青海湖及其邻近水系特有裂腹鱼类的分子系统发育及系统地理学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青海湖及其邻近的黄河和柴达木水系分布着裂腹鱼亚科的8 个特有种和亚种,它们的系统发育模式和种群进化关系受到了越来越多的关注。裸鲤属和裸裂尻鱼属在这一地区有广泛的分布,它们的河流栖息环境为生物地理学研究提供了理想的模式。本文以线粒体DNA(mtDNA)为标记,对来自青海湖、黄河和柴达木水系特有的青海湖裸鲤(青海湖裸鲤指名亚种和青海湖裸鲤甘子河亚种)、花斑裸鲤、斜口裸鲤、黄河裸裂尻鱼、柴达木裸裂尻鱼和极边扁咽齿鱼Cyt b 基因全序列和控制区D-loop 序列进行了测定分析。通过分子系统学研究,拟阐明特有裸鲤鱼、裸裂尻鱼和扁咽齿鱼种间及种内的系统发育模式和分类关系。用生物地理学方法,探讨青海湖裸鲤的起源和演化历史,分析青海湖裸鲤、花斑裸鲤和黄河裸裂尻鱼地理分布格局的形成和水系变迁,以及青藏高原的隆升对物种形成的影响,为青海湖的形成和黄河溯源的历史提供生物学证据。本项目具有重要的系统学、地理生物学和保护生物学意义, 同时为阐述青藏高原裂腹鱼类的系统进化规律积累有价值的资料。通过本研究,我们们得出了以下结论:
    1.在一致的系统进化树上,裸鲤属的3 个物种(青海湖裸鲤、花斑裸鲤和斜口裸鲤)并未形成三个独立的单系群,而是分为三个谱系:谱系A 包括青海湖裸鲤、斜口裸鲤和黄河花斑裸鲤的一部分,黄河花斑裸鲤的另一部分组成谱系B,它们形成姐妹群关系;谱系C 则由来自柴达木盆地格尔木河的花斑裸鲤形成单系群;极边扁咽齿鱼位于系统树的基部,形成特有的单系群。AMOVA 分析显示,大部分的遗传变异来自于谱系间,提出该地区裸鲤属鱼类存在3 个多样化谱系。
    2.青海湖裸鲤与其甘子河亚种在mtDNA 水平没有形成分化,不支持青海湖裸鲤为多型种,也不支持斜口裸鲤作为独立的种或作为花斑裸鲤的一个亚种。柴达木盆地格尔木河的花斑裸鲤形成单系群,与黄河花斑裸鲤间非常高的遗传分歧表明。基因交流长期被阻断,暗示生态隔离可能已经使柴达木裸鲤独立进化成相当于不同的种。
    3.黄河花斑裸鲤群体内的遗传分化表明,黄河上游峡谷对裸鲤的基因交流有一定的限制。黄河花斑裸鲤的另一谱系(谱系B)很可能与黄河的溯源历史有关。
    4.网络分析显示,黄河花斑裸鲤存在多个母系来源,它们可能是黄河溯源过程中
Lake Qinghai and adjacent Yellow River and Qaidam drainage include 7 unique species and 1 subspecies of Schizothoracinae. Molecular phylogenetics of them have recently received much attention. Among them, 4 species (G. przewalskii, G. eckloni, G. scolistomus and Schizopygopsis pylzovi) of Gymnocypris and Schizopygopsis are widely distributed in those areas, and these fishes dwelling in the isolated river habitats provide an ideal model for phylogeographical studies. In this study, the complete mtDNA cytochrome b gene(1141bp)and D-loop control region (594 bp) sequences were sequenced for analysesing the genetic structure and phylogenetic relationships of G. przewalskii, G. eckloni, G. scolistomus, Schizopygopsis pylzovi and Platypharodon extremus from Lake Qinghai, Yellow River and Basin Qaidam, respectively. we aimed to provide a diversification of the mtDNA lineages hypothesis for the schizothoracine fishes in this area, and combining the geological data clarified the relation of origin between G. przewalskii and G. eckloni, and the effect of the uplift of Qinghai-Tibet Plateau on speciation, this will also provide biological evidence for the forming of the Lake Qinghai and the history of headward erosion for Yellow River.
    1. Congruent phylogenies were obtained indicating that the samples collected from the same species did not form monophyletic groups, but they grouped three highly divergent lineages (A, B and C). Among them, lineage A contained all G. przewalskii, G. scolistomus and a part of G. eckloni from Yellow River, lineage B was only composed of other G. eckloni from Yellow River, and lineage C formed a monophyly by G. eckloni from Basin Qaidam. Analysis of molecular variance (AMOVA) indicated that most of the genetic variation was detected among the three mtDNA lineages. and suggesting there were three diversiform lingeages for Gymnocypris in this region.
