地电化学成晕机制、方法技术及找矿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地质找矿工作的不断深入,地表出露的与近地表的矿床大多已被发现,寻找深部隐伏矿成为当前各国地学家面临的重要课题,由此,勘查地球化学家一直在努力研究能探测更大深度的勘查地球化学方法。地电化学方法自20世纪70年代由俄罗斯学者提出后,倍受各国地学专家学者的关注,经实践检验,该方法勘探深度较大,寻找隐伏矿床效果较好,仍然是21世纪地学家们研究的主要课题。但基于地电化学方法在成晕机制方面存在的分歧、方法技术上存在的缺陷和方法应用上存在的局限,开展本论文的研究,进一步完善地电化学方法体系,并进行规范化和标准化,以期作为一套成熟的方法技术推广应用。论文主要开展了如下几方面的研究:
     1、金属矿床电化学场基础理论研究
     通过对成分均匀的单一矿物组成的矿体、多金属矿体、浸染状矿体形成的电化学电场的分析,从金属硫化矿物的电极电位出发,从本质上论述了金属矿床电化学场的形成机理:矿体不同部位的物质存在差异,或者矿体周围水溶液介质性质存在差异,都能产生自然电场。矿体的不均匀或围岩溶液不均匀都是一个电极电位问题。潜水面切割矿体时有利于产生自然电场,但矿体在潜水面之上或潜水面之下同样能产生自电异常,关键因素是矿体不同部位的电极电位差异。所以,矿物间不同的电极电位是产生电化学电场的根本原因,电化学电场是金属矿床产生自然电场的主要形式。
     2、地电化学成晕机制研究
     通过室内进行的金属矿体电化学溶解实验、人造矿体的电化学分散模式模拟实验,进行金属矿体的电化学溶解和离子以氧化还原梯度迁移机制的研究。
     通过在广西大瑶山西侧北段盘龙铅锌矿进行的高电压(220V)和低电压(9V)地电提取实验研究、加入不同电解质溶液(水和13.6 HNO_3%的稀硝酸)的地电提取实验研究,在新疆210金矿、山东招远尹格庄金矿进行的通电条件下的地电提取实验研究和不通电情况下的泡塑电极吸附实验研究,对前人提出的地电提取成晕机制进行了辨证的否定,即:肯定了外加电场在地电提取过程中所起的重要作用,否定了在通电时将深部矿体或来自深部的离子直接提取到提取电极上的观点;肯定了地电提取的离子晕来自于近地表的浅部离子晕,但这种离子晕是动态的,否定了地电提取的离子晕只是来源于电极周围的土壤中的观点以及室内电吸附法可取代现场地电提取法的观点。
     提出了“外电场作用下,提取电极周围的离子运移牵动着远处及深部离子迁移的递推理论”,即:金属矿床由于受到电化学作用,便产生电化学溶解,在矿体周围形成离子晕,在电化学电场、地气搬运、地下水运动等各种自然营力作用下迁移到近地表,地电化学成晕的物质来源就是这种近地表的离子晕,该离子晕来自于深部矿体,具有动态性。当有外加电场
With the development of mineral exploration, most of the surface outcropping and near-surface ore deposits have been discovered, hence it becomes important for global geologists to search for deep concealed ore deposits. Therefore, geochemists have been working on various geochemical exploration methods to detect deep ore deposits all the time. The electrogeochemical method has been paid close attention by global geological geologists since it was first proposed by a USSR geologist in the 1970s. During the practice, the method is able to detect deeper ore deposits than conventional geochemical exploration methods, and can produce obvious effects. Thus it is still being studied as a main topic by geologists in 21st century. Because of different views in the halo-forming mechanism of the electrogeochemical method and disadvantages of the technique and its limitations in applications, some studies are carried out to improve the methodology system. In this way a mature set of methods and techniques is to be anticipated to be widely applied in our country. The studied contents of the thesis are as follows:1, Basic theory study of the electrochemical field on the metallic ore deposits.Through the analysis of the forming mechanism of electrochemical field of the ore bodies composed of single mineral and polymetallic ore bodies and disseminated ore bodies, the forming mechanism of the electrochemical field of the metallic ore deposits is expounded from the electrode potential of the metallic sulphide. That is: when the substance of different parts of ore body is different or the properties of the water solution media around the ore body are different, it induces different electrode potential, and natural electric field can be generated. Natural electric field is easy to be produced when ore body is crosscut by the water table; however , self-potential anomaly can also be produced when the ore body is over or below the groundwater table. The key factor is the difference of electrode potential among the different parts of the ore body. In general, the different electrode potential among minerals is critical to generate electrochemical field, and such an electrochemical field is the main form of natural electrical field for the metallic ore deposits to produce.2. The study on the mechanism of electrogeochemical halo-formationAfter doing the experiment in electrochemical dissolution in the lab and simulated experiment in the model of element dispersion around an artificial sulphide ore body, the study of the mechanism of electrochemical dissolving on metallic ore body and the migration of redox gradients of ions was carried outExperiments have been done on the electrogeochemical extraction electrified by high voltage (220V) and low voltage (9V) at the Panlong lead-zinc deposit in Dayao mountains, Guangxi, added by different electrolyte solution (water and solution of 13.6% HNO3), and on
