麦长管蚜地理种群时空动态的分子特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦长管蚜Macrosiphum miscanti Takahashi是我国重要的农业害虫,它分布广、食性杂、繁殖力强,不仅直接吸食小麦的汁液,而且还是麦类黄矮病毒病的重要传播媒介。由于麦蚜种群有较强的异质性,遗传变异度大,长期以来,有关该害虫的暴发机理及在我国具体的迁飞路线、迁飞距离及往返规律等还不甚清楚。本研究应用分子遗传学标记技术和GIS分析技术,对麦长管蚜不同地理种群的遗传多样性、地理种群间的遗传分化与基因流等问题进行了研究,分析了麦长管蚜地理种群时空动态的分子特征。深入研究麦长管蚜的种群遗传结构和种群间基因交流这些问题,有利于从根本上了解麦蚜的适应机理和成灾机理,从而为准确把握其发生规律并进行有效防治提供依据。
     本研究采用微卫星标记技术对不同地理种群麦长管蚜的遗传多样性进行研究,针对麦长管蚜建立了一套特异性的微卫星DNA标记系统,筛选出5个多态性高、重复性好、可用于麦蚜种群遗传分析的微卫星位点,然后利用这套微卫星标记对北京上庄、河北衡水、河北石家庄、河南郑州、山西太原、山西太谷、山东济南、陕西宝鸡、陕西杨陵、青海大通、宁夏固原、江苏南京、湖南长沙、贵州贵阳、湖北武汉等15个地理种群的麦长管蚜样品进行种群遗传分化和基因流的分析。得到以下结论:麦长管蚜不同地理种群间的基因交流与地理距离间呈现一定的相关关系。东部麦蚜种群基因交流比较频繁,西部麦蚜种群间基因交流非常少,有相对的基因隔离,我们认为,地理差异是影响麦长管蚜种群遗传结构的重要因素,麦长管蚜经过长距离的迁飞增加了种群间的基因交流,降低了种群间的遗传分化。麦长管蚜15个地理种群有着各不相同的环境因素,经度、纬度以及海拔高度等都有可能影响麦长管蚜的种群遗传结构。
     此外,我们把Wolbachia这一麦蚜体内的细胞内共生细菌作为特殊标记,研究了不同地理种群麦长管蚜体内Wolbachia的感染率,结果发现不同地理种群麦蚜Wolbachia的感染率差别很大。随着经度的增加,Wolbachia的感染率也有递增的趋势,东部地区感染率高而内陆地区感染率低,我们推测可能是由于地理隔离造成了一定程度上的生殖隔离。这个结论也与采用微卫星标记得出的麦蚜遗传结构的结论相吻合。
     最后,本研究利用GIS技术结合生物地理统计学(geo-statistics)对麦长管蚜的空间分布、空间相关分析、麦蚜发生动态的时空模拟等进行研究,以VC++为开发平台,以MapX控件作为图形平台,开发研制出了具有空间数据与属性数据编辑、查询、分析等基本功能的麦蚜基因流地理信息系统。其主要目的在于将抽象的麦蚜发生为害信息、麦蚜基因流信息以及相关的气象信息等以地图的形式快速、直观地显示,利用地理信息系统的空间分析、地统计分析等功能进行麦蚜迁飞的气象地理生物学分析,研究麦蚜种群空间格局的特征,并结合麦蚜历年的迁飞记录、气流资料以及气象数据等,推测麦长管蚜在我国可能的迁飞路线。
     本研究将微观的分子生态学与宏观的空间生态学有机的联系为一体,这对于从理论上进一步揭示麦蚜的暴发机理和迁飞规律,从实践中有效地开展综合治理都具有重要的参考价值。
Macrosiphum miscanthi (Takahashi) (Homoptera: Aphididae), widespread throughout the country, is one of the most common and destructive pests attacking the wheat. Colonies of the aphid not only feed upon the wheat leaves, but also transmit the barley yellow dwarf virus (BYDV) to some small crops. In addition, the long-distance migration of the aphids would cause the crop's damage extension and virus disease spreading. Here we used microsatellite markers and geographic information system (GIS) to discuss migration and population genetics of the grain aphid in relation to the geographic distance and gene flow.Samples of the grain aphid collected from 15 locations in China have been examined at 5 polymorphic microsatellite loci. Overall, genetic diversity displays a relation between the migration and gene flow in the grain aphid: a free and frequent gene flow is found in the eastern populations, and gene isolation occurs in the two western populations, especially Datong population and Guiyang population. The natural barriers may present an insurmountable obstacle preventing gene flow and aphid migration. However, a spatial genetic differentiation between populations is correlated with their geographical separation, indicating the geographic differentiation may play an important role in shaping the genetic structure of M. miscanthi populations. In addition, it seems that the long distance migration of the grain aphid may enhance gene flow and decrease genetic differentiation among different populations.Wolbachia, found in reproductive tissues of arthropods, are transmitted through the cytoplasm of eggs and have evolved various mechanisms for manipulating reproduction of their hosts. Based on the amplification of part of wsp gene encoding the outer membrane protein of Wolbachia, the presence of Wolbachia has been successfully detected in the grain aphid M. miscanthi. Moreover, it is shown that Wolbachia infection rates in different populations of the grain aphid have been obvious dissimilarity. After molecular identification of wsp gene, some factors contributing to this uncongnience are discussed here.Based on VC++ developing platform, we developed Aphid GIS system with many functions such as editing, querying, analysis of space data and attribute data, etc. and using the MapX control as the graphical platform. Anyway geographic differentiation and environment factors (e.g. altitudes, longitude and relative humidity) seem the most adequate explanation for spatial genetic structure of the aphid. Further studies are necessary to clarify the genetic background of M. miscanthi to find genetics correlated with abiotic (e.g. climate and topography) and biotic (e.g. life-cycle) factors by analyzing more populations at more loci for more information. We hope these results could be useful in modeling and forecasting outbreaks of grain aphid and in designing rational control strategies.