    2. Our mtDNA data did not support that G. przewalskii was a polytypic species, and neither G. scolistomus was an independent species nor a subspecies of G. eckloni. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) with high bootstrap value, and long-term interruption of gene flow was evidenced by high Fst values, suggesting the
    population of G. eckloni from Basin Qaidam might have be a different species. 3. The divergent mtDNA lineages of G. eckloni from Yellow River suggested a part of the gene flow among the populations was restricted by several gorges on the upper reaches of Yellow River. The lineage B of G. eckloni might relate to its history of headward erosion of Yellow River. 4. The result of network analysis showed the G. eckloni from Yellow River had multiple maternal origins, they might be the genetic character of the ancestor from the endemic schizothoracinae fishes, which incorporated in the course of the headward erosion by Yellow River reach. 5. In network structure analysis, a founder haplotype of unique to Yellow River linked all specimens form G. przewalskii suggesting that G. przewalskii might originate from one lineages of G.eckloni of Yellow River. The G. przewalskii ganzihonensis coming from G. przewalskii was supported, but genetic divergence between them has been not largely formed. 6. The test of selective neutrality showed that lineages diversification of G. przewalskii took place about 0.14MaBP years ago, it was near the times that the “Gonghe Movement”event of Qinghai-Tibetan Plateau to cause the separation of Lake Qinghai from the upper reaches of Yellow River. So that “Gonghe Movement”event in the late Pleistocene might well explain to shape the evolutionary pattern of G. przewalskii and G. eckloni. A local expansion of the G. eckloni from Yellow River about 0.072MaBP might happen in the course of headward erosion of Yellow River. The population expansion was tested also within G. eckloni from Basin Qaidam about 0.036MaBP, it might be related to the very dry during late Pleistocene in Basin Qaidam. This result was also supported by the mismatch analysis. 7. All Gymnocypris populations exhibited a low nucleotide diversity, especially the Gymnocypris populations from Basin Qaidam showed a very low nucleotide diversity suggesting that they might have experienced a very severe bottleneck. This result is congruent with a fact that the global climate became extremely worsen to cause extinction of some species in the later Pleistocene. Our result suggested a high priority in conservation programs for Gymnocypris population of Basin Qaidam. 8. Correlation test between the rakers variety of the population of Gymnocypris and genetic distances showed a non-significant correlation, and suggested that the rakers and oblique mouth cleft might have little significance in the phylogeny of the Gymnocypris fishes. 9. The Schizopygopsis from Lake Tuosuo of Basin Qaidam did not form monophyletic
    group. Our results supported the morphological classification that merged the Schizopygopsis kessleri into Schizopygopsis pylzovi. The divergent time of the Schizopygopsis Pylzovi of Yellow River and Lake Tuosuo was about 0.07MaBP ago in the late Pleistocene.
引文
1. 曹文宣, 陈宜瑜, 武云飞, 朱松泉, 裂腹鱼类的起源和演化及其与青藏高原的隆起关系, 见: 中国科学院青藏高原综合科学考察队编, 青藏高原隆起的时代、幅度和形式问题, 北京: 科学出版社, 1981, 118~130.
    2. 武云飞, 陈宜瑜, 西藏北部新第三纪的鲤科鱼类化石, 古脊椎动物与古人类, 1980, 6(4): 333~348.
    3. 李吉均, 文世宣, 张青松等, 青藏高原隆起的时代、幅度和形式的探讨, 中国科学, 1979, (6):608~616.
    4. 武云飞, 谭齐佳, 青藏高原鱼类区系特征及其形成的地史原因分析, 动物学报, 1991, 37(2): 135~150.
    5. 武云飞, 吴翠珍, 青海省黄河鱼类及其区系分析, 高原生物学集刊, 1987, (7): 141~153.
    6. 蒋志刚, 马克平, 保护生物学, 杭州: 渐江科学技术出版社, 1997, 65~68.
    7. 杨应琚, 西宁府新志, 1976 (清乾隆12 年), 卷八, 卷三十一.
    8. 龚景瀚, 循化志, 西宁: 青海科学出版社, 1981, 7: 295.
    9. Kessler K F, Beitrage zur Ichthyologie von Central-Asien,Mèl Biol Bull Acad Sci St Pètersb, 1879, (10): 233~272.
    10. Herzenstein S, Wissenschaftlichen Resultate der von N M, Przewalskii nach Central-Asien, Zool Theil, Ⅲ, 1888~1991, 2(1&3): 1~91; 181~262.
    11. 曹文宣, 邓中麟, 四川西部及其邻近地区的裂腹鱼类, 水生物学集刊, 1962 (2): 27~53.
    12. 曹文宣, 伍献文, 四川西部甘孜阿坝地区鱼类生物学及渔业问题, 水生生物学集刊, 1962, (2): 79~110.
    13. 朱松泉, 武云飞, 青海湖地区鱼类区系的研究, 青海湖地区的鱼类区系和青海湖裸鲤的生物学, 北京: 科学出版社, 1975.
    14. 武云飞, 陈瑗, 青海省果洛和玉树地区的鱼类, 动物分类学报, 1979, 4(3): 287~296
    15. 武云飞, 吴翠珍, 青海省逊木措的鱼类及高原鳅属一新种的描述, 1984, 9(3): 326~328.
    16. 张春霖, 张玉玲, 青海湖鱼类新种Ⅰ, 动物学报, 1963, 15(2): 291~295.
    17. 张春霖, 张玉玲, 青海湖鱼类新种Ⅱ, 动物学报, 1963a, 15(4): 635~638.
    18. Herzenstein S, Wissenschaftlichen Resultate der von N M, Przewalskii nach Central-Asien, Zool Theil, Ⅲ, 1888~1991, 2(1&3): 1~91; 181~262.
    19. 曹文宣, 裂腹鱼类亚科, 见: 伍献文等, 中国鲤科鱼类志(上卷), 上海: 上海科学 技术出版社, 1964.
    20. 武云飞, 吴翠珍, 青藏高原鱼类, 成都: 四川科学技术出版社, 1994, 41~444.
    21. 赵铁桥, 关于花斑裸鲤的分类问题,动物世界, 1986, 3(4): 49~55.
    22. 赵铁桥, 河西阿拉善内流区的鱼类区系和地理区划, 动物学报, 1991, 37(2): 153~166.
    23. 孙建初, 青海湖, 地质文集评, 1938, 3 (5): 507~511.
    24. 陈克造, 黄第藩, 梁狄刚, 青海湖的形成和发展, 地理学报, 1964, 30 (3): 214~230.
    25. 方永, 青海湖盆地地貌的基本特征、成因及其演变, 地理集刊, 1963, (5): 100~120.
    26. 陈志明, 黄河上源古湖沼及其环境初析, 第三次中国海洋湖沼科学会议论文集, 北京: 科学出版社, 1988, 244~253.
    27. 李吉均, 方小敏, 潘保田, 赵志军, 宋友桂, 新生代晚期青藏高原强烈隆起及其对周边环境的影响, 第四纪研究, 2001, 21(5): 381~391.
