抗病毒药物PMEA和Ribavirin衍生物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗病毒药物PMEA(9-(2’-膦酰甲氧乙基)腺嘌呤)作为一种逆转录酶抑制剂,在临床应用中显示出其极大的优势:不易引起抗药性、较长的服用时间间隔、可与其它药物方便的联用等,但同时有一定的细胞毒性(尤其现有的口服前药Adefovir),透膜性差导致的吸收利用度低等缺点。因此,本文设计PMEA的一种口服前药双(5-十一烷氧基戊酰甲氧基)PMEA,并对之进行了全合成。首先合成了PMEA的几种关键原料,之后合成了氯甲基化的5-十一烷基戊酸,并最终得到目标化合物。由于长链取代基的引入能够提高其脂溶性,可能会提高其透膜能力,同时长链取代基本身具有的抗癌、抗病毒效力,希望籍此改善PMEA的使用。另外,我们利用计算机进行量子计算,从静态构象和反应阈能两方面论证了由PMEA合成聚磷酸酯是可行的。同时本文尝试了长链醚合成及对羧酸进行氯甲基化的反应。
     与此同时,本文合成了一系列利巴韦林(Ribavirin)结构类似物。利巴韦林是一种次黄嘌呤脱氢酶抑制剂,它是目前对丙型肝炎(HCV)治疗中唯一的小分子药物,但其毒性不可忽视。尤其,它在治疗SARS中也有积极的效果。在实验中,我们首先合成了一系列的1,2,4-三唑的衍生物,5-X-1,2,4-三唑酰甲酯(X=氯,溴、碘、氰、硫氰等),这些化合物本身是很好的生物医药中间体,且具有一定的抗菌生物活性。此外本文由这些化合物出发,对利巴韦林结构类似物的合成进行尝试,并最终得到一系列化合物:3(5)-氯-1-(β-呋喃核糖基)-1,2,4-三唑-5(3)-酰胺、3(5)-溴-1-(β-呋喃核糖基)-1,2,4-三唑-5(3)-酰胺、3(5)-叠氮-1-(β-呋喃核糖基)-1,2,4-三唑-5(3)-酰胺、5-氨基-1-(β-呋喃核糖基)-1,2,4-三唑-3-酰胺等。此外,还对合成中的若干问题进行了初步讨论,例如同分异构体的区分等。
PMEA, 9-[2'-(phosphonomethoxy)ethyl]adenine, as a nucleotide analogue, is one kind of reverse transcriptase inhibitors. The oral prodrug of PMEA, that is its bis(pivaloyloxymethyl)ester (also named Adefovir dipivoxil or Preveon), has being evaluated in patients infected with human immunodeficiency viruses (HIV-1 and HIV-2) or the hepatitis B virus (HBV), and shown great advantages. Inevitabiely, there are some flaws with it, cytotoxinic, low bioavailablity, difficulty in permeating membrane. So, a new prodrug of PMEA, bis(5-undecyloxopentanoyloxymethyl)ester of PMEA ,was designed and synthesized, which is expected to overcome the disadvantages of other prodrugs of PMEA for adopting long-chain substitutes.
    In addition, we want to change PMEA to a new kind of drug with low side-effect, good absorbability, and long-life controlled releasing feature by condensed polymerization with diols. With the help of computer, a positive conclusion of the feasibility of the esterification process was drawn through the results of quantum chemical calculation.
    As to Ribavirin , inhibitor of inosine 5'-monophosphate dehydrogenase, the first synthetic drug with broad antiviral spectrum. It is used in combination with interferon a to treat HCV patient. Recently, it is used to against SARS and has found favorable response at the early stage of infection. Here several kinds of analogues of Ribavirin were synthesized . And we expect some of them having more antiviral bioactivity.
    Meantime, several derivatives of 1,2,4-trizole were synthesized, which are highly expected to be used as biomedical intermediates.
