Press, Corrected Proof
    [29]梁秀俊,高正阳,阎维平.煤粉再燃过程中HCN与NH3的反应机理分析[J].华北电力技术,2004,(4):19-21.
    [30]J. Friebel, R.F.W. Kopsel. The fate of nitrogen during pyrolysis of German low rank coals — a parameter study[J]. Fuel,1999,78:923-932.
    [31]曹欣玉,牛志刚,应凌俏,王智化,周俊虎,刘建忠,岑可法.无烟煤燃料氮的热解析出规律[J].燃料化学学报,2003,31(6):538-542.
    [32]Naoto Tsubouchi, Yasuo Ohtsuka. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation[J]. Fuel,2002,81: 2335-2342.
    [33]郭永红,孙保民,康志忠.超细粉再燃技术中HCN对NOx的生成和还原的影响[J].电站系统工程,2005,21(2):15-17.
    [34]刘银河,刘艳华,车得福,徐通模.煤中灰分和钠添加剂对煤燃烧中氮释放的影响[J].中国电机工程学报,2005,25(4):136-141.
    [35]C. Pevida, A. Arenillas, F. Rubiera, J. J. Pis. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms[J]. Fuel,2007,86(1-2):41-49.
    [36]M. T. Cheng, M. J. Kirsch, T. W. Lester. Reaction of nitric oxide with bound carbon at flame temperatures [J]. Combustion and Flame,1989,77(2):213-217.
    [37]Raymond C. Everson, Hein W. J. P. Neomagus, Henry Kasaini, Delani Njapha. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: Characterisation and combustion [J]. Fuel,2006,85(7-8):1067-1075.
    [38]J. M. Levy, L. K. Chan, A. F. Sarofim, J. M. Be e r. NO/char reactions at pulverized coal flame conditions [J]. Symposium (International) on Combustion,1981,18 (1):111-120.
    [39]C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms[J]. Fuel,2006, (In press)
    [40]A. Molina, E. G. Eddings, D. W. Pershing, A. F. Sarofim. Char nitrogen conversion:implications to emissions from coal-fired utility boilers [J]. Progress in Energy and Combustion Science,2000,26(4-6):507-531.
    [41]Per Rosenberg, Henrik I. Petersen, Erik Thomsen. Combustion char morphology related to combustion temperature and coal petrography[J]. Fuel,1996,75 (9):1071-1082.
    [42]John W. Zondlo, Michael R. Velez. Development of surface area and pore structure for activation of anthracite coal [J]. Fuel Processing Technology,2007,88(4): 369-374.
    [43]R.I. Backreedy, J.M. Jones, M. Pourkashanian, A. Williams. Burn-out of pulverised coal and biomass chars [J]. Fuel,2003,82:2097-2105.
    [44]Maria Mastalerz, Agnieszka Drobniak, Dariusz Strapoc, Wilfrido Solano Acosta, John Rupp. Variations in pore characteristics in high volatile bituminous coals:Implications for coal bed gas content[J]. International Journal of Coal Geology, In Press, Corrected Proof
    [45]M. Mastalerz, A. Drobniak, A. Schimmelmann. Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin[J]. International Journal of Coal Geology, In Press, Corrected Proof
    [46]Jennifer P. Spinti, David W. Pershing. The fate of char-N at pulverized coal conditions[J]. Combustion and Flame,2003,135:299-313.
    [47]Indrek K u laots, Alex Hsu, Eric M. Suuberg. The role of porosity in char combustion[J]. Proceedings of the Combustion Institute,2007,31(2):1897-1903.
    [48]钟北京,施卫伟,傅维标.煤粉再燃过程中NO异相还原机理的重要性[J].燃烧科学与技术,2002,8(1):6-8.
    [49]欧阳德刚,罗安智.煤燃烧催化剂的研究现状与发展方向的分析[J].钢铁研究,2004,(4):1-4,7.