引文
1 张广学,钟铁森.中国经济昆虫志,第二十五册,同翅目,蚜虫类(一).北京:科学出版社,1983,356~363
    2 陈善铭,齐兆生,王法明等.中国农作物病虫害(上册).北京:中国农业出版社,1995,402~409
    3 张广学.西北农林蚜虫志昆虫纲同翅目蚜虫类.北京:中国环境科学出版社,1999,429~433
    4 龚鹏.中国麦长管蚜不同地理种群基因交流的初步研究:[博士后科研工作报告].北京:中国农业大学,2002
    5 崔读昌,曹广才,张文.中国小麦气候生态区划.贵阳:贵州科技出版社,1991,64~71
    6 陈其湖,俞水炎.蚜虫及其防治.上海:上海科学技术出版社,1988,164~170
    7 金善宝.小麦生态理论与应用.杭州:浙江科学技术出版社,1992,12~13
    8 金善宝.中国小麦学.北京:中国农业出版社,1996,29~32
    9 李光博,曾士迈,李振岐.小麦病虫草鼠害综合治理.北京:中国农业科技出版社,1990,316~339
    10 高灵旺.黄淮海地区麦蚜信息管理与预测预报技术研究:[博士学位论文].北京:中国农业大学,1998
    11 H.丁格.昆虫迁飞和滞育的进化(巫国瑞译).北京:科学出版社,1984,1~2
    12 Taylor L R. Quantitative genetic analysis of larval resistance to cypermethrin in tobacco budworrn. Journal of Animal Ecology, 1986, 55: 1~38
    13 Dixon A F G, Horth S, Kindlmann E Quantitative genetics of behavioral and physiological response to permethrin in diamondback moth. Journal of Animal Ecology, 1993, 62(1): 182~190
    14 刘向东,翟保平,张孝羲.蚜虫迁飞的研究进展.昆虫知识,2004,41(4):301~307
    15 RobertT G, Jan P. Induction of plant synomones by oviposition of a phytophagous insect. Entomologia Experimentalis et Applicata, 2000, 94: 325~330
    16 张超,潘晓明,黄诚.棉蚜迁飞行为及能量物质利用的研究.安徽农学通报,1999,5(4):29~30
    17 Karl E. Arch Phytopathol. Herbivore-induced allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuate. Pflanzenschutz, 1989, 25(2): 167~173
    18 Taimr L Kriz J. The role of jasmonic acid and methyl jasmonate in plant induced disease resistance. Zeitschriftfur Angewandte Entomol., 1978, 85(3): 236~240
    19 Wiktelius S. The myriad plant responses to herbivores. International Journal of Biometeorology, 1984, 28(3): 185~200
    20 Isard S A, Irwin M E, Hollinger S E. Jasmonate-mediated induced plant resistance affects a community of herbivores. Environmental Entomology, 1990, 19(5): 1473~1484
    21 国伟,沈佐锐.麦蚜迁飞的研究进展.中国农学通报,2004,20(6):251~254
    22 罗瑞梧,杨崇良,尚佑芬等.禾谷缢管蚜越冬与迁飞的研究.华东昆虫学报,1994,3(1):43~47
    23 董庆周,张广学,魏凯等.宁夏地区麦二叉蚜远距离迁飞的研究.昆虫学报,1995,38(4): 414~420
    24 董庆周,魏凯,孟庆祥等.宁夏地区麦长管蚜远距离迁飞的研究.昆虫学报,1987,30(3):277~283
    25 杨逸兰.麦长管蚜迁飞及预测研究进展.植保参考,1990,(3):14~16
    26 张向才,周广和,史明等.麦蚜远距离迁飞和传毒规律的研究.植物保护学报,1985,12(1):9~15
    27 陈若篪,丁锦华,谈涵秋等.迁飞昆虫学.北京:农业出版社,1989,351~352
    28 陈春,冯明光.麦蚜虫霉流行病的初始侵染源及传播途径观察.中国科学(C辑),2003,33(5):414~420
    29 宋敦伦,陈建新,王仕应等.蚜虫飞行能源物质的研究.见中国植物保护学会青年工作委员会主编:植物保护21世纪展望暨第三届全国青年植物保护科技工作者学术研讨会文集.北京:中国科学技术出版社,1998,467~469
    30 程登发,田喆,李红梅等.温度和湿度对麦长管蚜飞行能力的影响.昆虫学报,2002,45(1):80~85.
    31 程登发,田喆,李红梅等.禾缢管蚜在不同温度条件下的飞行能力.昆虫学报,1997,40(增刊):180~185.