引文
[1] De Clercq, E. Antiviral drugs: current state of the art. J. Clin. Virol., 2001,22:73-89;
    [2] Kinchington D, Balzarini J, De Clercq E, Daluge S, Field HJ. Current antiviral agents FactFile: 2000-2001 update. Part Ⅰ -herpesviruses, hepatitis viruses and respiratory viruses. Int Antiviral News, 2000a, 8:155-6;
    [3] Kinchington D, Gee S, Balzarini J, Gait M, De Clercq E, Field HJ. Current antiviral agents FactFile: 1999-2000 update. Part Ⅱ — Human immunodeficiency viruses, Int Antiviral News, 2000b, 8: 4-21;
    [4] Gallaher,. W. R., Ball, J. M., Garry, R. F., Martin-Amedee, A. M.& Montelaro, R. C. A general model for the surface glycoproteins of HIV and other retroviruses. AIDS Res. Hum. Retroviruses, 1995, 11: 191-202;
    [5] Shukla, D. et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell, 1999, 99:13-22;
    [6] Chen, Y. et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Med., 1997, 3:866-871;
    [7] Herold, B. C. et al. Poly(sodium 4-styrene sulfonate): an effective candidate topical antimicrobial for the prevention of sexually transmitted diseases. J. Infect. Dis., 2000, 181:770-773;
    [8] Esté, J. A. et al. Development of resistance of human immunodeficiency virus type 1 to dextran sulfate associated with the emergence of specific mutations in the envelope gp 120 glycoprotein. Mol. Pharmacol., 1997, 52: 98-104;
    [9] Cabrera, C. et al. Resistance of the human immunodeficiency virus to the inhibitory action of negatively charged albumins on virus binding to CD4. AIDS Res. Hum. Retroviruses, 1999, 15:1535-1543;
    [10] Schols, D. et al. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J. Exp. Med., 1997,186:1383-1388; Describes, for the first time, the specific antagonistic effect of the bicyclam AMD3100 against the binding of T-lymphotropic (X4) HIV strains with their co-receptor CXCR4, an essential step for entry of these viruses into the cells.
    [11] De Clercq, E. Inhibition of HIV infection by bicyclams, highly potent and specific CXCR4 antagonists. Mol. PharmacoL ,2000,57:833-839;
    [12] Baba, M. et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl Acad. Sci., 1999,USA 96:5698-5703;
    
    
    [13] Dragic, T. et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc. Natl Acad. Sci., 2000, USA 97: 5639-5644;
    [14] Strizki, J. M. et al. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc. Natl Acad. Sci., 2001, USA 98:12718-12723; The most recent report on a potential anti-HIV drug candidate that blocks HIV infection through an antagonistic effect on the CCR5 co-receptor, which is used by macrophage-tropic(R5) HIV strains to enter cells.
    [15] Root, M. J., Kay, M. S. & Kim, P. S. Protein design of an HIV-1 entry inhibitor. Science 2001,291: 884-888;
    [16] Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell,. 1999, 99: 103-115;
    [17] Kilby, J. M. et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Med., 1998, 4:1302-1307;
    [18] Schwartz, J. A., Lium, E. K. & Silverstein, S. J. Herpes simplex virus type 1 entry is inhibited by the cobalt chelate complex CTC-96. J. Virol., 2001, 75:4117-4128;
    [19] McGuigan, C. et al. Potent and selective inhibition of varicella-zoster virus (VZV) by nucleoside analogues with an unusual bicyclic base. J. Med. Chem., 1999,42: 4479-4484;
    [20] McGuigan, C. et al. Highly potent and selective inhibition of varicella-zoster virus by bicyclic furopyrimidine nucleosides bearing an aryl side chain. J. Med. Chem.,2000, 43:4993-4997; References 19 and 20 provide an example of how classical medicinal chemistry can lead to the discovery of an entirely new class of nucleoside analogues with exquisite antiviral activity (that is, inhibition of varicella-zoster virus replication at subnanomolar concentrations).