    28. 李吉均, 方小敏, 马海洲, 朱俊杰, 潘保田, 陈怀录, 晚生代黄河上游地貌演化与青藏高原隆起, 中国科学, D 辑, 1996, 26(4): 316~322.
    29. 李吉均, 方小敏, 青藏高原隆起与环境变化研究, 科学通报, 1998, 43(15): 1569~1574.
    30. 李思忠, 张世义, 甘肃河西走廊鱼类新种及新亚种, 动物学报, 1974, 20(4): 414~419
    31. 李思忠, 中国淡水鱼类的分布区划, 北京: 科学出版社, 1981, 1~292.
    32. 王基琳, 郑英明, 邢定介, 青海湖裸鲤饵料基础调查报告, 青海湖地区的鱼类区系和青海湖裸鲤的生物学, 北京: 科学出版社, 1975: 77~102.
    33. 赵利华, 王似华, 赵铁桥, 青海湖裸鲤的年龄和生长, 青海湖地区的鱼类区系和青海湖裸鲤的生物学, 北京: 科学出版社, 1975: 37~48.
    34. 张金兰, 覃永生, 青海湖渔业环境状况及管理对策, 青海环境, 1997, 7(4): 159~163
    35. 汪松, 乐佩琦, 陈宜瑜, 中国濒危动物红皮书, 北京: 科学出版社, 1998
    36. 史建全, 王基琳, 青海湖渔业资源的现状与对策, 水产科技情报, 1995, 22(1): 42~43.
    37. 陈燕琴, 王基琳, 青海省土著经济鱼类资源合理开发意见, 青海环境, 1995, 5(1): 38~39.
    38. 张玉书, 陈瑗, 青海湖裸鲤种群数量变动的初步分析, 水产学报, 1992, 4(2): 157~177.
    39. 周立华, 青海湖流域生态环境问题与对策, 青海环境, 1993, 3 (1): 1~11.
    40. 翟立伟, 青海湖裸鲤主要产卵河流相继流大量产卵亲鱼被困, 中国水产, 2003, 8: 36
    41. Ojima Y, Hitotsumachi S, Makino S, Cytogenetic studies on chromosomes of funa (Carassius auratua) and gold fish, Proc Jap Acad, 1966, 42: 62~66.
    42. Yamamoto K, Cjima Y, A pha-culture method for cells from the renal tissue of teleosts, Japan J Genet, 1973, 48 (3): 235~238.
    43. 余祥勇, 李渝成, 周暾, 中国鲤科鱼类染色体核型研究—8 种裂腹鱼亚科鱼类核型研究, 武汉大学学报, 1990, (2): 97~103.
    44. 乐佩琦, 中国动物志, 硬骨鱼纲, 鲤形目(下卷) , 北京: 科学出版社, 2000, 268~274,
    45. 武云飞, 康斌, 西藏鱼类染色体多样性研究, 动物学研究, 1999, 20(4): 258~264.
    46. 昝瑞光, 刘万国, 宋峥, 裂腹鱼亚科中的四倍体—六倍体相互关系, 遗传学报, 1985, 12(2): 137~142.
    47. 李渝成, 李康, 桂建芳, 中国鲤科鱼类染色体组型的研究Ⅺ, 裂腹鱼亚科二种鱼和鳅鮀亚科三种鱼的染色体组型, 水生生物学报, 1987, 11(2): 185~187.
    48. 周暾, 鱼类染色体研究, 动物学研究, 1984 , 5(增刊): 38~55
    49. 祁得林, 青海湖裸鲤染色体核型及多倍性的初步研究, 青海大学学报(自然科学版), 2004, 22(2): 44~47.
    50. 李太平, 赫广春, 赵凯, 吴华, 李军祥, 青海湖裸鲤乳酸脱氢酶的研究, 黑龙江畜牧兽医, 2001, 10: 7~8 .
    51. 李太平, 赫广春, 赵凯, 吴华, 李军祥, 青海湖裸鲤血清淀粉酶的研究, 四川畜牧兽医, 2001, 28(9): 17~18.
    52. 祁得林, 青海湖裸鲤和鲤鱼组织乳酸脱氢酶同工酶比较研究, 青海大学学报(自然科学版), 2003, 21(6): 1~3.
    53. 祁得林, 李军祥, 青海湖裸鲤血清过氧化物酶多态性初步研究, 淡水渔业, 2002, 32(5): 57~58.
    54. 魏乐, 青海湖裸鲤、鲤鱼的血红蛋白的电泳研究, 青海师范大学学报(自然科学版), 2000, (2): 39~42.
    55. 张武学, 张才骏, 李军祥, 青海湖裸鲤乳酸脱氢酶同工酶的研究, 青海畜牧兽医杂志, 1994, 24 (3): 9~12.
    56. 周虞灿, 青海湖裸鲤前清蛋白、运铁蛋白以及血红蛋白多态性的分析, 高原生物学集刊, 1984, 2: 125~131.
    57. 祁得林, 青海湖裸鲤遗传多样性研究, 浙江大学硕士学位论文, 2002.
    58. Selander R K, Molecular evolution, Sunderland Massachusetts: Sinauer Associates Inc, 1976, 21~45.
    59. Avise C L, Nelson W, Evolution of a gene, multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation, Science, 1975, 189: 102~114.
    60. Smith W, Gameron N D, Sustentation of isozymic polymorphism in flatfish species, Fish Cenetic and Breeding, 1996, 23: 85~93.
    61. 刘世禄, 王波, 高天翔, 柳广东, 张锡烈, 美国红鱼养殖种群的同工酶酶谱及其生化 遗传初步分析, 海洋水产研究, 2002, 23(3): 10~14 .
    62. Gold J R, Allozyme differentiation with in and between red drum from the Gulf of Mexico and Atlantic Ocean, Journal of Fish Biology, 1994, 44: 567~590.