    the electrogeochemical extraction under artificial electric field as well as adsorption of foamy plastics electrode without artificial electric field at the 210 gold deposit in Xinjiang and at Yingezhuang gold deposit in Zhaoyuan, Shandong. We dialectically negates the existing halo-forming mechanism of electrogeochemical method. It is confirmed that the artificial electric field plays an important role in electrogeochemical extraction, and that the ions from the ore body are not directly extracted to element-colIectors(ECs) under artificial electric field. Meanwhile, it is confirmed that the ionic haloes in the electrogeochemical extraction come from near the surface, which are dynamic, and that the ionic haloes in the electrogeochemical extraction don't only come from the soil around the electrodes, and that indoor electric adsorption can not replace the on-the-spot electrogeochemical extraction.A new theory is advanced to propose that the ionic movement around ECs induces the migration of ions at distance and depth under the influence of the artificial electric field. Namely, the metallic minerals are dissolved under the electrochemical effects to create ionic haloes around the ore bodies, which migrate up to the near surface affected by various natural agents such as electrochemical field, earthgas, groundwater movement and so on. The source of the electrogeochemical haloes are just the near surface ions that come from the deep ore body and are the characteristics of dynamics. The artificial electric field activates and changes the bound forms of occurrence of elements in the soil, on one hand, to bring about decomposition of a great number of complex anion and other stable or sub-stable form of elements, and on the other hand, makes anions and cations move to the extraction electrode, and it accelerates the ionic movement The redox reaction around the electrodes gradually moves the ions and transfers charges which reside farther, more interior and deeper from the center of electrode, which breaks the balance of the primary redox potential field between the deep country rock and the overlying overburden. To maintain the new balance, the ions moving away from an unit volume need to be supplemented by the ions from the adjacent unit volumes. Thus, the ions of dynamic balance migrate up one by one like a relay race. If there are ore bodies under the ground, the metallic ions produced by the electrochemical dissolution of the ore bodies will migrate continuously up to form an ionic haloes of dynamic balance. Although the movement velocity of single ion is low, and the migration distance of single ion is sbort numerous ions transmit one by one to achieve migration from long distance.3-. Study on the method and technique of electrogeochemical prospecting 1) Kind study of geoelectro-extractionThe kinds of geoelectro-extraction include:shallow electro-extraction deep electro-extraction charge electro-extraction logging electro-extraction water electro-extraction etc,on the basis of the difference of the geoelectro-extraction excitement way it may be divided into two kinds:high-power excitement and low-power excitement,and they are widely used in China.So the paper emphasizes the contrast study between high-power excitement and low-power excitement,the result indicates that there are both clear electrogeochemical anomaly no matter which kind of way,now we can't simply affirm any kind,however,deny another because any kind has its own excellence and flaw,we must choose appropriate way on the basis of different condition and different request,and use selectively on the basis of different phase of ore-search.