    [50]Akira Tomita. Suppression of nitrogen oxides emission by carbonaceous reductants[J]. Fuel Processing Technology,2001,71(1):53-70.
    [51]Renato Rota, Dorota Antos, Everton F. Zanoelo, Massimo Morbidelli. Experimental and modeling analysis of the NOxOUT process [J]. Chemical Engineering Science,2002,57(1):27-38.
    [52]Kyung Sook Jung, Tim C. Keener, Soon-Jai Khang. Compositional factors affecting NOx emissions from Ohio coals[J]. Fuel Processing Technology,2001,74 (1) 49-61.
    [53]Renato Rota, E.F.Z., Dorota Antos, Massimo Morbidelli, Sergio Carra. Analysis of the thermal DeNOx process at high partial pressure of reactants[J]. Chemical Engineering Science,2000,55:1041-1051.
    [54]Chunyang Wu, Dale Tree, Larry Baxter. Reactivity of NH3 and HCN during low-grade fuel combustion in a swirling flow burner[J]. Proceedings of the Combustion Institute,2007,31(2):2787-2794.
    [55]Xiaolin Wei, Tongmo Xu, Shien Hui. Burning low volatile fuel in tangentially fired furnaces with fuel rich/lean burners[J]. Energy Conversion and Management,2004, 45:725-735.
    [56]Y. D. Wang, D. McIIveen-Wright, Y. Huang, N. Hewitt, P. Eames, S. Rezvani, J. McMullan, A. P. Roskilly. The application of FLOX/COSTAIR technologies to reduce NOx emissions from coal/biomass fired power plant:A technical assessment based on computational simulation[J]. Fuel,2007,86(14):2101-2108.
    [57]秦鹏,林中达,王继红,王芳.降低火力发电厂NOx排放技术及燃烧调整试验[J].工业炉,2003,25(1):1-5,13.
    [58]Hartmut Spliethoff, Ulrich Greul, Helmut Rudiger, Klaus R. G. Hein. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility [J]. Fuel,1996, 75(5):560-564.
    [59]曾汉才.大型锅炉高效低NOx燃烧技术的研究[J].锅炉制造,2001,(1)1-11.
    [60]董利,李瑞扬.炉内空气分级低NOx燃烧技术[J].电站系统工程,2003,19(6):47-49.
    [61]唐志国,朱全利,唐必光,贾祥.空气分级燃烧降低NOx排放的实验研究[J].电站系统工程,2003,19(3):7-9.
    [62]王恩禄,罗永浩,彭玲,陆方,章明川.分级燃烧降低四角切向燃用低挥发分煤电站锅炉NOx的排放水平[J].热力发电,2004,(3):6-8,13.
    [63]文军,许传凯:分级燃烧对NOx生成及燃烧经济性的影响[J].中国电力, 1997,30(4):8-12.
    [64]Fredrik Normann, Klas Andersson, Bo Leckner, Filip Johnsson. High-temperature reduction of nitrogen oxides in oxy-fuel combustion[J]. Fuel,2008,87 (17-18) 3579-3585.
    [65]Y. B. Yang, E. Hampartsoumian, B. M. Gibbs. The effects of temperature, mixing and volatile release on no reduction mechanisms by coal reburning[J]. Symposium (International) on Combustion,1998,27(2):3009-3017.
    [66]D.R. Tree, A.W.Clark. Advanced reburning measurements of temperature and species in a pulverized coal flame[J]. Fuel,2000,79:1687-1695.
    [67]Hao Liu, Edward Hampartsoumian, Bernard M. Gibbs. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning[J]. Fuel,1997,76 (11): 985-993.
    [68]吴碧君,刘晓勤.燃煤锅炉低NO燃烧器的类型及其发展[J].电力环境保护,2004,20(3):24-27.
    [69]高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料N释放规律的实验研究[J].中国电机工程学报,2004,24(8):238-342.