    [21] Iwayama, S. et al. Antiherpesvirus activities of (1'S,2'R)-9-[[1',2'- bis(hydroxylme thyl)-cycloprop- 1 '-yl]methyl] (A-5021) in cell culture. Antimicrob. Agents Chemother., 1998, 42:1666-1670;
    [22] Ono, N. et al. Mode of action of (1'S,2'R)-9-[[1',2'- bis(hydroxyl- methyl)cyclo prop-l'-yl]methyl]guanine (A-5021) against herpes simplex virus type 1 and type 2 and varicellazoster virus. Antimicrob. Agents Chemother, 1998, 42:2095-2102;
    [23] Wang, J. et al. The cyclohexene ring system as a furanose mimic: synthesis and antiviral activity of both enantiomers of cyclohexenylguanine. J. Med. Chem., 2000,43:736-745;
    
    
    [24] Siddiqui, A. Q. et al. Design and synthesis of lipophilic phosphoramidate d4T-MP prodrugs expressing high potency against HIV in cell culture: structural determinants for in vitro activity and QSAR. J. Med. Chem., 1999, 42:4122-4128;
    [25] Saboulard, D. et al. Characterization of the activation pathway of phosphoramidate triester prodrugs of stavudine and zidovudine. Mol. Pharmacol., 1999, 56: 693-704;
    [26] Meier, C., Lorey, M., De Clercq, E. & Balzadni, J. cycloSal-2',3'- dideoxy-2',3'-didehydro thymidine monophosphate (cycloSal-d4TMP): synthesis and antiviral evaluation of a new d4TMP delivery system. J. Med. Chem., 1998, 41: 1417-1427 ;
    [27] Balzarini, J. et al. Cyclosaligenyl-2',3'-didehydro-2',3'-dideoxythymidine monophos phate: efficient intracellular delivery of d4TMP. Mol. Pharmacol., 2000, 41:928-935;
    [28] De Clercq, E. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Res., 1998, 38: 153-179;
    [29] Jonckheere, H., Anné, J. & De Clercq, E. The HIV-1 reverse transcription (RT) process as target for RT inhibitors. Med. Res. Rev., 2000,20: 129-154;
    [30] Ren, J. et al. Binding of the second generation nonnucleoside inhibitor S-1153 to HIV-1 reverse transcriptase involves extensive main chain hydrogen bonding. J. Biol. Chem., 2000, 275: 14316-14320; Reference 30 emphasizes that future design of new non-nucleoside HIV-1 reverse transcriptase inhibitors could be rationally guided by resilience to drugresistance mutations.
    [31] Pelemans, H., Esnouf, R., De Clercq, E. & Balzarini, J. Mutational analysis of Trp-229 of human immunodeficiency virus type 1 reverse transcriptase (RT) identifies this amino acid residue as a prime target for the rational design of new non-nucleoside RT inhibitors., 2000, 57: 954-960;
    [32] Xiong, X., Smith, J. L. & Chen, M. S. Effect of incorporation of cidofovir into DNA by human cytomegalovirus DNA polymerase on DNA elongation. Antimicrob. Agents Chemother., 1997,41: 594-599;
    [33] Balzarini, J., Hao, Z., Herdewijn, P., Johns, D. G. & De Clercq, E. Intracellular metabolism and mechanism of antiretrovirus action of 9-(2-phosphonylmethoxy ethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc. Natl Acad. Sci., 1991, USA 88: 1499-1503;
    [34] De Clercq, E. et al. A novel selective broad-spectrum anti-DNA virus agent. Nature, 1986,323: 464-467;
    [35] De Clercq, E. Therapeutic potential of HPMPC as an antiviral drug. Rev. Meal Virol., 1993, 3: 85-96;
    
    
    [36] De Clercq, E. Vaccinia virus inhibitors as a paradigm for the chemotherapy of poxvirus infections. Clin. Microbiol. Rev., 2001, 14: 382-397; Describes several compounds that are effective against vaccinia virus, and that could, therefore, be considered for the therapy of poxvirus infections, including smallpox, should the need arise. The prominent candidate is cidofovir, which has already proved to be effective in the treatment of poxvirus infections, such as molluscum contagiosum, in humans;
    [37] Pommier, Y, Pilon, A. A., Bajaj, K., Mazumder, A. & Nearnati, N. HIV-1 integrase as a target for antiviral drugs. Antiviral Chem. Chemother., 1997, 8: 463-483;
    [38] Pommier, Y., Marchand, C. & Neamati, N. Retroviral integrase inhibitors year 2000: update and perspectives.Antiviral Res., 2000,47:139-148;
    [39] Pluymers, W. et al. Viral entry as the primary target for the anti-HIV activity of Chicoric acid and its tetra-acetyl esters. Mol. Pharmacol., 2000, 58: 641—648;
    References 41 and 48 show that caution should be exercised in identifying the primary molecular target in the mode of action of antiviral compounds, in particular, anti-HIV agents, which are capable of interacting at several steps in the viral replication cycle.