    63. 马波, 石连玉, 尹家胜, 兴凯湖翘嘴红鱼白同工酶的研究, 水产学杂志, 2000, 13(2): 63~68.
    64. Carlson D M, Kettler M K, Fisher S E et al, Low genetic variability in paddlefish populations, Copeia, 1982, 3 :721~7251.
    65. 李明云, 张海琪, 薛良义, 竺俊全, 钟爱华, 网箱养殖大黄鱼遗传多样性的同工酶和RAPD分析, 2003, 10(6): 523~525.
    66. 王金秋, 石椿, 成功, 鸭绿江流域中国境内松江鲈鱼天然种群的同工酶分析, 复旦学报(自然科学版), 2002, 41(6): 688~692.
    67. Nevo E, Genetic rariation in natural populations: pattern and theory, Theor, Population Biology , 1978, 13(1): 121~177.
    68. Menezes M R, Taniguchi N, Seki S, Degree of intraspecific geneticdivergence and variability in three Sciaenid species, Jap J Ichthyol, 1990, 37(1): 39~48.
    69. 胡志昂, 张亚平, 中国动植物的遗传多样性, 杭州: 浙江科学技术出版社, 1997.
    70. Reichenbach-Kilinke H H, Investigations on the serum polymorphism of trout and carp, In: Genetics and Mutagenesis of fish, Springer-Verlag Berlin, Heidelberg, New York, 1973, 315~318.
    71. Sullivan B, Hmoglobin variation and its significance in fish, US-USSR workshop on Physionlogy and Biochemistry of aquatic animals, Georgetown, Sc, Nevember,1977
    72. 罗静, 张亚平, 朱春玲, 肖武汉, 鲫鱼遗传多样性的初步研究, 遗传学报, 1999, 26(1): 28~36.
    73. Brown J R, Mitochondrial DNA length Variation and heteroplasmy in populations of white sturgeon (Acipenser transmontanus), Genetics, 1992, 132: 221~228.
    74. Mulligan T J , Chapman R W, Brown B L, Mitochondrial DNA analysis of walleye Pollock, Theragra chalcogramma, from the eastern Bering Sea and Shelikof Strait, gulf of Alaska, Can J Fish Aquat Sci, 1992, 49: 319~326.
    75. Vawter L, Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock, Science, 1986, 234: 194~196.
    76. 赵凯, 李军祥, 张亚平, 罗静, 李太平, 吴华, 田海宁, 青海湖裸鲤mtDNA 遗传多样性的初步研究, 遗传, 2001, 23(5): 445~448.
    77. 王成辉, 李思发, 徐志彬, 项松平, 王剑, 段江萍, 瓯江彩鲤线粒体DNA 的限制性内切酶分析, 上海水产大学学报, 2002, 11(1): 14~17.
    78. 程起群, 王成辉, 李思发, 徐志彬, 项松平, 王剑, 段江萍, 金家鑫, 何小珍, 不同体 色瓯江彩鲤生长率和存活率的差异研究, 水产科技情报, 2001, 28(2): 56~58.
    79. 李思发, 吕国庆, L, 贝纳切兹, 长江中下游鲢鳙草青四大家鱼线粒体DNA 多样性分析, 动物学报, 1998, 4(1): 82~93.
    80. Billington N and P D N Hebert, Mitochondrial DNA variation in Great Lakes walleye ( Stizostedion vitreum) populations, Can J Fish Qquat Sci, 1988, 45: 643~654.
    81. Billington N and P D N Hebert, Mitochondrial DNA variation in Great Lakes walleye ( Stizostedion vitreum) populations, Can J Fish Qquat Sci, 1988, 45: 643~654.
    82. Ovenden J R and R W G White, Mitochondrial DNA restriction site map for Gadopsis marmorat us ,Biochem Syst Ecol, 1988, 16: 355~357.
    83. Ward R D and Payne P, Appraisal of molecular genetic technique in fisheries, Rev Fish Biol Fish, 1994, 4: 3000~3257 .
    84. Caughley G J, Directions in conservation biology, Journal of Animal Ecology, 1994, 63: 215~244.
    85. Caro T M and M K Laurenson, Ecological and genetic factors in conservation: a cautionary tale, Science, 1994, 263: 485~486.
    86. Kelly M J, Lineage Loss in Serengeti Cheetahs: Consequences of High Reproductive Variance and Heritability of Fitness on Effective Population Size, Conservation Biology, 2001, 15: 137~147.
    87. Linnell J D C and Strand O, Interference interactions, co-existence and conservation of mammalian carnivores, Conservation Biology, 2000, 6: 169~176.
    88. Su B, Shi L M, He G X, Zhang A, Song Y F, Zhong S and Fei L, The genetic diversity of ailuropoda melanoleuca revealed by protein electrophoresis, Chinese Science Bulletin, 1994, 39: 742~745.
    89. Zhang Y P, O A Ryder, Z Fan and H Zhang, Sequence variation and genetic diversity in giant panda, Science in China (Series C), 1997, 27: 139~144.
    90. Bryant E H, On the adabtive significance of enzyme polymorphism in relation to environmental variability, American Naturalist, 1974, 108: 1~19.
    91. Levins R, Evolution in changing environments, Princeton University Press, Princeton, New Jersey, 1968.
    92. Attardi G, G Schatz, Biogenesis of mitochondria, Ann Rev Cell Biol, 1988, 4: 289~333
    93. Hatefi Y, the mitochondrial electron transport and oxidative phosphorylation system, Ann Rev Biochem, 1985, 54: 1015~1069.
    94. Tzagoloff A, A M Myers, Genetics of mitochondrial biogenesis, Ann Rev Biochem, 1986, 55: 249~285.
    95. Vaughn K C, L R Debonte and K G Wilson, Organelle alteration as mechanism for matemal inheritance, Science,1980, 208: 196~197.
