钢铁退火工序优化调度及副产煤气系统预测研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁工业是我国国民经济的重要基础产业,提高其生产率、合理利用资源、节能减排是钢铁企业发展的关键。其中生产调度水平的提高是增加企业效益、降低生产成本的重要途径。而对钢铁企业能源运行情况的准确预测,也可达到减少能源损失,降低环境污染的目的。本文依托国家“863计划”课题,以上海宝钢股份有限公司为研究背景,针对罩式炉退火工序的优化调度问题和能源系统中副产煤气产消情况的预测问题,展开了深入系统的研究工作。本文主要研究内容如下:
     通过分析罩式炉退火工序调度过程的复杂性,研究了将解决大规模集成电路硬件建模问题的仿真平台SystemC应用于离散事件系统仿真问题的可行性,采用平台映射的思想建立了基于SystemC的罩式炉退火工序离散事件仿真模型,该模型能够快速有效的对退火过程进行模拟。在此基础上,将其与提出的自适应遗传算法相结合,解决罩式炉退火的作业优化调度问题。
     提出一种基于改进回声状态网络的时间序列预测方法,该方法通过预测器直接建立预测原点和预测时域之间的关系,不存在由于迭代而引起的误差积累问题,且预测器的稳定性可以预先保证,不依赖网络的训练结果。采取高斯过程回归方法求取网络的输出权值,替代了原始回声状态网络算法中线性回归的过程,克服了线性回归易导致病态解的问题,而且可以给出预测结果的概率估计,提高了预测精度。该方法为本文后续工作奠定了基础。
     研究了钢铁企业副产煤气系统产消量的实时预测问题。考虑到现场采集的过程控制系统流量数据中含噪较高的实际情况,提出一种基于经验模态分解的降噪方法。该方法将经验模态分解得到的小尺度固有模态函数经低通滤波器自适应去噪,再对数据重构以达到降噪的目的。在此基础上,对于煤气产生量和非调节用户煤气消耗量,采用本文前述提出的改进回声状态网络时间序列预测方法建立预测模型,并给出基于最小均方差准则的模型参数优化方法,在优化过程中采用奇异值分解方法求取网络输出权值。对于调节用户及转换用户采用平均值方法建立预测模型。选取现场生产数据对提出的方法进行了仿真验证,预测效果较好。
     基于上述的研究工作,结合软件工程的方法,开发了宝钢副产煤气预测系统。在上海宝钢股份有限公司能源中心试运行结果表明该系统可以对煤气发生源及各用户的产消量实时进行预测,并在此基础上对煤气柜柜位进行预测,预测精度较高,给出的建议调整方案具有一定的合理性,受到现场调度专家的认可。该系统达到了节约能源、减轻人工调度复杂度的效果。
Steel industry is an important sector of national economy. The key issues to the development of iron and steel enterprises are about increasing the productivity, utilizing resources reasonably and reducing environmental pollution. It is well known that production scheduling is an effective way to make economic profits and reduce the production costs. Also, precisely forecasting energy generation and consumption can reduce energy waste and environment pollution. Based on our work concerning National High-Tech Research and Development Programs, this dissertation studies the optimal scheduling problem for bell-type batch annealing process and the prediction problem for generation and consumption of byproduct gas system. The research is mainly carried out at the Shanghai Baosteel Co. Ltd. The dissertation has mainly carried on the following research.
     Analyzing the scheduling complexity of bell-type batch annealing process and the feasibility to solve a discrete event system simulation by using SystemC originally treated as a simulation platform for designing very large scale integrated circuit, a discrete event simulation modeling based on SystemC for the batch annealing shop is proposed. The modeling method simulates the batch annealing process in a quick yet effective way. An optimal method of bell-type batch annealing production, combined with an adaptive genetic algorithm, is put forward in this dissertation.
     For the energy prediction problem, a time series forecasting method based on improved echo state network is proposed. This method can be used to establish a direct relationship between the prediction origin and prediction horizon, which can avoid the iteration error accumulation and guarantee the stability of the predictor in advance, rather than relying on the network training results. Also, instead of using linear regression, Gaussian process is adopted to obtain the relationship between the reservoir state and network output, thereby preventing the ill conditioned reservoir state matrix form occuring. This way, not only a better prediction result but also an accurate probability estimation of the result is achieved.