    32 Hardie J, Campbell C A M, Nieto N J M, et al. Aphis in natural and managed ecosystems, Proceedings of the fifth international symposium on aphids, 1998, 205~212
    33 Kidd N A C, Cleaver A M. A theoretical examination of the classical theory of inheritance of insecticide resistance and the genetics of time to knockdown and dry body weight in Sitophilus oryzae (L.)(Coleoptera: Curculionidae). Bulletin of Entomological Research, 1986, 76(1): 77~87
    34 Walter K F A, Dixon A F G. Jasmonic idcarboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Annals Applied Biology, 1984, 104(1): 17~26
    35 朱弘复,张广学.棉蚜在棉田中的发生和扩散.昆虫学报,1956,6(3):253~270
    36 Kieckhefer R W, Lytle W F, Spuhler W. Resistance risk assessment for single and multiple insecticides: responses of Indian mealmoth to Bacillus thuringiensis. Environmental Entomology, 1974, 3(2): 347~350
    37 Tamaki G, Smith R E The biochemistry and the physiological and molecular action of jasmonates. Annals of the Entomological Society of America, 1972, 65(5): 1131~1143
    38 Daniels N E. Enhanced: The enemy of my enemy is my ally. Southw. Entomol., 1977, 2(1): 20~26
    39 Wiktelius S. Thesystem in signaling pathway: differential activation of plant defensive genes. Vaxtskyaddsnotiser, 1977, 41(5,6): 151~154
    40 Smith M A H, Mackay P A. Characteristics of digestive proteases in the gut of some insect orders. Oecologia, 1989, 81(2): 160~165
    41 Zoltkowski J. Induction of plant synomones by oviposition of a phytophagous insect. Ochrona Roslin, 1999, 43(9): 12~13
    42 Taylor L R. Jasmonate is essential for insect defense in Arabidopsis. Journal of Animal Ecology, 1977, 46: 411~423
    43 程登发.扫描昆虫雷达数据采集、分析系统及初步应用:[博士学位论文].北京:中国农业大学,2001
    44 翟保平.追踪天使——雷达昆虫学30年.昆虫学报,1999,42(3):315~326
    45 Bent G A. Developments in detection of airborne aphids with radar. In: Proc. 1984 British Crop Protection Conference Pests and Diseases. Cropydon: BCPC, 1984, 665~674
    46 Reynolds D R, Riley J R. Fight behaviour and migration of insect pests: radar studies in developing countries. NRI Bulletin, 1997, No. 71, Chatham Maritime: NRI, 114
    47 Marko N, Matti L, Juha H. Contrary effects of jasmonate treatment of two closely related plant species on attraction of and oviposition by a specialist herbivore. International Journal of Biometeorology, 2000, 44: 172~181
    48 国伟,沈佐锐.麦蚜迁飞的研究进展,中国农学通报,2004,20(6):251~254
    49 Steiner W W, Voegtlin D J, Irwin M E. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhtbitors. Annals of the Entomological Society of America, 1985, 78: 518~525
    50 Guillemaud T, Mieuzet L, Simon J C. Spatial and temporal genetic variability in French populations of the peach~potato aphid, Myzus persicae. Heredity, 2003, 91: 143~152
    51 Delmotte F, Leterme N, Gauthier J P, et al. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Molecular Ecology, 2002, 11: 711~723
    52 Simon J C, Leterme N, Delmotte F, et al. Isolation and characterization of microsatellite loci in the aphid species, Rhopalosiphum pade. Molecular Ecology Notes, 2002, 1:4~5
    53 Liu X M, Smith C M, Gill B S, et al. Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theoretical Applied Genetics. 2001, 102:504~510
    54 Dedryver C A, Hulle M, Le Gallic J F, et al. Coexistence in space and time of sexual and asexual populations of the cereal aphid Sitobion avenae. Oecologia, 2001, 128:379~388
    55 Wilson A C C, Sunnucks P, Blackman R L, et al. Microsatellite variation in cyclically parthenogenetic populations of Myzus persicae in South-eastern Australia. Heredity, 2002, 88: 258~266
    56 李莉,周广和,杜志强等.不同地区麦长管蚜种群的RAPD分析,见中国植物保护学会青年工作委员会主编:植物保护21世纪展望暨第三届全国青年植物保护科技工作者学术研讨会文集.北京:中国科学技术出版社,1998,457~460
    57 Llewellyn K S, Loxdale H D, Brookes C P, et al. Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Molecular Ecology, 2003, 12: 21~34
    58 龚鹏,杨效文,谭声江等.分子遗传标记技术及其在昆虫科学中的应用.昆虫知识,2001,38(2):86~90
    59 龚鹏.棉蚜 Aphis gossypii Glover种群分化的分子遗传标记研究及性蚜的诱导:[博士学位论文].北京:中国农业大学,2000
    60 Zhang D X, Hewitt G M. Nuclear DNA analysis in genetic studies of populations: practice, problems and prospects. Molecular Ecology, 2003, 12:563~584
    61 晏鹏,吴孝兵,史燕等.微卫星多态性检测技术及其在保护遗传学中的应用.应用生态学报,2003,14(3):461~463
    62 安瑞生,谭声江,陈晓峰.微卫星DNA在分子遗传标记研究中的应用.昆虫知识,2003,39(3):165~172
    63 Xin X, Mei P, Zhian F, et al. The direction of microsatellite mutations is dependent upon allele length. Nature Genetics, 2000, 24:396~399
    64 徐莉,赵桂仿.微卫星DNA标记技术及其在遗传多样性研究中的应用.西北植物学报,2002,22(3):714~722.
    65 吉亚杰.我国棉铃虫主要地理种群的遗传结构、种群动态和相互关系的初步研究:[博士学位论文].北京:中国科学院动物研究所,2003
    66 Reddy K D, Abraham E G, Nagaraju J. Microsatellite in the silkworm, Bombyx mori: abundance, polymorphism, and strain characterization. Genome, 1999, 42:1057~1065
    67 Weber J L, Wong C. Mutation of human shot tandom repeats. Human Molecular Genetics., 1993, 2: 1123~1128
    68 Meglecz E, Solignac M. Microsatellite loci for parnassius mnemosyne (Lepidoptera). Hereditas, 1998, 128: 179~180
    69 Meglecz E, Pecsenye K, Varga Z, et al. Comparison of differentiation pattern at allozyme and microsatellite loci in parnassius mnemosyne (Lepidoptera) populations. Hereditas, 1998, 128: 95~103