    2) Study of distilling electrodeThis is one of important problems of geoelectro-extraction technique.the selection of the distilling electrode directly affects the distilling result,The paper analyses and contrasts main kinds of electrode throughout the world,The new type solid electrode which has strong absorption ability to the ion of heavy metal and precious metal has been made.Many tests have been operated with the electrode in house and field,and contrast tests have been operated in Au-. Sn-. Cu-. Sb deposits etc between the electrode and other electrodes.The result shows the new electrode has better effect The excellences include-.high sensitivity-, detecting depth is large-, kinds the new electrode can detect are excessive, we can get different anomaly between surface mine and deep mine with the new electrode,anomaly basically is affected by structure,good applicability to all heavy and precious metals and settling basification matter.3) Criterion study of way and techniqueBecause effect factors of electrogeochemical measurement are very excessive and measurement data is affected by many condition (for example:specification of kryptoK plastic and filter paper- distilling liquid-, distilling time and unit of data etc) .So it is necessary that the technique is standardized.According to plentiful tests that I have done ,1 bring forward a set of applied standard inthe paper,we have acquired better effect with the standard in prospecting for ore deposits.4- Feasibility study of electrogeochemical methodFor study effect of electrogeochemical method in prospecting for hidden polymetallic deposits we have studied the feasibility in typical hidden polymetallic deposits-, all kinds of thick-bedded cover areas-, different cause of formation and different types.We have studied the feasibility in seven Au deposits-, two Cu deposits-, two Pb> Zndeposits-. two Wu-. Sn deposits and three other polymetallic deposits,and there are all clear electrogeochemical anomaly above the sections of above-mentioned mining areas.lt suggests that electrogeochemical method is effective in prospecting above-mentioned kinds of hidden polymetallic deposits and the method can be widely used in prospect ore deposits.5-. Application study on electrogeochemical method for different stages of mineral exploration1) Application at regional exploration for electrogeochemical methodThe improved CHIM is first proposed to be applied at the regional level to identify prospective target areas because it is portable, easy to operate, practical, low cost and efficient in the fieldwork. Tests were conducted to an area of 22.5km2 by 500mx500m investigation at Jinwozi to No. 210 gold ore belt in Xinjiang, six gold anomalies, four silver anomalies, three copper anomalies are discovered. At known gold mineralization, two CHEVI assemblage anomalies for Au, Ag, Cu were observed, which are of obvious concentration center, a certain concentration gradient, continuous anomaly points, and the composition of identified haloes correlates well with the position of the concealed mineralization. Around known gold mineralization, two CHEVI assemblage anomalies for Au, Ag, Cu were identified. These showed that CHIM method can be feasibly applied at the regional mineral exploration, which helps change the case that previous CHEVI method is only used for detailed exploration and at the assessment stage for verifying the geophysical and geochemical anomalies.2) Application to detailed exploration for electrogeochemical method
    ? A research on an area of 0.96km2 for detailed exploration was carried out in order to search for deep ore deposits at the Xinzao lead-zinc mining area in Dayao mountains, GuangxL The distinct CHlM anomaly is given over the known lead-zinc ore body, and concentration center of anomalies for Cu, Pb, Zn correlate well with the position of the concealed ore body, and a predicted mineralization belt of an proximate 1.2 kilometer long was circled in the periphery of the mining area.? A research of a 1.02km2 area for detailed exploration was carried out in order to search for concealed gold deposit at the Luanjiahe fault in Zhaoyuan, Shandong. In the west part of the study area, four parallel linear anomaly belts were discovered, whose direction of stretch is in the similar direction of the extension of the fault in the area. Multi-elements anomalies of the anomaly belts are strong, and are characteristics of elements assemblage. In the east part of the study area, four anomalies of Au, two anomalies of Ag, four anomalies of As, two anomalies of Sb, three anomalies for soil ionic conductivity were discovered, which are characterized by linear. These provide important clues for further assessment of the ore potentiality of the fault.(D A research of a 0.2km2 area for detailed exploration was carried out in order to study the perspective of prospecting mineral deposits at the Taifu gold mining area in Heng County, Guangxi. Five electrogeochemical anomaly belts were circled, and gold ore bodies were discovered 100 m below the surface under JV-1 anomaly and IV-2 anomaly of IV anomaly belt through prospecting while mining, whose average grade is 5.4x10"*. Gold mineralization was discovered in drill hole of II -1 anomaly of II anomaly belt. Gold mineralization bodies were also discovered in prospecting trenches of V-2 anomaly, and whose average grade is 2.063X10-6.This research finds out that the electrogeochemical method is a better prospecting method to search for concealed ore deposit, which can be applied at all stages of mineral exploration through method and technique improvement, and it can also be applied in the most areas in China. Therefore, the working standards of the soil ionic conductivity method and the improved CHIM are made so as to be widely applied as a mature set of method and technique for mineral exploration.
