基于动态递归神经网络及相空间重构理论的深基坑工程变形预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着上海城市轨道交通迅速发展,地铁建设工程的要求和难度越来越高,地铁深基坑受到地质条件、施工条件和外界其他因素的影响,成为了一个灰色、模糊、随机的系统。特别是在上海软土地区,地铁深基坑工程不仅涉及土力学中的基本强度、稳定、变形理论,还包含了土与结构的相互作用、渗流等水力学范畴的问题,此外,开挖时还会产生时空效应,所以这些因素给深基坑工程安全施工带来了不小的难度,而基坑变形控制作为控制基坑安全的一个重要措施,因此,准确而合理的预测基坑下一阶段的变形,对现场施工有着很好的实际意思。
     由于基坑工程动态非线性特点,加之内部和外部参数的不确定性,致使为基坑工程系统选择合适的建模预测方式是一个十分困难的事。因此,人们不得不寻求解决问题的新途径。
     神经网络由于具有自适应性、非线性和容错性强等特点,特别适合于处理各种非线性问题。它可以通过大量样本的学习来抽取出隐含在样本中的因果关系。由于深基坑工程具有高度非线性动态特性,各类监测数据间的联系也较为复杂,难以用具体的数学公式表示出,因此神经网络理论为深基坑预测工作提供了一条十分有效的途径。不同于数学建模的是,神经网络不需要建立数学模型,而是直接通过现场获得的监测数据来建立模型,从而避开了复杂的数学分析过程;同时,神经网络可以处理含有噪声和许多不确定因素的数据,以建立高度非线性的函数关系,事先不需要假设输出变量与输入变量之间的关系,而是通过样本的学习,实现输入与输出的非线性映射。
     本文选择动态递归神经网络来建立预测模型,同以前常用的静态网络(例如BP、RBF等)相比,更贴近深基坑动态非线性系统的特点,预测精度和效果明显优于静态网络。
     此外,由于基坑开挖会使得监测数据出现突变值,网络必须重新训练以适应新的样本数据,因此,本文还引入了混沌序列理论中的相空间重构技术,对动态递归神经网络预测模型的短期预测进行优化修正,建立新的预测模型,提出了基坑工程预测确定嵌入滞时τ和嵌入维数m二个重要参数的方法,并经工程实例分析,短期预测误差明显减小,整个新模型对基坑的短期预测得到了较好的效果。
     本文以上海地铁车站深基坑工程为背景,主要研究了以下内容:
     (1)从工程应用的角度,结合动态递归神经网络的特点,探讨了基坑工程变形预测建模的神经网络方法,阐述了Elman网络的基本原理、与静态网络相比的优势及特点,重点讨论了Elman动态递归神经网络的结构设计、数据的准备、训练网络及评价网络预测性能等内容;
     (2)研究神经网络预测方法在基坑变形上的适用性,总结了影响预测效果的几个因素,特别是数据样本的采集和数据变形“突变”的因素对模型预测效果的评价,并基于这些问题,引入了相空间重构的思想;
     (3)结合相空间重构理论,在Elman网络模型的基础之上,对时序数列进行重新定义,并结合工程实际,提出了相空间重构理论中的嵌入滞时τ和嵌入维数m二个重要参数,将修正后的预测结果与之前的预测结果进行对比,分析了预测对比效果;
With the amelioration of urban rail transit network in Shanghai, projects of the metro construction have showed six trends. That is the foundation pits become deeper, the scale of constructions is getting larger, the distance between buildings and subway is getting closer, the time limit for constructions is more urgent, the geologic feature is more complex, the hidden troubles are more and more. How to accomplish the node target of completing 400km basic network in both 'quick and satisfactory' way under the situation of large scale, leaping over style, high integration of risk becomes a question for the subway constructors in Shanghai. This paper concentrates on the evaluation of safety and deformation prediction of the foundation pits of subway stations in Shanghai soft soil from the needs of real projects.
