滨海盐土脱盐熟化后微生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对天津经济技术开发区的滨海原生盐土和用客土法与新土源法改良后土壤中主要微生物类群数量(包括细菌、放线菌、真菌)以及土壤生物化学作用强度(即土壤呼吸作用强度、氨化作用强度、转化酶活性、蛋白酶活性、脲酶活性)等进行了测试研究,结果表明用客土法和新土源法对滨海盐土进行改良,能显著或极显著提高土壤微生物数量,增强土壤生物活性。
     改良后土壤微生物年平均总数显著高于未改良土壤,新土源改良后土壤微生物年平均总数高于客土改良后土壤。土壤表层微生物数量约为底层数量的3倍。
     在细菌、放线菌、真菌三大类群微生物中,细菌占绝对优势,其次是放线菌,真菌所占比例最小。芽孢杆菌是细菌的主要组成部分,在芽孢杆菌中蜡质芽孢杆菌、枯草芽孢杆菌、地衣芽孢杆菌和蜂房芽孢杆菌为优势菌;放线菌主要是链霉菌属放线菌,其中青色类群、灰褐类群和白孢类群为优势菌,黄色类群、玫瑰褐类群、弗氏类群、烬灰类群放线菌是改良后土壤中新增类群;青霉、黑曲霉是原生盐土中优势真菌,枝霉和腐霉是土壤改良后的优势真菌。
     通过客土改良土壤中氨化细菌的数量提高了1300~20000倍,反硝化细菌的数量提高了300~500倍;新土源改良土壤中氨化细菌的数量提高约900倍,反硝化细菌数量提高了约500倍。好气性自生固氮菌、纤维素分解菌、硝化细菌是土壤改良后新增生理类群,固氮菌在客土改良土壤中数量较多,而硝化细菌和纤维素分解菌在新土源改良土壤中数量较多。
     改良土壤呼吸作用强度平均提高了约1.5倍,氨化作用强度有极显著的提高。
     客土改良土壤转化酶活性提高了6~15倍,蛋白酶活性提高了1.5~4.5倍,脲酶活性提高了2.5~6倍;新土源改良土壤转化酶活性提高了约5倍,蛋白酶活性提高了约3倍,脲酶活性提高了约3倍。客土改良土壤平均生物化学活性与新土源改良土壤生物化学活性差异不明显。
     方差分析结果表明,改良土壤细菌数量、土壤生物化学活性均显著或极显著高于未改良原生盐土。在两种改良方式之间,差异不明显。
     相关分析结果表明,土壤细菌数量,转化酶、蛋白酶、脲酶活性与土壤有机质含量呈显著或极显著正相关,与土壤盐分含量呈显著负相关,说明土壤改良后土壤盐分得到控制,土壤肥力增加。
     用客土和新土源两种土源对滨海盐土进行改良均能降低土壤盐分、增加土壤有机质含量,改善土壤质量,提高土壤肥力。通过客土法改良,土壤生物化学作用强度较高,新土源法改良后土壤微生物数量较多,新土源更有利于微生物生长繁殖。
Soil microorganisms, mainly bacteria, actinomyces and fiingi and soil biochemical activities, including respiration, ammoniation, invertase, proteinase, urease in salinized and improved soil were investigated during 2001 in Tianjin Economic and Technological Development Area (TEDA).
    It was shown that both Guest Soil and New Soil could be used to lift the land level and improve the original salinized soil. The microorganism numbers and the biochemical activities of improved soil were higher than that of salinized soil.
    The mean annual amount of soil microorganism are in order of New Soil improved earth, Guest Soil improved earth, Original Salinized Soil. The amount of microorganism in topsoil was about 3 times higher than that in subsurface soil. The dominant genera of Bacillus were B.cereus, B.subtilis, B.licheniformis and B.alvei. The dominant genera of actinomyces were Glaucus, Griseofuscus and Albosporus . The dominant genera of fungi in Original Salinized Soil were Penicillium and Asergillus, while in improved soil were Thamnidium and Pythium.
    In improved soil the amount of cellulose decomposing bacteria was increased by 100~500 times, denitrobacteria amount increased more than SOOtimes, amino-bacteria amount increased more than 1000 times. Azotobacter and nitrobacteria were new inhabitants in improved soil.