引文
[1] 雷斯,1983,张肇元,崔霖沛译.地电化学勘探法[M].北京:地质出版社,1986,p.244.
    [2] Fox R. W. On the electromagnetic properties of metalliferous veins in the mines of Cornwall—Philos[M]. Trans. Roy. Soc., 1830, part Ⅱ, p.399.
    [3] A.C.谢苗诺夫,1955.傅良魁译.自然电场法电法勘探[M].北京:地质出版社,1958,11~15.
    [4] Sokolova A. I. Electrochemical method for exploration of massive sulphide deposits[J]. Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 1967, 3: 107~118.
    [5] Ryss Yu. S. and Goldberg I. S. The method of partial extraction of metals(CHIM) for exploration of ore deposits[J]. Methods Tech. Explor., 1973, 84:5~19
    [6] Alekseeva M. A. and Ryss Yu. S. The movement of ions under the action of electric current in rocks (communication Ⅰ). Methods Techn. Explor., 1973, 84: 47~55.
    [7] Alekseeva M. A. The movement of ions under the action of electric current in rocks (communication Ⅱ). Methods Techn. Explor., 1976, 103: 45~52.
    [8] Ryss Yu. S., Antropova L. V. and Goldberg I. S. Using of electrochemical method for search, evaluation and determination of reserves of deep-seated deposits[J]. Sov. Geol., 1977, 6: 139~144.
    [9] Alexeev S. G., Veikher A. A. and Goldberg I. S. Possibilities of the CHIM method for searching deep-seated gold-bearing objects[J]. Methods Techn. Explor. 1978, 84: 5~19.
    [10] Govett G. J. S. Differential secondary dispersion in transported soils and postmineralization rocks: an electrogeochemical interpretation, 1973. In: M. J. Jones (Editor), Geochemical Exploration[M]. I. M. M. Publ. 1972, pp. 81~91.
    [11] Govett G. J. S. Soil conductives assessment of an electro-chemical technique[J]. Geochemical exploration, 1974, p. 101~118.
    [12] Govett G. J. S. Detection of deeply-buried and blind deposits by measurement of H~+ and conductivity of closely-spaced surface soil samples[J]. J. Geochem. Explor., 1976, 6: 359~382.
    [13] Govett G. J. S., Goodfellow W. D. and Whitehead R. E. S. Experimental aqeous dispersion of elements around sulfides[J]. Econ. Geol., 1976, 71: 925~940.
    [14] Govett G. J. S. and Chork C. Y. Detection of deeply-buried sulphide deposits by measurement of organic carbon, hydrogen ion, and conductance in surface soils[A]. In: prospecting in Areas of Glaciated Terrain[C], Helsinki. Inst. Min. Metall., London, 1977, pp. 49~55.
    [15] Antropova L. A. Forms of occurrence of elements in dispersion haloes of ore deposits[M]. Nedra, Leningrad, 1975, p. 144.
    [16] Antropova L. V., Goldberg I. S., Voroshilov N. A., Ryss Yu. S. New methods of regional exploration for blind mineralisation: application in the USSR[J]. J. Geochem. Explor., 1992, 43: 157~166.