    [41] Hazuda, D. J. et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science, 2000,287: 646-650;
    [42] Wai, J. S. et al. 4-Aryl-2,4-dioxobutanoic acid inhibitors of HIV-1 integrase and viral replication in cells. J. Med. Chem., 2000, 43:4923-4926 ;
    [43] R. Poe; K. Schnapp; M. J. T. Young; et al. Chemistry and kinetics of singlet pentafluorophenylnitrene, J. Am. Chem. Soc., 1992, 114: 5054;
    [44] Daelemans, D., Vandamme, A.-M. & De Clercq, E. Human immunodeficiency virus gene regulation as a target for antiviral chemotherapy. Antiviral Chem. Chemother., 1999, 10: 1-14;
    [45] Baba, M. et al. Inhibition of human immunodeficiency virus type 1 replication and cytokine production by fluoroquinoline derivatives.Mol. Pharmacol., 1998, 53: 1097 -1103 ;
    [46] Patick, A. K. & Potts, K. E. Protease inhibitors as antiviral agents. Clin. Microbiol. Rev., 1998, 11: 614-627;
    [47] Erickson, J. W. & Burt, S. K. Structural mechanisms of HIV drug resistance. Annu. Rev. Pharmacol. Toxicol., 1996, 36: 545-571;
    [48] Turner, S. R. et al. Tipranavir (PNU-140690): a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6- dihydroo4-hydroxy-2-pyrone sulfonamide class, J.Med.Chem., 1998, 41: 3467-3476;
    [49] Hagen, S. E. et al. 4-Hydroxy-5,6-dihydropyrones as inhibitors of HIV protease: the
    
    effect of heterocyclic substituents at C-6 on antiviral potency and pharmacokinetic parameters. J. Med. Chem., 2001, 44:2319-2332;
    [50] Dragovich, P. S. et al. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 1. Michael acceptor structure-activity studies, J. Med. Chem., 1998, 41: 2806-2818;
    [51] Dragovich, P. S. et al. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 2. Peptide structure-activity studies,J. Med. Chem., 1998,41: 2819-2834;
    [52] Dragovich, P. S. et al. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 3. Structure-activity studies of ketomethylene-containing peptidomimetics, J. Med. Chem., 1999, 42:1203-1212;
    [53] Dragovich, P. S. et al. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements, J. Med. Chem., 1999, 42:1213-1224;
    [54] Matthews, D. A. et al. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc. Natl Acad. Sci., 1999, USA 96:11000-11007;
    [55] Patick, A. K. et al. In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob. Agents Chemother., 1999, 43: 2444-2450;
    [56] Tautz, N., Kaiser, A. & Thiel, H.-J. NS3 serine protease of bovine viral diarrhea virus: characterization of active site residues, NS4A cofactor domain, and protease-cofactor interactions. Virology., 2000, 273:351-363;
    [57] Von Itzstein, M. et al. Rational design of potent sialidasebased inhibitors of influenza virus replication. Nature., 1993,363:418-423; The first demonstration of how computer-assisted drug design, based on the crystal structure of the influenza viral neuraminidase, could lead to the development of new antiviral drugs;
    [58] Barnett, J. M. et al. Zanamivir susceptibility monitoring and characterization of influenza virus clinical isolates obtained during phase Ⅱ clinical efficacy studies. Antimicrob. Agents Chemother., 2000, 44: 78-87;
    [59] Hayden, F. G. et al. Efficacy and safety of the neuraminidase inhibitor zanamivir in the treatment of influenza virus infections. N. Engl. J. Med., 1997, 337: 874-880;