     The real-time prediction method is investigated for the generation and consumption of byproduct gas system in steel industry. Since the practical flow data in process control system typically includes a variety of noises, a noise reduction method is proposed based on the empirical mode decomposition. The main idea of this method is to decompose the time series signal into a group of independent intrinsic mode functions, and those with small-scale are de-noised by filter with adaptive threshold. Based on such method, a time series prediction procedure for gas generation and consumption of non-adjustable users is presented by exploiting an improved echo state network, where the network parameters are optimized based on the least mean square error criterion, and the output weights are obtained by singular value decomposition. In addition, an average method is used to predict consumption of adjustable users and converted users. Finally, the real production data from Baosteel are used to verify the proposed approach. The running results are shown to be satisfactory.
     Based on the reported above, the prediction software system for byproduct gas system is developed be resorting to the software engineering method. The application in Shanghai Baosteel Energy Center shows that the system can accurately predict the variation of gas generation and consumption, as well as the level of gasholder. The results demonstrate that the system exhibits high accuracy and provides with a rational guidance for balancing and scheduling of the byproduct gas system, which is capable of saving energy and reducing the complexity of scheduling workers.
引文
[1]殷瑞钰.中国钢铁工业的回顾和展望[J].鞍钢技术,2004,4:1-6.
    [2]中国金属学会等编.2006年-2020年中国钢铁工业科学与技术发展指南[M].北京:冶金工业出版社,2006.
    [3]中国经济信息网.中国钢铁行业分析报告[R].2010.
    [4]罗冰生.当前中国钢铁产业运行状况及展望[J].财经界,2009,7:23-27.
    [5]吴溪淳.国际金融危机与我国钢铁工业面临的挑战[J].财经界,2009,7:20-22.
    [6]张家冰.轧钢企业生产过程建模与优化研究[D]:(博士学位论文).天津:天津大学,2003.
    [7]覃宁.冷轧薄板生产计划与调度系统的研究与应用[D]:(博士学位论文).大连:大连理工大学,2007.
    [8]蔡九菊,赫冀成,陆钟武等.过去20年及今后5年中我国钢铁工业节能与能耗剖析[J].钢铁,2002,11:68-73.
    [9]王维兴.2008年中国钢铁工业能耗分析[J].钢铁,2009,44(9):1-6.
    [10]娄湖山.国内外钢铁工业能耗现状和发展趋势及节能对策[J].冶金能源,2007,2:7-11.
    [11]中国钢铁工业协会.“十一五”中国钢铁企业信息化发展建议[J],冶金自动化,2007,31(2):6-10.
    [12]肖白.我国冷轧板带生产技术进步20年及展望[J].轧钢,2004,21(6):15-19.
    [13]李新创.中国钢铁工业结构调整及对原材料需求展望[J].中国废钢铁,2006,6(12):2-17.
    [14]连立峰,左兵群.冷轧薄板生产车间作业计划及调度系统的研究与实现[J].冶金自动化,2006,30(5):6-10.
    [15]褚健,孙优贤.流程工业综合自动化技术发展的思考[J].制造业信息化专刊,2002,(增刊):24-28.
    [16]柴天佑,金以慧,任德祥等.基于三层结构的流程工业现代集成制造系统[J].控制工程,2002,9(3):1-6.
    [17]张有礼.钢铁工业能源结构与节能[J].中国冶金,2006,16(10):1-3.
    [18]吴洪亮.钢铁企业煤气高效利用技术的探讨[J].煤气与热力,2007,27(4):35-37.
    [19]王国栋,刘相华,王军生.冷连轧生产工艺的进展[J].轧钢,2003,20(1):37-41.
    [20]傅作宝.冷轧薄钢板生产[M].北京:冶金工业出版社,1996.
    [21]王晓东,刘全利,王伟等.改进的专家系统及其在钢卷装炉优化组合中的应用[J].山东大学学报,2005,35(3):20-23.
    [22]刘全利.罩式退火炉优化调度方法及其应用[D]:(博士学位论文).大连:大连理工大学,2004.
    [23]MOON S, Hrymak N. Scheduling of the batch annealing process-deterministic case [J]. Computers and Chemical Engineering,1999,23(9):1193-1208.
    [24]董杰方,刘志新,谢金星等.钢卷热处理调度的数学模型与算法研究[J].钢铁,2001,36(12):73-76.
    [25]刘荣花.基于拉格朗日松弛的罩式炉排产优化问题的研究[D]:(硕士学位论文).沈阳:东北大学,2006.
    [26]王维兴.科学评价中国钢铁工业能耗现状与国内外对标[J].四川冶金,2009,31(4):1-6.
    [27]周庆安,国内外钢铁企业节能水平对比分析[J].上海节能,2006,1:25-32.
    [28]中国钢铁工业协会科技环保部.中国钢铁工业能耗现状及节能前景[J].冶金管理,2004,9:15-19.