    70 Gorman M J, Severson D W, Cornel A J, et al. Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anpheles gambiae. Genetics, 1997, 146:965~971
    71 李建科.蜜蜂微卫星的研究进展.郑州牧业工程高等专科学校学报,2002,22(2):85~89
    72 Lehmann T, Hawley W A, Kamau L, et al. Genetic differentiation of Anopheles gambiae populations from East and West Africa: comparison of microsatellite and allozyme loci. Heredity, 1996, 77: 192~208
    73 Kamau L, Mukabana W R, Hawley W A, et al. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Molecular Biology, 1999, 8(2): 287~297
    74 Evans J D. Relatedness threshold for the production of female sexuals in colonies of a polygynous ant, Myrmica taboensis, as revealed by microsatellite DNA analysis. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92:6514~6517
    75 David C, Francesca Z, Rita C, et al. Unrelated helpers in a social insect. Nature, 2000, 405:784~787
    76 龚鹏,杨效文,张孝羲等.棉蚜Aphis gossypii种群寄主分化和季节分化的微卫星引物PCR研究.生态学报,2001,21(5):765~771
    77 龚鹏,张孝羲,杨效文等.用微卫星引物PCR分析棉蚜不同蚜型的DNA多态性.昆虫学报,2001,44(4):416~421
    78 杨效文,张广学,陈晓峰.棉蚜微卫星DNA的克隆及其多态性检测.昆虫学报,2001,44(4):586~589
    79 Ji Y J, Zhang D X, Hewitt G M, et al. Polymorphic microsatellite loci for the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and some remarks on their isolation. Molecular Ecology Notes, 2003, 3: 102~104
    80 Sunnucks P, England P R, Taylor A C, et al. Microsatellite and chromosome evolution of parthenogenic Sitobion aphids in Australia. Genetics, 1996, 144: 747~756
    81 Franck P, Gamery L, Solignac M, et al. Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie, 2000, 31(2): 167~180
    82 Dib C, Faure S, Flzames C, et al. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature, 1996, 380: 152~154
    83 张云武,张亚平,Oliver A R.微卫星及其应用.动物学研究,2001,22(4):315~320
    84 杨效文,张孝羲.温度和光周期对烟蚜性蚜的诱导.昆虫知识,1999,36(5):272~274
    85 杨效文,张孝羲,陈晓峰等.我国烟蚜种群分化的RAPD分析.昆虫学报,1999,42(4):372~380
    86 杨效文,张孝羲,陈晓峰等.不同寄主植物上烟蚜DNA多态性的RAPD-PCR分析.植物保护学报,1999,26(2):147~152
    87 国伟,沈佐锐,龚鹏.不同地理种群麦长管蚜微卫星位点的遗传多态性.农业生物技术学报,2004,12(5):616~617
    88 张德兴.分子生态学.见:戈峰主编.现代生态学.北京:科学出版社,2002,7~31
    89 闫路娜,张德兴.种群微卫星DNA分析中样本量对各种遗传多样性度量指标的影响.动物学报,2004,50(2):279~290
    90 Frankham R, Ballou J D, Briscoe D A. Introduction to conservation genetics. Cambridge: Cambridge University Press, 2002
    91 Bruce S W.群体学数据分析:群体遗传学离散型数据分析方法(,徐云碧译).北京:农业出版社,1996,210~328
    92 Hartl D L, Clark A G. Principles of population genetics, First Edition. Sinauer Associates, Inc.1989
    93 Lewotin R C, Kojama K. The evolutionary dynamics of complex polymorphisms. Evolution, 1960, 14:450~472
    94 Crow J F, Kimura M. An introduction to population genetics theory. New York: Harper and Row, 1970
    95 Hedrick P W. Genetics of population, Second Edition. Jones and Bartlett Publishers, Inc. 2000
    96 张富民,葛颂.群体遗传学研安中的数据处理方法Ⅰ.RAPD数据的AMOVA分析.生物多样性,2002,10(4):438~444
    97 Hartl D L, Clark A G. Principles of population genetics, Second Edition. Sinauer Associates, Inc. 2000
    98 Schneider S, Roessli D, Excoffier L. Arlequin: a software for population genetics data analysis. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva, 2000
    99 Raymond M, Rousset E GENEPOP (Version 1.2): population genetics software for exact test and ecumenism. Journal of Heredity, 1995, 86: 248~249
    100 Nei M. Genetic distance between populations. American Naturalist, 1972, 106: 283~292
    101 Cavalli-Sforza L L, Edwards A W F. Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetics, 1967, 19: 233~257
    102 Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.57c. Department of Genetics, University of Washington, Seattle. 1995
    103 Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987
    104 Weir B S, Cockerham C C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38:1358~1370
    105 Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics, 1995, 139: 457~462
    106 Ohta T, Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetics Research, 1973, 22: 201~204
    107 Valdes A M, Slatkin M, Freimer N B. Allele frequenciesat microsatellite loci: the stepwise mutation model revisited. Genetics, 1993, 133: 737~749
    108 Zhivotovsky L A, Feldman M W. Microsatellite variability and genetic distance. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 11549~11552
    109 Irvin S D, Wetterstrand K A, Hutter C M, et al. Genetic variation and differentiation of microsatellite loci in Drosophila simulans: evidence for a founder effect in New World population. Genetics, 1998, 150: 777~790
    110 Di-Rienzo A, Peterson A C, Garza J C, et al. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 3166~3170
    111 Goldstein D B, Ruiz Linares A, Cavalli Sforza L L, et al. An evaluation of genetic distances for use with microsatellite loci. Genetics, 1995, 139: 463~471
    112 Goldstein D B, Ruiz Linares A, Cavalli-Sforza L L, et al. Genetic absolute dating based on microsatellites and the origin of modem humans. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 6723~6727
    113 Shdver M D, Jin L Chakraborty R, et al. VNTR allele frequency distribution under the stepwise mutation model. Genetics, 1993, 134:983~993