    [70]卢平,徐生荣,祝秀明,顾洲.再燃烧条件下煤粉热解过程中C、H、N释放特性[J].热能动力工程,2005,20(3):284-288.
    [71]Peter M. Maly, Vladimir M.Zamansky, Loc Ho, Roy Payne. Alternative fuel reburning[J]. Fuel,1999,78:327-334.
    [72]沈伯雄,孙幸福,王成东,秦磊,王瑞.再燃法烟气脱硝技术[J].化工环保,2005,25(2):114-116.
    [73]李戈,斯东波,池作和,潘维,岑可法.煤粉再燃还原NO的实验研究[J].电站系统工程,2004,20(1):44-46.
    [74]Xiangsong Hou, Hai Zhang, Malgorzata Pilawska, Junfu Lu, Guangxi Yue. The formation of N2O during the reduction of NO by NH3[J]. Fuel,2008,87 (15-16) 3271-3277.
    [75]Xiao-mei Shan, Shu-quan Zhu, Wen-hui Zhang. Effect of surface modification of activated carbon on its adsorption capacity for NH3[J]. Journal of China University of Mining and Technology,2008,18(2):261-265,274.
    [76]L.Muzio, R.Smith, G.Quartucy, Q.Qader. recent experiences tuning SCR systems [C]. Combined power plant air pollutant control mega sysposium,2003.
    [77]Robert W.Mcllvaine, Helmut Weiler, William Ellison. SCR operating experience of German powerplant owners as applied to challenging,U.S.,high-sulfur service[C]. Combined power plant air pollutant control mega sysposium,2003.
    [78]Rafic Y. Minkara. Coal Combustion Products Quality Issues:SCR Impact and technology to Mitigate Ammonia Slip[C]. The proceedings of the 28th international technical conference on coal utilization & fuel systems,2003.
    [79]路涛,贾双燕,李晓芸.关于烟气脱硝的SNCR工艺及其技术经济分析[J].现代电力,2004,21(1):17-22.
    [80]王智化,周昊,周俊虎,樊建人,岑可法.不同温度下炉内喷射氨水脱除NOx的模拟与试验研究[J].燃料化学学报,2004,32(1):48-53.
    [81]ALEXANDER M.G. Flow reactor experiements on the selective non-catalytic removal of nitrogen oxides[D]. GENTEMANN Master 学位论文,2001.
    [82]David Wojichowski. SNCR System-Design, Installation, and Operating Experience[C]. Conference on SCR and SNCR for NOx Control,2002.
    [83]Xiang Jun, Li Min, Sun Lushi, Lu Jidong, Sun Xuexin. Comparison of nitrogen oxide emissions from boilers for a wide range of coal qualities [J]. IInternational Journal of Thermal Sciences,2000,39(8):833-841.
    [84]Zongbin Zhao, Wen Li, Jieshan Qiu, Baoqing Li. Effect of Na, Ca and Fe on the evolution of nitrogen species during pyrolysis and combustion of model chars [J]. Fuel, 2003,82:1839-1844.
    [85]K. Mark Thomas. The release of nitrogen oxides during char combustion[J]. Fuel, 1997,76(6):457-473.
    [86]王智化.燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D].杭州:浙江大学博士学位论文,2005.
    [87]张强,李彦鹏,许益谦.再燃烧还原Nox机理及其技术发展[J].工业锅炉,2001,2:17-19.
    [88]钟北京,施卫伟,傅维标.煤和煤焦还原NO的实验研究[J].工程热物理学报,2000,21(3):383-387.
    [89]钟北京,施卫伟,傅维标.煤再燃过程中燃料特性对NO还原的影响[J].燃烧科学与技术,2001,7(2):115-119.
    [90]钟北京,施卫伟,傅维标.烟煤焦催化还原NOx实验研究[J].燃烧科学与技术,2001,7(1):44-47.
    [91]钟北京,施卫伟.煤再燃过程中催化剂对再燃过程的影响[J].热能动力工程,2001,16(3):259-262.