    After the soil improvement, the mean annual respiration intensity was improved by about 1.5 times, the activity of invertase was raised by about 5~10 times, the activity of proteinase was raised by about 2~4 times, and the activity of urease was raised by about 2~5 times.
    ANONA shows that the amount of bacteria and the boichemical activities in improved soil is higher than that in original salinized soil significantly. The biochemical activities were higher under the earth improved by Guest Soil, while under the New Soil improved earth the microbe amount was higher.
    The correlation analysis shows that the correlation is significant between biochemical activities and organic matter content hi the soil, it also shows that biochemical activities and the salt content correlated negatively. That is to say after soil improvement the salt content was controlled and the organic matter was increased.
    High organic matter and low salt content were favorable to microbial reproduction and biochemical process. After the soil was unproved by either way, the salt content decreased and the organic matter content increased. The New Soil unproved earth is more favorable to microorganism.
引文
[1] 章家恩等,论生物多样性保存护,土壤,1995,27(4):169~172
    [2] Kennedy AC and Papendick R I. Microbial Characteristics of Soil Quality, Soil Water Conserv,1995,50:243~248
    [3] 陈华癸,李阜棣,陈文新,曹燕珍编著,土壤微生物学,上海科学技术出版社,1981:10,15~18,40~45.
    [4] Waksman, S. A., Priinciples of Soil microbiology,. The Williams &Wilkins Company, Baltimore 1927
    [5] 李阜棣,当代土壤微生物学的活跃研究领域,土壤学报
    [6] 杨苏声,细菌分类学,中国农业大学出版社,1990
    [7] Powlson D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem.,1987,19:159~164.
    [8] Warkentin B P. The changing concept of soil quality. J. Soil and Water Conservation, 1995,50:226~228
    [9] Kennedy A C. Microbial characteristics of soil quality. J. Siol and Water Conservation,1995,50:243~248
    [10] 孙波,赵其国,张兆林等,土壤质量与持续环境,土壤,1995:(5):225~234
    [11] Tiedje M J, Nusslen K, Xia BC.The vast worl;d of microbial diversity. International Symposium-New Frontiers in Microbiology, 1997,26~28
    [12] 赵吉,廖仰南等,草原生态系统的土壤微生物生态,中国草地,1999,3:57~67)
    [13] 单娜娜等,塔克拉玛干沙漠腹地人工绿地土壤微生物生态学特性研究,干旱区研究,2001,18(4):52~56
    [14] 罗明,邱沃,新疆平原荒漠盐渍草地土壤微生物生态分布的研究,中国草地,1995,5:29~33
    [15] Vance E D,P C Brookes, and Jenkinson D S, An extraction method for measuring soil microbial biomass, Soil Biol. Biochem, 1987,19:703~707
    [16] [德]B.施特尔马赫著,钱嘉渊译,酶的测定方法,中国轻工业出版社,1991
    [17] 张万钧,唐廷贵,郭育文等,盐渍土绿化[M],北京:中国环境出版社,1999
    [18] 张万钧等,三种固体废弃物综合利用的初步研究,自然资源学报,2001,16(3):283~287
    [19] 张万钧等,天津滨海园林建设中盐土治理的理论及工艺,北京林业大学学报,2000,22(5)40~44
    [20] 中国科学院南京土壤所微生物室 编著 土壤微生物研究法,科学出版社,1985