    114 Latter B D H. Selection in finite populations with multiple alleles. Ⅲ. Genetic divergence with centripetal selection and mutation. Genetics, 1972, 70: 475~490
    115 Reynolds J, Weir B S, Cockerham C C. Estimation of the coancestry coefficient: basis for a short term genetic distance. Genetics, 1983, 105:767~779
    116 Nei M. The theory and estimation of genetic distance. In: Morton N E (eds.). Genetic structure of populations. Honolulu: University Press of Hawaii, 1973, 45~54
    117 Bowcock A M, Ruiz-Linares A, Tomfohred J, et al. High resolution of human evolutionary tree with polymorphic microsatellites. Nature, 1994, 368: 455~457
    118 Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 1996, 144: 389~399
    119 Prevosti A, Ocana J, Alonzo G. Distances between populations for Drosophila subobscura based on chromosome arrangement frequencies. Theoretical Applied Genetics, 1975, 45:231~241
    120 Slatkin M. Gene flow and genetic drift in a species subject to frequent local extinctions. Theoretical Population Biology, 1977, 12:252~263
    121 Slatkin M. Gene flow and the geographic structure of nature populations. Science, 1987, 236: 787~792
    122 Vrijenhoek R C. Gene flow and genetic diversity in naturally fragment metapopulations of deep-sea hydrothermal vent animals. Journal of Heredity, 1997, 88: 285~293
    123 Slatkin M. Gene flow in nature populations. Annual Review Ecology System, 1985, 16:393~430
    124 Hudson R R, Slatkin M, Maddison W P. Estimation of levels of gene flow from DNA sequence data. Genetics, 1992, 132: 583~589
    125 Li W H. Effect of migration on genetic distance. American Nature, 1976, 110:841~847
    126 Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics, 1992, 131: 479~491
    127 Hapke A, Zinner D, Zischler H. Mitochondrial DNA variation in Eritrean hamadryas baboons (Papiohamadryas hamadryas): life history influences population genetic structure. Behavioral Ecology and Sociobiology, 2001, 50: 483~492
    128 Parducci L, Szmidt A E, Madaghiele A, et al. Genetic variation at chloroplast microsatellites (CpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theoretical and Applied Genetics, 2001, 102:733~740
    129 Shim S I, Jorgensen R B. Genetic structure in cultivated and wild carrots (Daucus carom L.) revealed by AFLP analysis. Theoretical and Applied Genetics, 2000, 101:227~233
    130 Hamrick J L, Loveless M D. Associations between the breeding system and the genetic structure of tropical tree populations. In: Bock J, Linhart Y B (eds.). Evolutionary Ecology of Plants. Boulder: Westview Press, 1989, 129~146
    131 Hamrick J L. Plant population genetics and evolution. American Journal of Botany, 1983, 69: 1685~1693
    132 刘志田.GIS属性数据管理及其深加工实现技术.测绘与空间地理信息,2004,27(5):63-65
    133 张燕燕,张家庆.GIS分析中的空间数据不确定性问题.测绘与空间地理信息,2004,28(1):16-20
    134 Liedloff A. Mantel: Nonparametric Test Calculator, Version 2.0. Distributed by the author. Queensland University of Technology, Brisbane (http://sci.qut.edu.au/nrs/mantel.htm)
    135 Kimura M. "Stepping stone" model of population. Ann. Rept. Nat. Inst. Genetics, Japan, 1953, 3: 62~63
    136 Kimura M, Weiss G H. The stepping model of population structure and the decrease of genetic correlation with distance. Genetics, 1964, 49:561~576
    137 Weiss G H, Kimura M. A mathematical analysis of the stepping stone model of genetic correlation. Journal of Applied Product, 1965, 2: 129~149
    138 Ibrahim K M, Nichols R A, Hewitt G M. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 1996, 77(3): 282~291
    139 Stewart W A, Dallas J F, Piertney S B, et al. Metapopulation genetic structure in the water vole, Arvicola terrestris, in N E Scotland. Biology Journal Linnean Society, 1999, 68(1-2): 159~171
    140 Pope L C, Estoup A, Moritz C. Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellite. Molecular Ecology, 2000, 9(12): 2041~2053
    141 Gavin T A, Sherman P W, Yensen E, et al. Population genetic structure of the Northern Idaho ground squirrel (Spermophilus brunneus). Journal of Mammalogy, 1999, 80(1): 156~168
    142 Wright S. Isolation by distance. Genetics, 1943, 28:114~138
    143 Malecot G. Le modeles stochastiques en genetique de population. Institute of Statistics University Pards, 1959, 8: 173~210
    144 张爱兵.长江流域马尾松毛虫的空间遗传结构及基因流暨马尾松毛虫与近缘种的亲缘关系:[博士学位论文].北京:中国科学院动物研究所,2002
    145 Berg L M, Lascoux M, Pamilo P. Extranuclear differentiation and gene flow in the finite model with sex-differentiated gene flow. Heredity, 1998, 81(1): 63~68
    146 Werren J H, Windsor D, Guo I R. Distribution of Wolbachia among neotropical arthropods. Proceedings of the Royal Society of London (B), 1995, 262:197~204
    147 Bandi C, Anderson T J C, Genchi C, et al. Phylogeny of Wolbachia-like bacteria in filarial nematodes. Proceedings of the Royal Society of London (B), 1998, 265: 2407~2413
    148 Breeuwer J A J, Jacobs G. Wolbachia: intracellular manipulators of mite reproduction. Experiment Applied Acarol, 1996, 20: 421~434
    149 Hyun W O, Kim M G, Shin S W, et al. Ultrastructural and molecular identification of a Wolbachia endosymbiont in a spider, Nephila clavata. Insect Molecular Biology, 2000, 9(5): 539~543