    [29]王维兴.我国中小钢铁企业的发展方向讨论[J].冶金信息导刊,2008,45(3):1-6.
    [30]Valsalam S R, Muralidharan V, Krishnan N. Implementation of energy management system for an integrated steel plant [C]. Proceedings of Energy Management and Power Delivery,1998,2:661-666.
    [31]Mohsen S M, Akash B A. Energy analysis of the steel making industry [J]. International Journal of Energy Research,1998,22(12):1049-1054.
    [32]Hayakawa N, Wakazono Y, Kato T, et al. Minimizing energy consumption in Industries by cascade use of waste energy [J]. IEEE Transactions on Energy Conversion,1999,14(3):795-801.
    [33]冯晶,田小果.EMS系统在钢铁厂能源中心的应用[J].自动化与仪器仪表,2005,3:35-37.
    [34]刘浏,干勇,张江铃等.钢铁联合企业能源循环利用的分析研究[J].钢铁,2006,6:1-4.
    [35]王永川,陈光明.钢铁企业能源管理系统方案研究[J].冶金能源,2003,22(6):5-8.
    [36]冯为民,丛力群.冶金企业能源管理系统[J].控制工程,2005,12(6):597-660.
    [37]陈光,陆钟武,蔡九菊等.宝钢能源优化模型的研究[J].冶金能源,2003,22(1):5-9.
    [38]陈晓.宝钢高炉煤气的回收和利用[J].上海节能,2002,4:13-15.
    [39]邓万里,陈伟昌.宝钢高炉煤气系统平衡实践[J].宝钢技术,2003,2:31-33.
    [40]顾鸣,周庆安.宝钢转炉煤气的回收与利用[J].宝钢技术,1999,1999,2:1-3.
    [41]王鼎,周庆安.宝钢转炉煤气回收极限研究[J].上海节能,2002,2:26-31.
    [42]吕惠民.鞍钢能源中心开发中的若干问题初探[J].鞍钢技术,1991,8:1-7.
    [43]史海波,马玉林,刘爱国.冶金冷轧薄板企业生产计划调度体系结构及方法研究[J].信息与控制,2004,33(1):31-35.
    [44]熊斐.宝钢研制的全氢罩式炉控制系统分析[J].宝钢技术,2002,6:5-13.
    [45]李宁,刘全利,王伟等.罩式炉退火车间离散事件仿真系统及其应用[J].计算机集成制造系统,2003,9(7):571-575.
    [46]Swisher J R, Hyden P D. A survey of simulation optimization techniques and procedures [C]. Proceedings of the 2000 Winter Simulation Conference,2000,119-128.
    [47]Johtela T, Smed J, Johnson M, et al. Supporting production planning by production process simulation [J]. Computer Integrated Manufacturing Systems,1997,10(3):193-203.
    [48]Fontanili F, Vincent A, Ponsonnet R. Flow simulation and genetic algorithm as optimization tools [J]. Production Economics,2000,64(1-3):91-100.
    [49]Rejowski R, Pinto J M. Scheduling of a multiproduct pipeline system [J]. Computers and Chemical Engineering,2003,27(8):1229-1246.
    [50]熊光楞,肖田元,张燕云.连续系统仿真与离散事件系统仿真[M].北京:清华大学出版社,1999.
    [51]钱晓龙,唐立新,刘文新.动态调度的研究方法综述[J].控制与决策,2001,16(2):141-145.
    [52]顾启泰,离散事件系统建模与仿真[M].北京:清华大学出版社,1999.
    [53]黄柯棣,系统仿真技术[M].湖南:国防科技大学出版社,1998.
    [54]熊光楞,高红.基于规则的工厂仿真调度环境[J].信息与控制,1994,23(4):193-199.
    [55]Cheng R W, Gen M. Parallel machine scheduling problems using memetic algorithms [J]. Computers and Industry Engineering,1997,33(3-4):761-764.
    [56]Johtela T, Smed J, Johnsson M, et al. Supporting production planning by production process simulation [J]. Computer Integrated Manufacturing Systems,1997,10(3):193-203.
    [57]Azzaro-Pantel C, Bernal-Haro L, Baudet P, et al. A two-stage methodology for short-term batch plant scheduling:discrete-event simulation and genetic algorithm [J]. Computers and Chemical Engineering, 1998,22(10):1461-1481.
    [58]Fontanili F, Vincent A, Ponsonnet R. Flow simulation and genetic algorithm as optimization tools [J]. International Journal of Production Economics,2000,64(1-3):91-100.