    [92]S. Schafer, B. Bonn. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part 1. Homogeneous reactions[J]. Fuel,2000,79 (10): 1239-1246.
    [93]钟北京,徐旭常.燃烧过程中NOx形成的数学模拟[J].燃烧科学与技术,1995,1(2):120-128.
    [94]H. B. Vuthaluru, D. French. Ash chemistry and mineralogy of an Indonesian coal during combustion:Part 1 Drop-tube observations[J]. Fuel Processing Technology,2008, 89(6):595-607.
    [95]S. Biswas, N. Choudhury, P. Sarkar, A. Mukherjee, S. G. Sahu, P. Boral, A. Choudhury. Studies on the combustion behaviour of blends of Indian coals by TGA and Drop Tube Furnace[J]. Fuel Processing Technology,2006,87(3):191-199.
    [96]Richelieu Barranco, Michael Cloke, Edward Lester. Prediction of the burnout performance of some South American coals using a drop-tube furnace[small star, filled][J]. Fuel,2003,82(15-17):1893-1899.
    [97]M. Cloke, E. Lester, A. W. Thompson. Combustion characteristics of coals using a drop-tube furnace[J]. Fuel,2002,81(6):727-735.
    [98]S. Kajitani, S. Hara, H. Matsuda. Gasification rate analysis of coal char with a pressurized drop tube furnace[J]. Fuel,2002,81(5):539-546.
    [99]J. i Hayashi, H. Takahashi, M. Iwatsuki, K. Essaki, A. Tsutsumi, T. Chiba. Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor[J]. Fuel,2000,79(3-4):439-447.
    [100]S. P. Visona, B. R. Stanmore. Modeling nitric oxide formation in a drop tube furnace burning pulverized coal [J]. Combustion and Flame,1999,118(1-2):61-75.
    [101]徐华东,罗永浩,王恩禄,陆方.再燃技术及其在我国的应用前景[J].动力工程,2001,21(4):1320-1323,1302.
    [102]Gerry J. Hesselmann. Optimization of combustion by fuel testing in a NO x reduction test facility [J]. Fuel,1997,76(13):1269-1275.
    [103]Zamansky.V.M, Ho.L.Maly, P.M. Seeker. Reburning promoted by nitrogen and sodium-containing compounds[C]. Twenty-sixth Symposium (International) on Combustion,1997.
    [104]钟北京,傅维标.再燃过程中HCN对NOx还原的重要性[J].燃烧科学与技术,2000,16(1):77-84.
    [105]文军,齐春松,王月明,魏铜生,徐党旗,杨忠灿,张波.细煤粉再燃技术在我国燃煤锅炉上的首次工程应用[J].热力发电,2004,(8):29-31.
    [106]D. J. Morgan, P. J. Dacombe, W. L. Van De Kamp. Semi-industrial scale investigations into NOx emissions control using coal-over-coal reburn techniques [J]. Symposium (International) on Combustion,1998,27(2):3045-3051.
    [107]Xiaohai Han, Xiaolin Wei, Uwe Schnell, Klaus R. G. Hein. Detailed modeling of hybrid reburn/SNCR processes for NOX reduction in coal-fired furnaces[J]. Combustion and Flame,2003,132(3):374-386.
    [108]程俊峰,曾汉才,熊蔚立,黄伟.降低300MW贫煤锅炉NOX排放的试验研究[J].中国电机工程学报,2002,22(5):157-160.
    [109]张海,吕俊复,徐秀清,曾瑞良,岳光溪.我国燃煤电站锅炉NOx排放的现状分析和应对措施[J].中国动力工程学报,2005,25(1):125-130.
    [110]陈代宾.燃煤电厂炉内脱硝技术的应用[J].电力环境保护,2002,18(4):17-20.
    [111]Sen Li, Tongmo Xu, Peng Sun, Qulan Zhou, Houzhang Tan, Shien Hui. NOx and SOx emissions of a high sulfur self-retention coal during air-staged combustion[J]. Fuel,2008,87(6):723-731.