     Neural network method is one of the most effective methods of deep foundation pit deformation prediction, which is an intelligent monitor method combined deformation forecast with control. The advantage of neural network lies in it provide a mathematics tool which can study and forecast by itself. In this paper, the Elman neural network is used to intelligently monitor deep foundation excavation. The Elman neural network is a typically dynamic recurrent neural network which is able to learn temporal patterns as well as spatial patterns. Therefore, the trained Elman neural network has the characteristics of the nonlinear and dynamic. At the same time Elman neural network avoids the drawback of traditional neural network which can not change the model structure real time and can not adapt to the abrupt change.
     The main ideas of the paper are listed as follows:
     (1) Design monitor system scientifically and put rigorous and effective monitor in practice so as well and truly show all kinds of pulse of structure and environment, and accordingly provide reliably and roundly basic information for design and construction;
     (2) Based on intelligent monitor and by virtue of the results obtained in this paper, we proposed the basic theory of choosing Elman neural network to model in the deep foundation pit intelligent monitor. Using Elman neural network overcome the disadvantage of slow convergence, easy to fall in to local infinitesimal and not having nonlinear dynamic characteristic when using the Bp neural network and RBF neural network which are largely used in the deep foundation pit deform prediction by far.
     (3) Change the method of non-continuous and static structure mechanics computation used in the past and make full use of artificial neural network predictive method to dynamically analysis every condition of deep foundation pit construction by time and space sequence and farther obtain the dynamic reliability;
     (4) Take the practical application into account, in this paper the mulit-data prediction method and time serial prediction method are used to intelligent monitor.
引文
[1]吴京生,高层建筑深基坑工程现状与展望.电力勘测,1998(3):13-19.
    [2]胡友健,李梅,赖祖龙等,深基坑工程监测数据处理与预测报警系统焦作工学院学报,2001(2),20.
    [3]袁金荣,地下工程施工变形的智能预测与控制同济大学博士论文,2001.
    [4]杨林德等岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1999:35
    [5]李庆来人工神经网络与概率方法在深基坑开挖信息施工中的应用.土木工程学报.2001,34(2):96-100.
    [6]徐日庆,杨林德基坑开挖的信息化预报[J].同济大学学报,1996,24(5):55-56.
    [7]侯学渊,廖少明.盾构隧道沉降预估[J].地下工程与隧道,1993,4:24-3
    [8]张弥,潘杰梁.预测盾构开挖引起的地面沉陷的专家系统阴地铁与轻轨,1990,3
    [9]刘建航.上海软土隧道盾构施工技术专家系统综述[J].地下工程与隧道,1995,2:2
    [10]Iot and Histake.K.隧道掘进引起的三维地面沉陷分析[J].隧道译从,1985,(9):46-55
    [11]Beer G.,Watson J.O.and Swoboda G Three-dimensional analysis of tunnels using infinite boundary elements[J].Computers and Geotechnics,1987,3:37-58
    [12]Rowe,R.K,Lo,K.Y,Kack,GJ.A method of estimating surface settlement above tunnels constructed in soft ground[J].Canadian Geotechnical Journal,1983,20:11-22
    [13]Christensen,R.W.&Wu,T.H.(1964).Analysis of clay deformation as a rate process,J.Soil Mech.Found.Div.,ASCE,Vol.90(6),125-157.
    [14]Clayton,C.R.I.,Khatrush,S.A.,Bica,A.V.D.and Siddique,A.(1989).The use of Hall Effect Semiconductors in Geotechnical Engineering.Geotechnical Testing Journal,GTJODJ,Vol.12(1):69-76.
    [15]Clough,G.W.& Denby,G.W.(1977).Stabilizing Beam Design for Temporary Walls in Clays,J.of Geotech.Div.,ASCE.Vol.103(2)
    [16]Dafalias,Y.F.(1987).An anisotropic critical state clay plasticity model.Constitutive laws for engineering materials:Theory and applications,C.S.Desai et al.,eds.,513-521.
    [17]Dasari,G.R.&Britto,A.M.(1995).A strain-dependant modified cam-clay model in CRISP.Technical report.Department of Engineering,Cambridge University.UK.
    [18]Davis,E.H.(1968).Theory of plasticity and the failure of soil Masses,soil Mechanics-selected Topics,Ammerican Elsevier,New York,and 341-380.