    96. Meland S, S Johansen, T Johansen, K Haugli and F Haugli, Rapid disappearance of one parental mitochondrial genotype after isogamous mating in the myxomycete Physarum polycephalum, Curr Genet, 1991,19: 55~60.
    97. Ashley M V, P J Laipis and W W Hauswirth, Rapid segregation of heteroplasmic bovine mitochondria, Nucl Acids Res, 1989, 17: 7325~7331.
    98. Koehler C M, G L Lindberg, D R Brown, D C Beitz, A E Freeman, J E Mayfield and A M Myers, Replacement of bovine mitochondrial DNA by sequence variant within one generation, Genetics, 1991, 129: 247~255.
    99. Moritz C, Evolutionary dynamics of mitochondrial DNA duplications in parthenogenetic geckos, Heteronotia binoei, Genetics, 1991, 129: 221~230.
    100.Rand D N and R G Harrison, Molecular population genetics of mtDNA size variation in crickets, Genetics, 1989, 121: 351~369.
    101.Hauswirth W W, M J Van De Walle P J Laiois and P D Olive, Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue, Cell, 1984, 37: 1001~1007.
    102.Densmore L D, Wright J W and W M Brown, Length variation and heteroplasmy are frequent in mitochondrial DNA fron parthenogenetic and bisexual lizards (genus Cnemidophorus), Genetic, 1985, 110: 689~707.
    103.Buroker N E, J R Brown, T A Gilbert P J O' Hara, A T Beckenbach, W K Thomas and M J Smith, Length heteroplasmy of sturgeon mitochondrial DNA: An illegitimate elongation model, Genetics, 1990, 124: 157~163.
    104.Rand D M and R G Harrison, Mitochondrial DNA transmissiom genetics in crickets, Genetics, 1986, 114: 955~970.
    105.Brown W M, Prager E M, A Wang, A C Wilson, Mitochondrial DNA sequences of primates: Tempo and mode of evolution, J Mol Evol, 1982, 18: 225~239.
    106.Cann R L, Brown W M and A C Wilson, Polymorphic sites and the mechanism of evolution in human mitochondrial DNA, Genetics, 1984, 106: 479~499.
    107.Li W H, A simulation study of Nei and Li’s model for estimating DNA divergence from restriction enzyme maps, J Mol Evol, 1981, 17: 251~255.
    108.Nedbal M A and Flynn J J, Do the combined effects of the asymmetric process of replication and DNA damage from oxygen radicals produce a mutation rate signature in the mitochondrial genome? Mol Biol Evol, 1998, 15: 219~223.
    109.Richter C, Reactive oxygen and DNA damage in mitochondria, Mutat Res, 1992, 275: 249~255.
    110.Wolstenholme D R and D O Clary, Sequence evolution of Drosophila mitochondrial DNA, Genetics, 1985, 190: 725~744.
    111.Desalle R, T Freedam, E M Prager and A C wilson, Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila, J Mol Evol, 1987, 26: 157~164.
    112.Johansen S, P H Guddal and T Johansen, Organization of the mitochondrial genome of Atlantic cod, Gadus morhua, Nucl Acids Res, 1990, 18: 411~419.
    113.Davidson W S, T P Birt and J M Green, Organization of the mitochondrial genome from Atlantic salmon (Salmo salar), Genome, 1989, 32: 340~342.
    114.郑冰蓉, 张亚平, 肖蘅, 蓝家湖, 昝瑞光, 鲤属鱼类mtDNA 控制区序列的变异性分析, 水产学报, 2002, 26(4): 289~294.
    115.Moritz C, Dowling T E, Brown W M, Evolution of animal mitochondrial DNA relevance for population biology and systematics, Ann Rev Ecol Syst, 1987, 18: 269~289.
    116.Bermingham E, Lamb T and J C A vise, Size polymorphism and heteroplasmy in the mitochondrial DNA of lower vertebrates, J Hered, 1986, 77: 249~252.
    117.Hillis D M and M T Dixon, Ribosomal DNA: Molecular evolution and phylogenetic inference, Quart Rev Bioll, 1991, 66: 411~453.
    118.Meyer A, T D Kocher, P Bassasibwaki and A C Wilson, Monophyletic origin of Victoria cichlid fishes suggested by mitochondrial DNA sequences, Nature, 1990, 347: 550~553
    119.Meyer A and A C Wilson, Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish, J Mol Evol, 1990, 31: 359~364.
    120.Mindell D P and R L Honeycutt, Ribosomal RNA in vertebrates: Evolution and phylogenetic applications, Ann Rev Ecol Syst, 1990, 21: 541~566.
    121.Geller J B et al, Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of Mytilus spp (Bivalvat Mollusca), Mol Mar Biol Biotech, 1993, 2: 44~55.
    122.Carr S M and Marshall H D, Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic eod (Gadus morhua) by the polynorase chain reaction, Can J Fish Aqua Sci, 1991, 48: 48~52.
    123.Chapman R W, Comparisons of mitochondrial DNA variation in four alosid speces as revealed by the total genome, the NADH dehydrogenaseⅠand cytochrome b regions,1994.
    124.Avise J C, Helfman G S, Saunders N C and L Stanton Hales, Mitochondrial DNA differentiation in North Atlantic eels: Population genetic consequences of an unusual life history pattem, Proc Nal Acad Sci USA, 1986, 83: 4350~4354.
    125.Gyllensten U, D Wharton, A Josefaaon and A C Wilsion, Patemal inheritance of mitochondrial DNA in mice, Nature, 1991, 352: 255~257.
    126.Zhang S M, Wang D Q and Zhang Y P, Mitochondrial DNA variation, effective female population size and population history of the endangered Chinese sturgeon, Acipenser sinensis, Conservation Genetics, 2003, 4: 673~683.
    127.Wilson G M, Thomas W K and Beckenbach A T, Inrtra-and inter-specific mitochondrial DNA sequences divergence in salmo: rainbow, steelhead, and cutthroat trouts, Can J Zool, 1985, 63: 2088~2094.