    [112]William P. Partridge, Normand M. Laurendeau. Nitric oxide formation by inverse diffusion flames in staged-air burners[J]. Fuel,1995,74(10):1424-1430.
    [113]吴生来,毕政益.电站锅炉四角切圆燃烧技术刍议[J].中国电力,1999,32(1):15-21.
    [114]刘泰生,吴焕琪,邓仲勇,刘建文,姚本荣,许晋源.一次风双向切圆布置燃烧系统的特点和试验研究[J].动力工程,2003,23(4):25.06-2510.
    [115]葛友康,梁国.1025 t/h控制循环锅炉燃烧器摆动调温研究[J].锅炉技术,1998,(4):1-4+26.
    [116]陈梅娟.摆动燃烧器调节汽温的探讨[J].华东电力,1999,(10):14-16.
    [117]梁汉文.锅炉汽温偏低和燃烧不稳定原因分析及改造[J].广西电力技术,1996,(3):38-40.
    [118]黄伟,曾跃清,缪楚雄,唐楚怡,张贵生.大型锅炉汽温偏低和燃烧不稳原因分析及措施[J].中国电力,2004,37(12):31-33.
    [119]郑丽蓉.柳州电厂1号炉主、再热蒸汽温度偏低的技术改造[J].广西电力,2003,增刊:102-104.
    [120]吴润,廖晓春,许家济,徐程宏.云浮发电厂1号炉蒸汽温度偏低和结焦问题的解决[J].广东电力,12(4):53-55.
    [121]岑建培,廖晓春,许家济.云浮电厂2号炉燃烧系统改造.热力发电[J].热力发电,2001,(4):50-52.
    [122]王乐华.电站锅炉主再热汽温偏低的改造[J].电力科学与工程,2007,23(3):76-78.
    [123]李芳芹,魏敦崧,任建兴.旋流燃烧煤粉锅炉NOx生成的数值模拟[J].煤气与热力,2005,125(4):13-16.
    [124]A. Aroussi, S. J. Pickering, S. Tarr. Momentum interchange in a burner bank[J]. Fuel,2000,79(12):1439-1448.
    [125]M. Xu, J. L. T. Azevedo, M. G. Carvalho. Modelling of the combustion process and NOx emission in a utility boiler[J]. Fuel,2000,79(13):1611-1619.
    [126]Minghou Xu, J. L. T. Azevedo, M. G. Carvalho. Modeling of a front wall fired utility boiler for different operating conditions [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(28):3581-3590.
    [127]Stephen Niksa, Gui-su Liu. Pulverized coal flame structures at elevated pressures. Part 2. Interpreting NOX production with detailed reaction mechanisms[J]. Fuel,2005,84 (12-13):1575-1585.
    [128]Ryoichi Kurose, Hisao Makino, Akira Suzuki. Numerical analysis of pulverized coal combustion characteristics using advanced low-NOx burner[J]. Fuel,2004,83(6): 693-703.
    [129]张颉,孙锐,吴少华,陈炳华,李争起,秦裕琨.200MW旋流燃烧方式煤粉炉炉内燃烧试验和数值研究[J].中国电机工程学报,2003,23(8):215-220.
    [130]唐良广,郑楚光,赵海波.实际锅炉中煤粉燃尽率与飞灰含碳量的预测[J].华中科技大学学报,2001,29(sup.I):14-17.
    [131]郭嘉,江睿,曾汉才.混煤燃烧过程中氮氧化物的生成规律及其计算机模拟[J].电站系统工程,1994,10(2):44-47.
    [132]N. P. Megalos, N. L. Smith, D. K. Zhang. The potential for low NOx from a precessing jet burner of coal[J]. Combustion and Flame,2001,124(1-2):50-64.