    [60] Mendel, D. B. et al. Oral administration of a prodrug of the influenza virus neuraminidase inhibitor GS 4071 protects mice and ferrets against influenza infection. Antimicrob.Agents Chemother., 1998, 42:640-646 ;
    [61] Bantia, S. et al. Comparison of the anti-influenza virus activity of RWJ-270201 with
    
    those of oseltamivir and zanamivir. Antimicrob. Agents Chemother., 2001, 45:1162-1167;
    [62] Sintchak, M. D. et al. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolie acid. Cell, 1996, 85: 921-930;
    [63] Michael D. Sintehak, Elmar Nimmesgern The structure of inosine 5X-mono posphate de- hydrogenase and the design of novel inhibitors. Immunopharmacology., 2000, 47: 163-184;
    [64] J. Balzarini Effect of antimetabolite drugs of nucleotide metabolism on the anti-human immunodeficieney virus activity of nucleoside reverse transcriptase inhibitors Pharma- cology & Therapeutics, 2000,87:175-187;
    [65] M. V. Pickering Sythesis of 1-(4-Thio-β-D- ribofuranosyl) -[1,2,4]triazole-3-carbox amine J.Med.Chem ,1976, 19: 841;
    [66] Yogesh S. Sanghvi, Naeem B. Hanna, steven B. Larson, James M. Fujitaki, Raamino-ndall C. Willis, Roberts A. smith, Roland K.Robins, and Ganapathi r.Revankar Synthesis and Evalution of 5-Amino-1-β-D-ribofuranosyl -1,2,4-triazole-3- carboxami- dine and Certain Related Nucleosides as Inhibitors of Purine Nucleoside Phosphorylase, J. Med. Chem. 1988, 31: 330-335;
    [67] Joseph T. Witkowski, Roland K. Robins, Gyaneshwar P. Khare, and Robert W. Sidwell Synthesis and Antiviral Activity of 1,2,4-Triazole-3-thiocarboxamide and 1,2,4-triazole -3-carbox-amidine Ribonucleosides J. Med. Chem., 1973, 16: 935-937;
    [68] Bjarne Gabrielsen et. al. Synthesis and Antivial Evalution of N-Carbbox amiddine- Substitued Analogues of 1-β-D-Ribo-furanosyl-1,2,4-triazole-3-carbox amidine Hydrochloride, J, Med. Chem., 1992, 35: 3231-3238;
    [69] De Clercq, E. et al. Antiviral activities of 5-ethynyl-1-Dribofuranosyl imid azole -4-carbox amide and related compouinds. Antimicrob. Agents Chemother., 1991, 35: 679-684;
    [70] M. Jashe's, G. Mlynarz, E. De Clercq, A.M. Sandino Inhibitory effects of EICAR on infectious pancreaticnecrosis virus replication. Antiviral Research, 2000, 45: 9-17;
    [71] Markland, W., McQuaid, T. J., Jain, J. & Kwong, A. D.Broad-spectrum antiviral activity of the IMP dehydrogenase inhibitor VX-497: a comparison with ribavirin and demonstration of antiviral additivity with α-interferon. Antimicrob. Agents Chemother., 2000, 44: 859-866;
    [72] Neyts, J., Andrei, G. & De Clercq, E. The novel immunosuppressive agent mycophenolate mofetil markedly potentiates the antiherpesvirus activities of acyclovir,
    
    ganciclovir, and penciclovir in vitro and in vivo. Antimicrob. Agents Chemother., 1998, 42: 216-222;
    [73] Crotty, S. et al. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nature Meal, 2000, 6:1375-1379;
    [74] Crotty, S., Cameron, C. E. & Andino, R. RNA virus error catastrophe: direct molecular test by using dbavidn. Proc. NatlAcad. Sci., 2001, USA 98: 6895-6900; References 73 and 74 afford a rather provocative account of how mutagens that induce 'error catastrophe' could be used in antiviral strategies,at least for some RNA viruses.