    128.Thomas W K et al, Mitochondrial DNA analysis of Pacific salmonid evolution, Can J Zool, 1986, 64: 1058~1064.
    129.Avise J C, Bermingham E, Kessler L G and N C Saunders, Characterization of mitochondrial DNA variability in a hybrid swarm between subspecies of bluegill sunfish (Lepomis macrochir), Evolution, 1984, 38: 931~941.
    130.张辉, 吴清江, 鲫不同种系线粒体DNA物理图谱的构建,水生生物学报, 2000, 24(3): 219~227.
    131.Iwin D W, Kocher T D, Wilson A C, Evolution of the cytochrome b gene of mammals, J Mol Evol, 1991, 32: 128~144.
    132.Cantatore P, Roberti M, Pesole G, et al, Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals, J Mol Evol, 1994, 39: 589~597.
    133.Lydeard C, Wooten M C, Meyer A, Cytochrome b sequence variation and a molecular phylogeny of the live-bearing fish genus Gambusia (Cyprinodontiformes: Poeciliidae), Can J Zool, 1994, 73: 213~227.
    134.Mojica C L, Meyei A, Barlow G W, Phylogenetic relationships of the genus Brachyrhaphis (Poeciliidae) inferred from partial mitochondrial DNA sequence,Copeia, 1997,(2): 298~305.
    135.Perdices A, Cunha C, Coelho M M, Phylogenetic structure of Zacco platypus (Teleostei: Cyprinidae) populations on the upper and middle Chang Jiang (=Yangtze) drainage inferred from cytochrome b sequences, Mol phylioenet Evol, 2004, 31: 192~203
    136.何德奎, 陈毅峰, 陈宜瑜, 陈自明, 特化等级裂腹鱼类的分子系统发育与青藏高原隆起, 科学通报, 2003, 48 (22): 2354~2362.
    137.Kotlík P, Tsigenopoulos C, Ráb P, et al, Two new Barbus species from the Danube Basin, with redescription of B, petenyi(Teleostei: Cyprinidae), Folia Zool, 2002, 51, 227~240.
    138.Kotlík P, Berrebi P, Genetic subdivision and biogeography of the Danubian rheophilic barb Barbus petenyi inferred from phylogenetic analysis of mitochondrial DNA variation, Mol Phylogenet Evol, 2002, 24: 10~18.
    139.Coelho M M, Brito R M, Pacheco T R, Figueiredo D and Pires A M, Genetic variation and divergence of Leuciscus pyrenaicus and L, carolitertii (Pisces, Cyprinidae), J Fish Biol, 1995, 47: 243~258.
    140.Coelho M M, Bogutskaya N G,Rodrigues J A and Collares-Pereira M J, Leuciscus torgalensis and L, aradensis, two new cyprinids for Portugueses fresh waters, J Fish Biol, 1998, 52: 937~950.
    141.Ravaoarimanana I B, Tiedemann R, Montagnon D, Rumpler Y, Molecular and cytogenetic evidence for cryptic speciation within a rare endemic Malagasy lemur, the Northern Sportive Lemur (Lepilemur septentrionalis), Molecular Phylogenetics and Evolution, 2004, 31: 440~448.
    142.Falk T M, Teugels G G, Abban E K, Villwock W and Renwrantza L, Phylogeographic patterns in populations of the black-chinned tilapia complex (Teleostei, Cichlidae) from coastal areas in West Africa: support for the refuge zone theory, Molecular Phylogenetics and Evolution, 2003, 27 :81~92.
    143.Murakami M, Matsuba C and Fujitani H, The maternal origins of the triploid ginbuna (Carassius auratus langsdorfi): phylogenetic relationships within the C,auratus taxa by partial mitochondrial D-Loop sequencing, Genes Genet Syst, 2001, 76: 25~32.
    144.Kotlík P, Berrebi P, Genetic subdivision and biogeography of the Danubian rheophilic barb Barbus petenyi inferred from phylogenetic analysis of mitochondrial DNA variation, Mol Phylogenet Evol, 2002, 24: 10~18.
    145.Zhang Y P, Ryder O A, Phylogenetic relationships of bears inferred from mitochondrial DNA sequences, Mol Phylogenet Evol, 1994, 3, 351~359.
    146.李俊兵, 王绪桢, 何舜平, 陈宜瑜, 16S rRNA 基因序列变异和中国野鲮亚科鱼类单系性研究, 自然科学进展, 2004, 14(11): 132~139.
    147.王伟, 何舜平, 线粒体DNA d-loop序列变异与鳅鮀亚科鱼类的系统发育, 自然科学进展, 2002, 12 (1): 32~35.
    148.Felsenstein J, How can we infer geography and history from gene frequencies? Journal of Theoretical Biology, 1982, 96: 9~20.
    149.Hewitt G, The genetic legacy of the Quaternary ice ages, Nature, 2000, 405: 907~913
    150.Templeton A R, Routman E, Phillips C, Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum, Genetics, 1995, 140, 767~782.
    151.Turgeon J, Bernatchez L, Clinal variation at microsatellite loci reveals historical secondary intergradation between glacial races of Coregonus artedi (Teleostei: Coregoninae), Evolution, 2001, 55, 2274~2286.
    152.Angers B, Magnan P, Plante M, Bernatchez L, Canonical correspondence analysis for estimating spatial and environmental effects on microsatellite gene diversity in brook charr (Salvelinus fontinalis), Molecular Ecology, 1999, 8, 1043~1053.
    153.Cassel A and Tammaru T, Allozyme variability in central, peripheral and isolated populations of the scarce heath (Coenonympha hero: Lepidoptera, Nymphalidae): implications for conservation, Conservation Genetics, 2003, 4: 83~93.
    154.Castric V, Bonney F and Bernatchez L, Landscape structure and hierarchical genetic diversity in the brook charr, Salvelinus fontinalis, Evolution, 2001, 55: 1016~1028.