    [133]李志强,魏飞,金涌,李荣先,周力行.旋流浓淡燃烧器中煤粉浓缩器对煤燃烧NOx生成的影响[J].化工学报,2003,54(4):564-569.
    [134]吴江,陈启峰,章明川,范卫东,高茂,尹斌.同轴旋转分层流燃烧器空气动力场的数值模拟[J].水动力学研究与进展A辑,2004,19(2):213-218.
    [135]Field. M. A. Combustion of pulverised coal[M]. Leatherhead, Surrey, UK:The British Coal Utilisation Research Association,1967.
    [136]Rong He, Toshiyuki Suda, Makoto Takafuji, Tetsuya Hirata, Junichi Sato. Analysis of low NO emission in high temperature air combustion for pulverized coal[J]. Fuel,2004,83(9):1133-1141.
    [137]Javier Pallares, Inmaculada Arauzo, Alan Williams. Integration of CFD codes and advanced combustion models for quantitative burnout determination[J]. Fuel, In Press, Corrected Proof
    [138]Robert Hurt, Jian-Kuan Sun, Melissa Lunden. A Kinetic Model of Carbon Burnout in Pulverized Coal Combustion[J]. Combustion and Flame,1998,113(1-2): 181-197.
    [139]Jian-Kuan Sun, Robert H. Hurt. Mechanisms of extinction and near-extinction in pulverized solid fuel combustion[J]. Symposium (International) on Combustion,2000,28 (2):2205-2213.
    [140]Robert Pieter van der Lans, Peter Glarborg, Kim Dam-Johansen, Poul Knudsen, Gerry Hesselmann, Peter Hepburn. Influence of coal quality on combustion performance [J]. Fuel,1998,77(12):1317-1328.
    [141]中国煤田地质总局.中国煤岩学图鉴[M].徐州:中国矿业大学出版社,1996.
    [142]傅维标,卫景彬.燃烧物理学基础[M].北京:机械工业出版社,1984.
    [143]David Merrick. Mathematical models of the thermal decomposition of coal:1. The evolution of volatile matter[J]. Fuel,1983,62(5):534-539.
    [144]David Merrick. Mathematical models of the thermal decomposition of coal:2. Specific heats and heats of reaction[J]. Fuel,1983,62(5):540-546.
    [145]Dieter Fortsch, Frank Kluger, Uwe Schnell, Hartmut Spliethoff, Klaus R. G. Hein. A kinetic model for the prediction of no emissions from staged combustion of pulverized coal [J]. Symposium (International) on Combustion,1998,27(2):3037-3044.
    [146]G. G. De Soete. Overall reaction rates of NO and N2 formation from fuel nitrogen[J]. Symposium (International) on Combustion,1975,15(1):1093-1102.
    [147]G. G. De Soete. Heterogeneous N2O and NO formation from bound nitrogen atoms during coal char combustion[J]. Symposium (International) on Combustion,1991, 23(1):1257-1264.
    [148]Martin ?stberg, Peter Glarborg, Anker Jensen, Jan E. Johnsson, Lars Storm Pedersen, Kim Dam-Johansen. A model of the coal reburning process [J]. Symposium (International) on Combustion,1998,27(2):3027-3035.
    [149]A. Williams, R. Backreedy, R. Habib, J. M. Jones, M. Pourkashanian. Modelling coal combustion:the current position[J]. Fuel,2002,81(5):605-618.
    [150]Christopher J. Hindmarsh, Wanxing Wang, K. Mark Thomas, John C. Crelling. The release of nitrogen during the combustion of macerals, microlithotypes and their chars[J].Fuel,1994,73(7):1229-1234.
    [151]周俊虎,宋国良,刘建忠,陈云,岑可法.高浓度煤粉燃烧低NOx排放特 性的试验研究[J].中国电机工程学报,2007,27(2):42-47.
    [152]陈世英.国内外高浓度煤粉燃烧技术的原理与进展[J].湖北电力,2007,31(6):47-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700