    [21] 陈天寿,微生物培养基的制造与应用,中国农业出版社,1995
    [22] 李阜棣,农业微生物学实验技术,中国农业出版社,1996
    [23] 中国科学院南京土壤所微生物室编著,土壤微生物研究法,科学出版社,1985
    [24] φ.X.哈兹耶夫(郑洪元等译),土壤酶活性,科学出版社,1980,49-122
    [25] 微生物分类学,复旦大学,复旦大学生出版社,1980
    [26] 中科院微生物研究所细菌分类组 一般细菌常用鉴定方法科学出版社,1978
    [27] [澳]斯克尔曼,细菌属的鉴定指南,科学出版社,1978
    [28] [美]布坎南,伯杰细菌鉴定手册:科学出版社,1984
    [29] 车秀珠,常见细菌系统鉴定手册科学出版社,2000
    [30] [美]戈登,芽孢杆菌属农业出版社,1983
    [31] 中国科学院微生物研究所,链霉菌鉴定手册,科学出版社,1975
    [32] B.A.克拉西里尼科夫细菌和放线菌的鉴定(放线菌目)北京科学出版社,1957
    [33] 瓦克斯曼放线菌及抗生素分类鉴定指南科学出版社,1958
    [34] 魏景超著,真菌鉴定手册,上海科学技术出版社 1979
    [35] 肯巨克,现代真菌学南京林业大学,1987
    [36] 戴芳澜,真菌的形态和分类,科学出版社,1987
    [37] 胡振宇,黄怀琼,刘世全,快生型花生瘤菌株与土著性根瘤菌竞争结瘤能力的探讨,四川农业大学学报 1994
    
    
    [38] 王龙昌等,水分和盐分对土壤微生物生物活性的影响,垦殖与稻作,1998,3:40~42
    [39] 张万钧等,天津滨海园林建设中盐土治理的理论及工艺,北京林业大学学报,2000,22(5)40~44
    [40] 娄隆后等,微生物在土壤养分转化中的作用,科学出版社,1962,73~77
    [41] Xia B C, Zhou J, Molecular analysis of spayial heterogeneity of microbial community compositions and interactions in subsurface environment. Forum on Environmental Remediation and Environmental Toxicology and Microbial Ecology, 1996,23~25
    [42] 夏北成等,土壤微生物群落及其活性与植被的关系,中山大学学报,1998(3):94~98
    [43] 赵吉,廖仰南,草原生态系统的土壤微生物分布,中国草地,1999,(3):57~67
    [44] 陈文新,土壤和环境微生物学,农业大学出版社,1989
    [45] 陈隆亨,李福兴,中国风砂土,科学出版社,1998,109~112
    [46] 许光辉编,微生物生态学,东南大学出版社,1991,109~111
    [47] 许光辉等,长白山北坡自然保护区森林土壤微生物生物生态分布及其生化特性的研究,生态学报,1984,vol4(3):207~220
    [48] 张万均等,盐渍土绿化,中国环境科学出版社,1999,4:19
    [49] 胡承彪等,不同类型混交林土壤微生物及生化特性的研究,林业科技通迅,1991(12):14~17
    [50] 许景伟等,不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究,北京林业大学学报,2000(22):51~55
    [51] 罗明等,不同用量的氮磷肥对棉田土壤微生物区系及活性的影响,土壤通报,2000,31(2):66~69
    [52] 李阜棣,土壤微生物学,中国农业出版社,1986,148
    [53] [苏]AH伊利亚列特季诺夫著,含氮化合物在土壤中的转化,农业出版社,1985,195
    [54] 李阜棣,土壤微生物学,北京:中国农业出版社,1993
    [55] Atlas, R. M.. and Bartha. R. Microbial Ecology: Fundamentals and applications. Addison-Wesley Publishing Company U.S.A. 1981.236
    [56] 周德庆,微生物研究法,上海科技出版社,1978
    [57] 郝余祥,微生物与土壤微生物学,西北农学院,1982
    [58] 潘超美等,南亚热带赤红壤地区不同人工林下的土壤微生物特性,热带亚热带植物学报,1998,6(2):158~165
    [59] [日]土壤微生物研究会编,土壤微生物实验法。科技出版社,1983,682
    [60] 张鼎华,陈由强,森林土壤酶与土壤肥力,林业科技通讯,1985(3):1~3
    [61] 张鼎华华,森林土壤酶与土壤肥力。林业科技通迅,1985(3):1~3
    [62] Pankhurst C E. Biological indicator of soil health and sustainable productivity. In Greenland D J,Szabolcs I ed. Soil Resilience and Sustainable Land Use. 1994.331~351
    [63] Turco R F, Kenndy A C, Jawson M D. Microbial indicators of soil quality. In Doran J W et al. ed.Defining Soil Quality for a Sustainable Environment. By madison, Wisconsin, USA. 1994.73~90
    [64] Powlson D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem.,1987,19:159~164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700