    155.Costello A B, Down T E, Pollard S M, Pacas C J and Taylor E B, The influence of history and contemporary stream hydrology on the evolution of genetic diversity within species: an examination of microsatellite DNA variation in bull trout, Salvelinus confluentus (Pisces: Salmonidae), Evolution, 2003, 57: 328~344.
    156.Keyghobadi N, Roland J, Strobeck C, Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae), Molecular Ecology, 1999, 8: 1481~1495.
    157.Avise J C, Molecular Markers , Nat ural History and Evol ution, Chapman and Hall , New York,1994.
    158.Hewitt G, M, Some genetic consequences of ice ages, and their role in divergence and speciation, Biological Journal of the Linnean Society, 1996, 58 : 247~276.
    159.Aurelle D, Cattaneo-Berrebi G, Berrebi P, Natural and artificial secondary contact in brown trout (Salmo trutta, L,) in the French western Pyrenees assessed by allozymes and microsatellites, Heredity, 2002, 89: 171~183.
    160.Bernatchez L, Wilson C C, Comparative phylogeography of nearctic and palearctic fishes, Mol Ecol, 1998, 7: 431~452.
    161.Briolay J, Galtier N, Brito R M, Bouvet Y, Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences, Mol, Phylogenet, Evol, 1998, 9: 100~108.
    162.Gilles A, Lecointre G, Faure E, Chappaz R and Brun G, Mitochondrial phylogeny of European cyprinids: Implications for their systematics, reticulate evolution, and colonization time, Mol Phylogenet Evol , 1998, 10: 132~143.
    163.Kotlík P, Berrebi P, Phylogeny of the barbel (Barbus barbus) assessed by mitochondrial DNA variation, Mol, Ecol, 2001, 10, 2177–~2185.
    164.Mesquita N, Carvalho G, Shaw P, Crespo E, Coelho M M, River basin-related genetic structuring in an endangered fish species, Chondrostoma lusitanicum, based on mtDNA sequencing and RFLP analysis, Heredity, 2001, 86, 253~264.
    165.Tsigenopoulos C S, Berrebi P, Molecular phylogeny of north Mediterranean freshwater barbs (genus Barbus: Cyprinidae) inferred from cytochrome b sequences: biogeographic and systematic implications, Mol Phylogenet Evol, 2000, 14, 165~179.
    166.Zardoya R, Doadrio I, Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids, J Mol Evol, 1999, 49, 227~237.
    167.Zardoya R, Doadrio I, Phylogenetic relationships of Iberian cyprinids: systematic and biogeographical implications, Proc R Soc Lond B, 1998, 265, 1365~1372.
    168.Sturmbauer C and Meyer A, Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes,Nature, 1992, 578~581.
    169.Waters J M, Craw D, Youngson J H, Wallis G P, Genes meet geology: fish phylogeographic pattern reflects ancient, rather than modern, drainage connections, Evolution, 2001, 55: 1844~1851.
    170.Verheyen E, Salzburger W, Snoeks J, Meyer A, Origin of the Superflock of Cichlid Fishes from Lake Victoria, East Africa, Science, 2003, 300(11): 325~329.
    171.Wang J P, Lin H D, Huang S, Pan C H, Chen X L, and Chiang T Y, Phylogeography of Varicorhinus barbatulus (Cyprinidae) in Taiwan based on nucleotide variation of mtDNA and allozymes, Molecular Phylogenetics and Evolution , 2004, 31: 1143~1156.
    172.Avise J C, Phylogeography: The History and Formation of Species, Harvard University Press, Cambridge, MA, 2000.
    173.Bermingham E, Martin A P, Comparative phylogeography of neotropical freshwater fish: testing shared history to infer the evolutionary landscape of Central America, Molecular Ecology, 1998, 7: 499~517.
    174.Knowles L L, Maddison W P, Statistical phylogeography, Molecular Ecology, 2002, 11: 2623~2635.
    175.Mark DE Bruyn, John C, Wilson and Peter B ,Mather, Reconciling geography and genealogy: phylogeography of giant freshwater prawns from the Lake Carpentaria region, Molecular Ecology, 2004, 13: 3515~3526.
    176.Sponer R, Roy MS, Phylogeographic analysis of the brooding brittle star Amphipholis squamate (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential, Evolution, 2002, 56: 1954~1967.
    177.Waters J M, Roy M S, Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star, Journal of Biogeography, 2003, 30: 1787~1796.
    178.Waters J M, Craw D, Youngson J H, and Wallis J P, Gens meet geology: Fishphylogeographic pattern reflects ancient, rather than modern, drainage connections, Evolution, 2001, 55(9): 1844~1851.
    179.Brandst?tter A, Salzburger W, Sturmbauer C, Mitochondrial phylogeny of the Cyprichromini, a lineage of open-water cichlid Wshes endemic to Lake Tanganyika, East Africa, Molecular Phylogenetics and Evolution, 2005, 34: 382~391.
    180.Pereyra R, Taylor M I, Turner G F and Rico C, Variation in habitat preference and population structure among three species of the Lake Malawi cichlid genus Protomelas, Molecular Ecology, 2004, 13: 2691~2697.
    181.Waples R, Pacific salmon, Oncorhyncus spp,, the definition of ‘species’under the Endangered Species, Act Mar Fish Rev, 1991, 53: 11~22.
    182.Pfrender M E, Hicks J and Lynch M, Biogeographic patterns and current distribution of molecular-genetic variation among populations of speckled dace, Rhinichthys osculus (Girard), Molecular Phylogenetics and Evolution 30 (2004) 490~502.
    183.Zhang S M, Wang D Q and Zhang Y P, Mitochondrial DNA variation, effective female population size and population history of the endangered Chinese sturgeon, Acipenser sinensis, Conservation Genetics, 2003, 4: 673~683.