    [59]Henning G P, Cerda J. Knowledge-based predictive and reactive scheduling in industrial environments [J]. Computers and Chemical Engineering,2000,24(9):2315-2338.
    [60]卫军胡,韩九强,孙国基.离散事件仿真技术在制造系统调度中的应用[J].系统仿真学报,2000,12(1):27-30.
    [61]李霄峰,徐立云,邵惠鹤.柔性炼钢连铸仿真调度系统及其关键技术[J].系统仿真学报,2002,14(2):207-210.
    [62]李红信,薛劲松,朱云龙.作业车间应用推拉方法的仿真研究[J].计算机集成制造系统,2002,8(1):60-64.
    [63]高红,熊光楞.决策规则在仿真调度中的应用[J].控制与决策,1995,10(2):114-118.
    [64]Vaidyanathan B S, Miller D M, Park Y H. Application of discrete event simulation in production scheduling [C]. Simulation Conference Proceedings,1998,965-971.
    [65]Li H, Li Z, Li L X, et al. A production rescheduling expert simulation system [J]. European Journal of Operational Research,2000,124(2):283-293.
    [66]Liu Q L, Wang W, Zhan H R, et al. Optimal scheduling method for a bell-type batch annealing shop and its application [J]. Control Engineering Practice,2005,13(10):1315-1325.
    [67]刘晨,王维平.支持模型集成和重用的仿真语言研究[J].计算机仿真,2006,23(5):254-258.
    [68]Vachoux A, Grimm C, Einwich K. Extending SystemC to support mixed discrete-continuous system modeling and simulation [C]. IEEE International Symposium on Circuits and Systems (ISCAS), Kobe, Japan,2005,5:5166-5169.
    [69]Holger V. Discrete-Event Simulation using SystemC:Interactive semiconductor factory modeling with FABSIM [C]. Proceedings of the 2003 Winter Simulation Conference, New York:ACM Press, 2003,2:1383-1387.
    [70]Bhasker J. A SystemC Primer [M]. United States of America, Star Galaxy Pub,2002.
    [71]陈曦,徐宁仪.SystemC片上系统设计[M].北京:科学出版社,2004.
    [72]David C, Jack D. SystemC:from the ground up [M]. Boston:Kluwer Academic,2004.
    [73]Victor B, Stuart S, Oz L, et al. The IEEE 1666TM-2005 Standard SystemC Language Reference Manual [S]. New York:IEEE,2005.
    [74]Joanne D, Arun R, Bakr Y. A design project for system design with SystemC [C]. Proceedings of IEEE International Conference on Microelectronic Systems Education, Anaheim,2003,108-109.
    [75]Vachoux A, Grimm C, Einwich K. Extending SystemC to support mixed discrete-continuous system modeling and simulation [C]. IEEE International Symposium on Circuits and Systems, Kobe,2005, 5166-5169.
    [76]冯允成.离散系统仿真[M].北京:机械工业出版社,1998.
    [77]Xiao Z, Ye S J, Zhong B. BP neural network with rough set for short term load forecasting [J]. Expert Systems with Applications,2009,36(1):273-279.
    [78]Cowper M R, Mulgrew B, Unsworth C P. Nonlinear prediction of chaotic signals using a normalized radial basis function network [J]. Signal Processing,2002,82(5):775-789.
    [79]Bouchachia A. Radial basis function nets for time series prediction [J]. International Journal of Computational Intelligence Systems,2009,2(2):147-157.
    [80]Cao L J, Tay F E. Support vector machine with adaptive parameters in financial time series forecasting [J]. IEEE Transactions on Neural Network,2003,14(6):1506-1518.
    [81]Vesanto J. Using the SOM and local models in time-series prediction [C]. Proceedings of Workshop Self-Organizing Maps (WSOM),1997,209-214.
    [82]Barreto G A. Time series prediction with the self-organizing map [J]. Perspectives on Neural-Symbolic Integration, Springer-Verlag,2007,135-158.
    [83]Jaeger H. Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and "echo state network" approach [R]. GMD Report 159, German National Research Center for Information Technology,2002.
    [84]Jaeger H. Adaptive nonlinear system identification with echo state networks [C]. Advances in Neural Information Processing Systems 15, Massachusetts Institute of Technology, Cambridge,2003, 593-600.
    [85]Jaeger H, Haas H. Harnessing nonlinearity:Predicting chaotic systems and saving energy in wireless communication [J]. Science,2004,304(5667):78-80.
    [86]Walter E. Applied econometric time series [M]. Wiley, Hoboken,2004.