    150 Stouthamer R, Luck R F, Hamilton W D. Antibiotics cause parthenogenetic Trichgramma to revert to sex. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87: 2424~2427
    151 Marie J P M, Li R G, John H W. Single and double infection with Wolbachia in the parasitic wasp Nasonia vitripennis: effects on compatibility. Genetics Society of America, 1996, 961~967
    152 Rousset F, Bouchon D, Pintureau B, et al. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proceedings of the Royal Society of London(B), 1992, 250: 91~98
    153 Girin C, Bouletreau M. Microorganism-associated variation in host infestation efficiency in a parasitoid wasp, Trichogramma bourarachae (Hymenoptera: Trichogrammatidae). Experientia, 1995, 51(4): 398~401
    154 Werren J H, Zhang W, Guo I R. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proceedings of the Royal Society of London (B), 1995, 261: 55~63
    155 Bordenstein S R, Werren J H. Effects of A and B Wolbachia and host genotype on interspecies cytoplasmic incompatibility in Nasonia. Genetics, 1998, 148: 1833~1844
    156 Charlat S, Bonnavion P, Mereot H. Wolbachia segregation dynarnics and levels of cytoplasmic incompatibility in Drosophila sechellia. Heredity, 2003, 90:157~161
    157 Werren J H. Biology of Wolbachia. Annual Review of Entomology, 1997, 42: 587~609
    158 Wright J D. The etiology and biology of cytoplasmic incompatibility in the Aedes scutellaris group. PhD thesis. University of California, Los Angeles, 1979
    159 Weisburg W G, Dobson M E, Samuel J M, et al. Phylogenetic diversity of Rickettsiae. Journal of Bacteriology, 1989, 171: 4202~4206
    160 Hertig M, Wolbach S B. Studies on rickettsia-like microorganisms in insect. Journal of Medical Research, 1924, 44: 329~374
    161 Zhou W, Rousset F, O'Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London (B), 1998, 265: 509~515
    162 Werren J H. Wolbachia run amok. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 11154~11155
    163 Jiggins F M, Bentley J K, Majerus M E N, et al. How many species are infected with Wolbachia? Cryptic sex ratio distorters revealed to be common by intensive sampling. Proceedings of the Royal Society of London (B), 2001, 268:1123~1126
    164 Hong X Y, Gotoh T, Noda H. Sensitivity comparison of PCR primers for detecting Wolbachia in spider mites. Applied Entomology and Zoology, 2002, 37(3): 379~383
    165 Kellen W R, Hoffmann D E Wolbachia sp. (Rickettsiales: Rickettsiaceae) a symbiont of the almond moth, Ephestia cautella: ultrastructure and influence on host fertility. Journal of Invertebrate Pathology, 1981, 37: 273~283
    166 Meer M M M, Witteveldt J, Stouthamer R. Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene. Insect Molecular Biology, 1999, 8(3): 399~408
    167 Michel Salzat A, Cordaux R, Bouchon D. Wolbachia diversity in the Porcellionides pruinosus complex of species (Crustacea: Oniscidea): evidence for host-dependent patterns of infection. Heredity, 2001, 87:428~434
    168 Vega F E, Benavides P, Stuart J A, et al. Wolbachia infection in the coffee berry borer (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 2002, 95(3): 374~378
    169 Dobson S L, Bourtzis K, Braig H R, et al. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochemistry and Molecular Biology, 1999, 29:153~160
    170 Zchori F E, Roush R T, Rosen D. Distribution of parthenogenesis inducing symbionts in ovaries and eggs of Aphytis. Current Microbiology, 1998, 36: 1~8
    171 Louis C, Nigro L Ultrastructural evidence of Wolbachia Rickettsiales in Drosophila simulans and their relationships with unidirectional cross-incompatibility. Journal of Invert Pathology, 1989, 54: 39~44
    172 Byers J R, Milkes A. A rickettsialike microorganism in Dahlbominus fuscipennis: observations on its occurrence and ultrasturture. Can. Journal of Zoology, 1970, 48: 959~964
    173 Rigaud T, Souty G C, Raimond R, et al. Feminizing endocytobiosis in the terrestrial crustacean Armadillidium vulgare Latr. (Isopoda): recent acquisitions. Endocytobiosis Cell Research, 1991, 7: 259~273
    174 Abe Y, Miura K. Does Wolbachia induce unisexuality in oak gall wasps (Hymenoptera: Cynipidae). Annals of the Entomological Society of America, 2002, 95(5): 583~586
    175 McGraw E A, Merritt D J, Droller J N, et al. Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proceedings of the Royal Society of London (B), 2001, 268: 2565~2570
    176 O'Neill S L, Giordano R, Colbert A M E, et al. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 2699~2702
    177 Opijnen T, Breeuwer J A J. High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two spootted spider mite. Experimental and Applied Acarology, 1999, 23: 871~881
    178 Presgraves D C. A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila. Genetics, 2000, 154:771~776
    179 Schulenburg J H G, Hurst G D D. Molecular evolution and phylogenetic utility of Wolbachia ftsZ and wsp gene sequences with special reference to the origin of male-killing. Molecular Biology Evolution, 2000, 17(4): 584~600