    [19]Diaz-Rodriguez,J.A.,Leroueil,s.&Aleman,J.D.(1992).Yielding of Mexico City Clay and other natural clays,J.of Geotech.Engrg,Vol.118(7),981-995.
    [20]Dibiagio,E.& Roti,J.A.(1972).Earth pressure measurements on a braced slurry-trench wall in soft clay.Proc.5th Eur.Conf.Soil Mech.,Madrid,Vol.1,473-482.
    [21]Duncan,J.M.and Mokwa,R.L.(2001).Passive earth pressures:theories and tests,J.Geotech.Geoenv.Engng.ASCE,Vol 127(3),248-257.
    [22]Edgers,L.,Ladd,C.C.& Christian,J.T.(1973).Undrained creep of Atchafalaya levee foundation clays.MIT Res.Rpt.R73-16,Dept.of Civil Eng.,MIT,Cambridge,MA,2 vols.
    [23]Finn,W.D.L.&Snead,D.E.(1973).Creep and creep rupture of undisturbed sensitive clay.Proc.8th Int.Conf.Soil Mech.Found.Engrg.Vol.1,135-142.
    [24]Finno,R.J.,Harahaps,I.S.& Sabatini,P.J.(1991).Analysis of Excavation with Coupled Finite Element Formulations,Computer and Geotechnics,Vol.12.
    [25]Fioravante,V.2000.Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing.Soils and Foundations,40(4):129-142.
    [26]Fraser,A.M.(1957).The influence of stress ratio on compressibility and pore pressure coefficient in compacted soils.PhD thesis,University of London.
    [27]Goh,A.T.C.Behavioue of cantilever retaining walls,J.of Geotech.Engrg.ASCE.Vol.119(11).
    [28]Georgiannou,V.N.,Rampello,S.& Silvestri,F.(1991).Static and dynamic measurement of undrained stiffness of natural overconsolidated clays.Proceedings.10th Eur.Conf.Soil Mech.,Florence 1,91-96.
    [29]Goto,S.,Burland,J.B.& Tatsuoka,F.(1999).Non-linear soil model with various levels and its application to axisymmetric excavation problem.Soils and Foundations.Vol.39(4),111-119.
    [30]Liu,K.X.,Yong,K.Y.& Lee,F.H.(1996).A numerical study on 3-D behaviour of excavation-support system,Proc.2nd Int.Conf.on Soft Soil Engineering,Nangjing.
    [31]Lo Presti,D.C.F.(1989).Proprieta dinamiche dei terreni.Atti delle conferenze di geotecnica di Torino,vol.2,1-62.
    [32]Long,M.(2001)."Database for retaining wall and ground movements due to deep excavations." J.Geotech.And Geoenvir.Engrg.ASCE,127(3),203-224.
    [33]Mana A.I.and Clough G.W.(1981).Prediction of movements for braced cuts in clay.J.Geotech.Engrg.ASCE,107(6),759-777.
    [34]Marsland,A.(1971).Laboratary and insitu measurements of the deformation modules of London Clay.Proc.Symp.Interaction of Structure and Foundation,July.Midland Soil Mechanics and Foundation Engineering Society.
    [35]Marsland,A.& Eason,B.J.(1973).Measurements of displacements in the ground below loaded plates in deep boreholes.Proc.Symp.On Field Instrumentation,London.Butterworths.304-317.
    [36]Mair,R.J.(1993).Developments in geotechnical engineering research:Application to tunnels and deep excavations.Proc.Instn.Civ.Engrs.,London,93(February),27-41.
    [37]Massarsch,K.R.(1985).Stress-strain behaviour of clays.Proc.11th Int.conf.Soil Mech.Fdn Engng,San Francisco,Vol.2,571-574.
    [38]Mayne,P.W.(1980),Cam-clay prediction of undrained strength,J.Of Geot.Div.ASCE.Vol.106(11).
    [39]Mesri,G,Febres-Cordero,E.,Shields,D.R.,& Castro,A.(1981).Shear stress-strain-time behavior of clays,Geotechnique,Vol.31(4),537-552.
    [40]Nakai,T.(1985).Analysis of earth pressure problems considering the influence of wall friction and the wall deflection.Proc,the 5th Int.Conf on Numer.Methods in Geomechanics,Nagoya,Japan,765-772.