    [87]George E P, Gwilym M J, Gregory C R. Time series analysis forecasting and control [M]. Oakland, California, Holden-Day,1976.
    [88]Principe J C, Rathie A, Kuo J M. Prediction of chaotic time series with neural networks and issue of dynamic modeling [J]. International Journal of Bifurcation Chaos.1992,2:989-996.
    [89]Jaeger H. Reservoir riddles:Suggestions for echo state network research [C]. Proceedings of International Joint Conference on Neural Networks, Canada, IEEE,2005,1460-1462.
    [90]Shi Z W, Han M. Ridge regression learning in ESN for chaotic time series prediction [J]. Control and Decision,2007,22(3):258-267.
    [91]Shi Z W, Han M. Support vector echo-state machine for chaotic time-series prediction [J]. IEEE Transactions on Neural Networks,2007,18(2):359-372.
    [92]Xi J H, Shi Z W, Han M. Analyzing the echo state space property of echo state networks for chaotic system prediction[C]. Proceedings of International Joint Conference on Neural Networks, Montreal, Canada,2005,8:1412-1417.
    [93]Seeger M. Gaussian processes for machine learning [J]. International Journal of Neural System,2004, 14(2):69-106.
    [94]Belhouari S B, Bermak A. Gaussian process for nonstationary time series prediction [J]. Computational Statistics and Data Analysis,2004,47(4):705-712.
    [95]张应良.能源介质的综合调整法[J].能源技术,2000,6(2):115-117.
    [96]张琦,蔡九菊,吴复忠等.高炉煤气在冶金工业的应用研究[J].工业炉,2007,29(1):9-12.
    [97]朱凡,王彦佳.热电联产热力系统优化运行研究[J].宝钢技术,2001,1:31-34.
    [98]张琦,蔡九菊,王建军.钢铁联合企业煤气综合利用研究[C].2005年中国钢铁年会论文集,2005,2:535-539.
    [99]张德样.煤化工工艺学[M].北京:煤炭工业出版社,1999.
    [100]邹宽.宝钢节能历程对国内冶金企业的启示[J].冶金环境保护,2004,(2):63-67.
    [101]宝钢股份公司能源部.EMS与节能[J].上海节能,2003,2:28-32.
    [102]王秀纯,范锤利,兆春民.浅谈冶金企业煤气平衡[J].中国冶金,2005,15(8):7-8.
    [103]张琦,蔡九菊,杜涛等.钢铁企业煤气平衡问题的探讨[J].节能,2004,12:9-11.
    [104]孙贻公.对大型钢铁联合企业煤气平衡问题的探讨[J].钢铁,2003,38(6):59-61.
    [105]郑文华,张兴柱.焦炉煤气的使用现状与应用前景[J].燃料与化工.2004,35(4):1-3
    [106]王太炎.焦炉煤气开发利用的问题与途径[J].燃料与化工.2004,35(6):1-3.
    [107]张琦,蔡九菊,杜涛.钢铁联合企业煤气系统优化利用[J].冶金能源,24(5):9-11.
    [108]韩明荣.优化煤气系统动态平衡[J].钢铁,2001,36(4),5-7.
    [109]唐万梅.几个预测方法及模型研究[D].内蒙古:内蒙古大学,2006.
    [110]沈秀汶,吴耀武,熊信银.基于有偏最小最大概率回归的短期负荷预测[J].电力系统及其自动化学报,2007,19(4):46-49.
    [111]刘伟,王科俊,邵克勇.混沌时间序列的混合粒子群优化预测[J].控制与决策,2007,22(5):562-565.
    [112]王令群,郑应平,潘石柱.基于RBF神经网络预测模型的VLSI生产线智能控制算法[J].2006,21(3):336-338.
    [113]张日东,王树青.基于神经网络的非线性系统多步预测控制[J].控制与决策,2005,20(3):332-336.
    [114]丁刚,钟诗胜.基于过程神经网络的时间序列预测及其应用研究[J].控制与决策,2006,21(9):1037-1041.
    [115]李玲玲,吴敏,曹卫华.基于多层递阶回归分析的轧钢煤气用量预测[J].控制工程,2004,11:33-35.
    [116]李文兵,纪扬,李华德.钢铁企业煤气产出和消耗动态模型[J].冶金自动化,2008,32(3):28-33.
    [117]王红卫,祁超,魏永长等.基于数据的决策方法综述[J].自动化学报,2009,35(6):820-833.
    [118]Huang N E, Shen Z, Long S R. The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis [C]. Proceedings of the Royal Society A, Britain, 1998,454:903-995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700