    180 Stouthamer R, Breeuwer J A J, Hurst G D D. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual Review of Microbiology, 1999, 53:71~102
    181 Reed K M, Werren J H. Induction of paternal genome loss by the paternal sex-radio chromosome and cytoplasmic incompatibility bacteria (Wolbachia). A comparative study of early embryonic events. Molecular Reproductive Development, 1995, 40: 408~418
    182 邓可京,杨琰云,胡成业.灰飞虱共生菌Wolbachia引起的细胞质不亲和性.复旦大学学报(自然科学版),1997,36:499~506
    183 Hoshizaki S, Shimada T. PCR-based detection of Wolbachia cytoplasmic incompatibility microorganisms infected in natural populations of Laodellphax striatellus (Homoptera: Delplhacidae) in central Japan: has the distribution of Wolbachia spread recently? Insect Molecular. Biology, 1995, 4: 237~243
    184 Giordano R, Jackson J J, Robertson H M. The role of Wolbachia bacteria in reproductive invompatibilities and hybrid zones of Diabrotica beetles and Cryllus crickets. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94:11439-11444
    185 Magnin M, Pasteur N. Raymond M. Multiple incompatibility within population of Culex pipiens in southern France. Genetica, 1987, 74:125-130
    186 Boyle L, O'Neil S L, Robertson H M, et al. Inter and intra specific horizontal transfer of Wolbachia in Drosophila. Science, 1993, 260:1796-1799
    187 Bordenstein S R, O'Hara F P, Werren J H. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature, 2001, 409: 707-710
    188 Dobson S L, Charles W F, Francis M J. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proceedings of the Royal Society of London (B), 2002,269: 437-445
    189 Legner E F. Transfer of thelytoky to arrhentokous Muscidifurax raptor Girault and Sanders (Hymenoptera: Pteromalidae). Canada Entomology, 1987,119: 265-271
    190 Plantard O, Rasplus J Y, Mondor G, et al. Distribution and phylogeny of Wolbachia inducing thelytoky in Rhoditini and Aylacini (Hymenoptera: Cynipidae). Insect Molecular Biology, 1999, 8(2):185~194
    191 Stary P. Biology and distribution of microbe-associated thelytokous populations of aphid parasitoids. Journal of Applied Entomology, 1999,123(4): 231-235
    192 Van Meer M M M, Witteveldt J, Stoutthamer M. Detailed phylogeny of Wolbachia clones involved in the alteration of its host's phenotype based on the wsp gene. Insect Molecular Biology, 1999, 8: 399-408
    193 Zchori F E, Faktor O, Zeidan M, et al. Pathenogenesis-inducing microorganisms in Aphytis (Hymenoptera: Aphelinidae). Insect Molecular Biology, 1995,4:173-178
    194 Stouthamer R, Kazmer D J. Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity, 1994,73: 317-327
    195 Hurst LD. The incidences, mechanisms and evolution of cytoplasmic sex ratio distorted in animals. Biology Review, 1993, 68: 121-193
    196 Cook J M. Sex determination in the Hymenoptera: a review of models and evidence. Heredity, 1993,71:421-435
    197 Huigens M E, Luck P F, Klaassen R H G, et al. Infection parthenogenesis. Nature, 2000, 405: 178-179
    198 Stouthamer R. The use of sexual versus asexual wasps in biological control. Entomophaga, 1993, 38(1): 3-6
    199 Vavre F, Fleury F, Varaldi J, et al. Phylogenetic status of a fecundity-enhancing Wolbachia that does not induce thelytoky in Trichogramma. Insect Molecular Biology, 1999, 8(1): 67-72
    200 Juchault P, Frelon M, Bouchon D, et al. New evidence for feminizing bacteria in terrestrial isopods: evolutionary implications. C. R. Academy Science, Paris Life Science, 1994,317:225-230
    201 Legrand J J, Legrand H E, Juchault P. Sex determination in Crustacea. Biology Review, 1987, 62:439-470
    202 朱道弘.细胞质共生微生物Wolbachia对节肢动物生殖的特殊影响.中南林学院学报,2003,23(4):106~110
    203 Kageyama D, Hoshizaki S, Ishikawa Y. Female biased sex ratio in the Asian corn borer, Ostrinia fumacalis: evidence for the occurrence of feminizing bacteria in an insect. Heredity, 1998, 81: 311~316
    204 Hackett K J, Lynn D E, Williamson D L, et al. Cultivation of the Drosophila sex-ratio spiroplasm. Science, 1986, 232: 1253~1255
    205 Jiggins F M, Hurst G D D, Majerus M E N. Sex ratio distortion in Acraea encedon is caused by a male-killing bacterium. Heredity, 1998, 81:87~91
    206 Hurst G D D, Jiggins F M. Male-killing Wolbachia in two species of insect. Proceedings of the Royal Society of London (B), 1999, 266:730~740
    207 Morimoto S, Nakai M, Ono A, et al. Late male-killing phenomenon found in a Japanese population of the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae). Heredity, 2001, 87: 435~440
    208 Hurst G D D, Hurst L D, Majerus M E N. Influential passengers: inherited microorganisms and arthropod reproduction. Oxford: Oxford University Press, 1997, 125~154
    209 龚鹏,沈佐锐,李志红.Wolbachia属共生细菌及其对节肢动物生殖活动的调控作用.昆虫学报,2002,45(2):241~252
    210 Weiss E, Moulder J W, Order L, et al. Rickettsiales Gieszczkiewiez. In Bergey's Manual of Systematic Bacteriology. NR Krieg, J G Holt, 1984, 684~729
    211 O'Neill S L, Karr T L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature, 1990, 348:178~180
    212 Louis C, Nigro L. Ultrastructural evidence of Wolbachia Rickettsiales in Drosophila simulans and their relationships with unidirectional cross-incompatibility. Journal of Invert Pathology, 1989, 54: 39~44