    [75] De Clercq, E. et al. Broad-spectrum antiviral activities of neplanocin A, 3-deazaneplanocin A, and their 5'-norderivatives. Antimicrob. Agents Chemother. , 1989, 33:1291-1297;
    [76] Bray, M., Davis, K., Geisbert, T., Schmaljohn, C. & Huggins, J.A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis., 1999, 179 (Suppl. 1), S248-S258;
    [77] De Clercq, E. et al.Clin. Microl. Rev., 1995,8:200—239;
    [78] Cohen J. Science, 1997,275:615-616;
    [79] Perelson.AS,Essunger. P, Caoyetal.Nature, 1997,387:188-191;
    [80] Cohen J. Science, 1997, 276:520-523;
    [81] Haase.A, Henry K, Zupancic.M, Science, 1996,274:985-98925;
    [82] Cohen J. Science, 1997, 277:32-33;
    [83] Kinchington D, Balzarini J, De Clercq E, Daluge S, Field J.Current antiviral agents FactFile: 2000-2001 update. Part Ⅰ — herpesviruses, hepatitis viruses and respiratory viruses, Int Antiviral News, 2000a, 8: 155-64;
    [84] Kinchington D, Gee S, Balzarini J, Gait M, De Clercq E, Field HJ. Current antiviral agents FactFile: 1999-2000 update. Part Ⅱ — Human immunodeficiency viruses, Int Antiviral News 2000b, 8:4-21;
    [85] Antonyn Holy, Ivan Votruba, Milena Masojydkova ,Etc.6-[2-(Phosphonomethoxy) alkoxy]pyrimidines with Antiviral Activity, J. Med. Chem., 2002, 45, 1918-1929;
    [86] Dvorakova, H., Holy, A. Synthesis and Biological Effects of N-(2-Phosphonometh oxyethyl)Derivatives of Deazapurine Bases.Collect. Czech. Chem. Commun. 1993, 58, 1419-1429;
    [87] Franchetti, P., Sheikha, G. A., Cappellacci, L., Messina, L.,Grifantini, M., Loi, A. G., Demontis, A., Spiga, M. G., La Colla,P. 8-Aza-analogues of PMEA and PMEG:
    
    Synthesis and in vitroanti-HIV activity. Nucleosides Nucleotides, 1994, 13, 1707-1719;
    [88] Franchetti, P., Abusheikha, G., Cappellacci, L.,Grifantini,M., Demontis, A., Piras, G., Loi, A. G., La Colla, P. Synthesisand antiviral activity of 8-aza analogs of chiral [2-(phosphono methoxy)propyl]guanines. J. Med. Chem., 1995, 38, 4007-4013;
    [89] Holy, A.,Dvorakova, H., Jindrich, J., Masojydkova, M.,Budesynsky, M., Balzarini, J., Andrei, G., De Clercq, E. Aeyclic nucleotide analogues derived from 8-azapurines: synthesis and antiviral activity. J. Med. Chem., 1996, 39, 4073-4088;
    [90] The following terms in this article are linked online to: LocusLink: http://www.ncbi.nlm.nih.gov/LoeusLink/ CCR5 | CDK9| CXCR4 | IMP dehydrogenase | interferon- .| MIP1 |NF-B RANTES | SAH hydrolase | SDF1 Medscape DrugInfo: http://promini.medscape.com/drugdb/search.asp abacavir | acyclovir | amprenavir | cidofovir | delavirdine |didanosine | efavirnez famciclovir | ganciclovir | indinavir |lamivudine | lopinavir | nelfinavir | nevirapine oseltamivir |penciclovir | ribavirin | ritonavir | saquinavir | stavudine | valaciclovir |valganciclovir | zanamivir | zalcitabine | zidovudine Protein Data Bank: http://www.rcsb.org/pdb/ GS4071 | IMP dehydrogenase | NS3 helicase | NS5B FURTHER INFORMATION Encyclopedia of Life Sciences: http://www.els.net

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700