    184.Miyake K, Tachida H, Oshima Y, Arai R, Kimura S, Imada N and Honjo T, Genetic variation of the cytochrome b gene in the rosy bitterling, Rhodeus ocellatus (Cyprinidae) in Japan, Ichthyol Res, 2001, 48: 105~110.
    185.Ausubel F M, Short Protocols in Molecular Biology, John Wiley, Sons 2 ndeds, New York: 1992.
    186.Thompson J D, Gibson T J, Plewniak F, et al, The Clustal X windows interface: flexible strategies for multiple sequences alignment aided by Quality analysis tools, Nucleic Acids Res, 1997, 25(24): 4876~4882.
    187.Kumar S, Tamura K, Nei M, MEGA: Molecular evolutionary genetics analysis, Pennsylvania State University, university Park, PA, 1993.
    188.Swofford D L, PAPU*: Phylogenetic analysis using parsimony (*and other methods), Ver 4, Sinauer Associates, Sunderland, Massachusetts, 1998.
    189.Posada D, Crandall K A, Modeltest: Testing the model of DNA substitution, Bioinformatics, 1998, 14: 817~818.
    190.Schneider S, Roessli D, Excoffier L, ARLEQUIN Version 2,000: A software for population genetic data analysis, University of Geneva, Switzerland, 2000.
    191.Nei M, Molecular evolutionary genetics, New York: Columbia University Press, 1987
    192.Excoffier L, Smouse P E and Quattor J M, Analysis if molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, 2000, 136: 343~359.
    193.Hudson R R, Slatkin M, Maddison W P, Estimation of levels of gene flow from DNA sequence data, Genetic, 1992, 132: 583~589.
    194.Zhang Y P, Ryder O A, Phylogenetic relationships of bears inferred from mitochondrial DNA sequences, Mol Phylogenet Evol, 1994, 3, 351~359.
    195.Doadrio I, Carmona J A and Fernández-Delgado C, Morphometric study of the Iberian Aphanius (Actinopterygii, Cyprinodontiformes), with description of a new species, Folia Zool, 2002, 51: 67~79.
    196.张智勇, 于庆文, 张克信, 顾延生, 向树元, 黄河上游第四纪河流地貌演化—兼论青藏高原1∶25万新生代地质填图地貌演化调查, 地球科学—中国地质大学学报, 2003, 28(6): 621~633.
    197.Wang J P, Lin H D, Huang S, Pan C H, Chen X L, and Chiang T Y, Phylogeography of Varicorhinus barbatulus (Cyprinidae) in Taiwan based on nucleotide variation of mtDNA and allozymes, Molecular Phylogenetics and Evolution , 2004, 31: 1143~1156.
    198.Grewe P M, Mitochondrial DNA variation among Lake trout (Salvelinus namaycush) strains stocked into Lake Ontario, Can J Fish Aquat Sci, 1993, 50: 2397~2403.
    199.景民昌, 孙镇城, 李东明, 杨革联, 杨平, 柴达木盆地3 万年左右Ilyocyprisinermis 灭绝事件及其古环境意义, 现代地质-中国地质大学研究生院学报, 2001, 15(1): 49~57.
    200.Kumar S, Tamura K, Jakobsen B I, et al, MEGA: molecular evolutionary genetics analysis, Ver2,0, Bioinformatics, 2001, 17: 1244~1245.
    201.Rogers A R, Harpending H, Population growth makes waves in the distribution of pairwise genetic differences, Mol Biol Evol, 1992, 9: 552~569.
    202.Rogers A R, Genetic evidence for a Pleistocene population expansion, Evolution, 1995, 49: 608~615.
    203.Fu Y X, Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, 147: 915~925.
    204.Excoffier L and Yang Z, Substitution rate variation among sites in mitochondrial hypervariable region I of humans and Chimpanzees, Mol Biol Evol, 1999, 16: 1357~1368.
    205.Malyarchuk B A, Rogozin I B, Berikov V B, Derenko M V, Analysis of phy logenetically reconstructed mutational spectra in human mitochondrial DNA control region, Hum genet, 2002, 111: 46~53.
    206.Hedges S B, Kumar S, Tamura K, Stoneking M, Human oringins and analysis of mitochondrial DNA sequences, Science, 1992, 255: 737~739.
    207.Bandelt H J, Forster P, Sykes B C, et al, Mitochondrial portraits of human populations using median networks, Genetics, 1995, 141: 743~753.
    208.Bandelt H J, Forster P, R?hl A, Median-joining networks for inferring intraspecific phylogenies, Mol Biol Evol, 1999,16: 37~48.
    209.Bandelt H J, Caulay V, Richards M, Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA, Mol Phylogenet Evol, 2000, 16: 8~28.
    210.Golding G B, The detection of deleterious selection using ancestors inferred from a phylogenetic history, Genet Res, 1987, 49: 71~82.
    211.潘保田, 贵德盆地地貌演化与黄河上游发育研究, 干旱区地理, 1994, 17(3): 43~50
    212.张彭熹, 陈克造, 柴达木盆地盐湖, 北京: 科学出版社, 1987, 1~40.
    213.朱筱敏, 康安, 韩德馨, 王延斌, 康强, 柴达木盆地第四纪环境演变、构造变形成与青藏高原隆升的关系, 地质科学, 2003, 38(3): 413~424.
    214.Raymond M, Rousset F, An exact test for population differentiation, Evolution, 1995, 49: 1280~1283.
    215.Kocher T D, Thomas W K, Meyer A, Edwards S V, P??bo S, Villablanca F X, Wilson A C, Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers, Proc Natl acad Sci USA, 1989, 86: 6196~6200.
    216.Meyer A, T D Kocher, P Bassasibwaki and A C Wilson, Monophyletic origin of Victoria cichlid fishes suggested by mitochondrial DNA sequences, Nature, 1990, 347: 550~553.
    217.郑本兴, 王苏民, 黄河源区的古冰川与古环境探讨, 冰川冻土, 1996, 18(3): 210~218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700