    [41]刘春用模糊神经网络对建筑物变形进行短期预测[J],工程勘察,1998,6:42-4
    [42]何玉敖,何亚东基于人工神经网络的液化震陷预估方法[J].土木程学报,1999,32(1):71-74
    [43]侯学渊,刘国彬.软土基坑支护结构的变形控制设计.侯学渊,杨敏主编.软土地基变形控制设计理论与工程实践[M].上海:同济大学出版社,,1996:64-68.
    [44]黄修云曹M安,张清.人」神经网络在地下工程预测中的应用[J]北方交通大学报,1998,22(1):39-44.
    [45]孙海涛等.深基坑工程变形预报神经网络法的初步研究[J].岩石力学,1998,19(4):63-68.
    [46]袁金荣,池毓蔚,刘学增.深基坑墙体位移的神经网络动态预测[J].同济大学学报,2000,28(3):282-286
    [47]夏元友,李新平,朱瑞赓,基于人工神经网络的边坡稳定性工程地质评价方法[J]岩土力学,1996,17(3):27-33.
    [48]刘和元,吴晓莉,刘松玉,动力测桩的BP网络分析[J]岩土工程学报,1998,20(2):59-62
    [49]王明年,关宝树.神经网络在地下工程中的应用[J]地下空间,1995,15(2):94-10
    [50]冯夏庭,土泳嘉,林韵梅.地下工程力学综合集成智能分析的理论和方法[J]岩土工程学报,1997,19(1):30-35
    [51]张庆贺,朱忠隆,杨俊龙,朱继文.盾构推进引起土体扰动理论分析及试验研究[J]岩石力学与工程学报,1999,18(6):699-703
    [52]罗发龙,李衍达等.神经网络信号处理[M].北京电子工业出版社,1999
    [53]赵振宁,徐用愚膜糊理论和神经网络的基础与应用.北京:清华大学出版社,1996
    [54]LisboaP.W.编著,邢春颖等译现代神经网络应用[M].北京:电子工业出版社,1996
    [55]Yi-cherng Yeh,Yau-Hwaug Kuo,Deh-Shiu Hsu.BuiIding KBES for Diagnosing PC Pile with Artificial Neural Network[J].Journal of Comput in Civil Eng,1993.
    [56]高玮,郑颖人岩土工程位移预测神经网络建模的几个问题[J]地下空间,2001,21(5):369-377.
    [57]Jong Hyun Kim,John strnger.Applied Chaos.New York,John Wiley& Sons Inc,
    [58]TAKENS F.Detecting strange attractors in turbulence[J].Lecture Notes in Math,1981,898(1):3662381.
    [59]张友量,陈从新,刘小巍.面向对象的深基坑监测模型及系统开发,岩土力学与工程学报,2002,增刊.
    [60]王旭东,赵建平,余闯等.人工神经网络在深基坑变形预测中的应用[J]南京工业大学学报,2002,24(5).
    [61]郭栋,基坑安全监测与信息快速反馈.岩土工程界,2002,3(8):41-44
    [62]李明峰,蒋辉基坑支护结构变形监测数据的联合处理测绘通报,2003:48-49.
    [63]丛爽.面向MAILAB工具箱的神经网络理论与应用.合肥.中国科学技术大学出版社
    [64]闻新等.MATLAB神经网络仿真与应用[M]北京.科学出版社,2002
    [65]张建国,李维滨,李小林等.基于Elman神经网络的深基坑变形智能监测.江苏建筑,2006,1
    [66]白晨光,于学馥,基于神经网络的地下工程数值模拟智能化分析方法,河北理工学院学报,1997,19
    [67]王勇,神经网络在岩土工程中的应用,河海大学学报,1998,26(4):70-74
    [68]俞中原,胡眠,顾信佩,基于模糊神经网络的盾构造型器,上海大学学报(自然科学学报)1997,3(2).
    [69]张玉祥,岩土工程时间序列预报问题初探.岩石力学与工程学报,1998,17(5):552-555
    [70]焦李成.神经网络系统理论.西安:西安电子科技大学出版社.1990:34-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700