    213 Louis C, Pinturesu B, Chapelle L. Research on the origin of unisexuality: thermotherapy cures both rickettsia and thelytokous parthenogenesis in a Trichogramma species. C R Academy Science Ⅲ ParEs, 1993, 316: 27~33
    214 龚鹏,沈佐锐.PCR为基础的分子技术检测沃尔巴克氏体的研究进展.遗传,2002,24(2):207~210
    215 施婉君,程家安,祝增荣等.昆虫共生细菌Wolbachia的研究进展.生态学报,2002,22(3):109~419
    216 王辉,刘敬泽.沃尔巴克氏体对靶标昆虫的作用及生防潜能.医学动物防制,2004,20(1):3~5
    217 Bensaadimerchermek N, Salvado J C, Cagnon C, et al. Characterization of the unlinked 16S r DNA and 23S-5S ribosomal-RNA operon of Wolbachia pipientis, a prokaryotic parasite of insect gonads. Genetics, 1996, 165: 81~86
    218 Meer van M M M, Kan van F J P M, Stouthamer R. Spacer 2 region and 5S rDNA variation of Wolbachia strains involved in cytoplasmic incompatibility or sex-ratio distortion in arthropods. Letters in Applied Microbiology, 1999, 28:17~22
    219 Braig H R, Zhou W, Dobson S, et al. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. Journal of bacteriology, 1998, 180(9): 2373~2378
    220 Zhou W, Rousset F, O'Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequence. Proceedings of the Royal Society of London (B), 1998, 265: 509~515
    221 Gong P, Shen Z R. Molecular identification of a Wolbachia endosymbiont in Trichogramma dendrolimi. Progress in Natural Science, 2002, 12(5): 388~391
    222 朱德海,严泰来,杨永侠.土地管理信息系统.北京:中国农业大学出版社,2000
    223 肖胜,潘辉,卢介龙.“3S”一体化技术及其在林业上的应用研究.福建林业科技,1999,26增刊:101~105
    224 吴信才,童恒建.3维地理信息系统数据模型的设计.计算机工程,30(6):93~95
    225 龚健雅.当代地理信息系统进展综述.测绘与空间地理信息,2004,27(1):5~11
    226 傅肃性.地理信息系统的理论与应用发展.地理科学进展,2001,20(2):192~199
    227 陈述彭.地理信息系统导论.见:王人潮主编.农业资源信息系统.北京:中国农业出版社,2000
    228 陈志刚.基于GIS的病虫害查询预测系统的建立及其在麦蚜迁飞研究中的应用:[硕士学位论文].北京:中国农业大学,2004
    229 饶卫民,章家恩,肖红生等.地理信息系统GIS在农业上的应用现状概述.云南地理环境研究,2004,16(2):13~17
    230 蓝荣钦,李淑霞,刘阳等.地理信息系统的发展现状和趋势.地理空间信息,2004,2(1):8~11
    231 孙成明,袁登荣,王余龙.地理信息系统的农业应用与进展.上海农业学报,2004,20(3):99~101
    232 张京红,戴进,邓凤东.地理信息系统及其发展.陕西气象,2002,(2):23~25
    233 黄杏元,汤勤.地理信息系统概论.北京:高等教育出版社,1998
    234 王正军,程家安,祝增荣.地理信息系统及其在害虫综合治理中的应用.浙江农业学报,2000,12(4):233~238
    235 闫宏娟,李典谟.地理信息系统及其在昆虫生态中的应用.昆虫知识,1999,36(1):41~44
    236 Liebhold A M, Rossi R E, Kemp W P. Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology, 1993, 38: 303~327
    237 Shepherd R F, VanSickle G A, Clarke D H J. A comparison of Features of New and Old World Tussock Moths. Washington D C: USDA for Servey General Technology, 1998: 381~400
    238 Ravlin F W, Bellinger R G, Roberts E A. Gypsy moth management programs in the United States: status, evaluation, and recommendations. Bulletin of the ESA. 1987, 91~97
    239 Ravlin F W. Fleischer S J, Carter N R, et al. A monitoring system for gypsy moth management. Proceedings USDA Integration Gypsy Month Research, 1991
    240 王海扣,周保华,程遐年.地理信息系统及其在害虫治理中的应用.昆虫知识,1997,34(6):366~370
    241 Song Y H, Heong K L. Use of geographical information system in analyzing large area distributing and dispersal of rice insects in south Korea. Journal of Applied Entomology, 1993, 32(3): 307~316
    242 赵永福,林伟.应用地理信息系统对梨火疫病可能分布区的初步研究.植物检疫,1995,9(6):321~326
    243 林伟.GIS在植物检疫领域中的应用前景.植物检疫,1996,10(2):81~83
    244 白章红,周国梁,钱天荣等.小麦印度腥黑穗病菌在中国适生性的初步研究.植物检疫,1997,11(6):331~334
    245 李志红,梁广勤,梁帆等.GIS技术与实蝇监测.江西农业大学学报(自然科学版),2002,3:401~405
    246 陈钰瑛,王茂涛.褐稻飞虱种群增殖与温度的关系.江苏农业科学,1996,4:29~31
    247 臧伟,郝树广,王海扣等.江淮稻区褐飞虱种群动态模拟模型.南京农业大学学报,1997,20(2):32~38
    248 郝建军,陈克,骆勇等.小麦病害地理信息系统WDGIS的初步组建.见:赵美琦主编.麦田植保系统工程的研究.北京:北京农业大学出版社,1995
    249 石守定,马占鸿,王海光等.地理信息系统在植物保护领域中的应用.农业网络信息,2004,3:7~10
    250 雷勇辉,张建华,李小燕等.基于Map Objects的植保地理信息系统应用软件的开发.石河子大学学报(自然科学版),2004,22(2):121~123
    251 罗瑞梧.麦长管蚜种群数量变动因素和预测的研究.山东农业科学,1985,3:27~30
    252 胡伯海.中国农作物病虫害监测预测预报系统研究:[博士学位论文].北京:中国农业大学,2004
    253 胡英,黄晔.地理信息系统软件开发模式探讨.测绘通报,2004,7:45~47
    254 张山山,边馥苓.地理信息系统数据模型分析.测绘通报,2004,8:18~21
    255 李欣,李华,董海鹰.基于Map X的地理信息系统开发方法及应用.信息技术,2004,28(10):23~26
    256 韩平阳,罗五明.基于Map X的地理信息系统的VC开发.交通与计算机,2004,22(5):71~74
    257 曾鸣,刘显著.基于Map X的网络地理信息系统的实现.现代电子技术,2004,24:51~53
    258 赵江洪.地理信息系统中多图幅接边的设计与实现.测绘科学,2004,29(1):45~47
    259 郭利川,郭建显,代晓波.浅谈地理信息系统中的空间数据模型.地理空间信息,2005,3(1):37~39
    260 许亮亮.实时地理信息系统开发研究.北京工商大学学报(自然科学版).2004,22(2):26~29
    261 许述彭.我国地理信息系统的新进展.国土资源信息化,2004,3~4
    262 陈常松.地理特征的规范化描述及其编码问题.中国地理信息系统协会、中国海外地理信息系统协会1998年年会论文集,1998,192~198
    263 黄裕霞,陈常松,何建邦.GIS互操作的实现途径评述.地理研究,1999,18(1):105~112
    264 中国气象局监测网络司.全球大气监测观测指南.北京:气象出版社,2002
    265 沈文君.分布式外来有害生物风险分析WebGIS研制:[博士学位论文].北京:中国农业大学,2004
    266 修文群,池天河.城市地理信息系统(GIS).北京:北京希望电子出版社,1999
    267 蔡青年,胡熳华,王宇等.蚜虫种群遗传多样性的影响因素及分子基础.昆虫知识,2004,41(4):285~290
    268 Hodson A C, Cook E F. Long range aerial transport of the Harlequin bug and the greenbug into Minnesota. Journal of Economical Entomology, 1960, 53: 604~608
    269 Medler J T, Smith P W. Greenbug dispersal and distribution of barley yellow dwarf virus in Wisconsin. Journal of Economical Entomology, 1960, 53: 473~474
    270 Wallin J R, Loonan D V. Low-level jet winds, aphid vectors, local weather, and barley yellow dwarf virus outbreaks. Phvtopathology, 1971, 61: 1068~1070
    271 蔡凤环,赵惠燕.麦长管蚜自然群体的遗传变异研究.西北农林科技大学学报(自然科学版),2004,32(2):21~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700