    [17] Voroshilov N. A., Voroshilova L. N. Primenenie termomagnitnogo geohimicheskogo metoda (TMGM) pri poiskah pudnyh metorozchdenity. V sb. "Metody interpretacii resultatov lithimicheskih poiskov". Nauka, Moscow, 1987, pp135~141(in russian).
    [18] 邱郁文.热磁地球化学找矿方法简介[J].地质科技动态,1980(4):16~18.
    [19] Milkov G. V., Chvanov B. F., Vinogradov V. N. et al. Mineral exploration technique[J]. USSR Patent No.894660, Bulletin No.48, 1981 (in Russion).
    [20] Levitski A., Filanovski B., Bourenko T., et al. A preliminary study of the diffussion sampling technique in locating buried mineralization and an oil field in southern Israel[J]. J. Geochem. Explor., 1995, 53: 73~86.
    [21] 1992.123-153.
    [22] 吴传璧.离子晕法及其方法学意义[J].地质与勘探,1997,33(5):35~40.
    [23] 高扬.泡沫塑料吸附法找金矿试验效果[J].地质与勘探,1988年第1期:49~52.
    [24] 宋磊,马祥亮.泡塑埋入法找金试验与研究[J].黄金地质科技,1989年第2期:65~70.
    [25] 潘勇飞.泡沫塑料吸附找金法的发展及对有关技术的讨论[J].黄金地质科技,1991年第3期:51~55.
    [26] 费锡铨.电提取离子法[M].北京:地质出版社,1992,122.
    [27] 罗先熔.地球电化学勘查及深部找矿[M].北京:冶金工业出版社,1996.P.235.
    [28] 谭克仁,蔡新平.吸附电提取技术野外实验研究[J].大地构造与成矿学,2000,24(2):189~192.
    [29] 张茂忠,周奇明.电吸附找矿方法寻找隐伏金矿的可行性研究[A].金矿地球物理、地球化学勘查新方法新技术论文集[C].长沙:中南工业大学出版社,1994,163~182.
    [30] 谭克仁.金矿地电化学新技术、新方法研究进展[J].黄金科学技术,2000,8(1):23~31.
    [31] 1988, 121-125.
    [32] 1987, 297(4):956-958.
    [33] 1994,338 (2): 219-221.
    [34] 费锡铨.电提取离子法在几个矿区的试验结果[J].物探与化探,1984,8(3):162~165.
    [35] 徐邦梁,费锡铨,王和平.一种新的金矿找矿法——地电化学取样测金[J].地质与勘探,1984年第10期:55~59.
    [36] Xu B., Fei X. and Wang H. Electrogeochemical extraction technique in the prospecting of buried gold deposits. In: Xie Xuejing and S. E. Jenness (Editors), Geochemical Exploration in China[J]. J. Geochem. Explor., 1989, 33: 99~108.
    [37] 罗先熔,杨晓.地电化学测量找寻隐伏矿床的研究及找矿预测[J].地质与勘探,1989,25(2):43~51.
    [38] 罗先熔.再论地球电化学测量法寻找隐伏矿床[J].桂林冶金地质学院学报,1994,14(3):295~301.
    [39] 罗先熔,段冶.我国地电提取测量法的应用现状及研究方向[J].桂林工学院学报,1995,15(1):34~39.
    [40] 罗先熔.多种新方法寻找隐伏矿的研究及效果[J].地质与勘探,1995,31(1):44~49.
    [41] 罗先熔,王卫民,张佩华.隐伏金矿地电化学异常形成机制及异常形态特征[J].有色金属矿产与勘查,1997,6(6):364~367.
    [42] 罗先熔,张学洪,张力.应用多种化探新方法寻找隐伏锑矿[J].桂林工学院学报,1997,17(1):41~47.
    [43] 罗先熔,胡云沪.云南宋家坡斑岩铜矿地电化学异常特征及机制[J].1998,18(3):245~249.
    [44] 罗先熔.地电提取法寻找贫硫化物金矿的研究[J].地质与勘探,1999,35(4):42~44.
    [45] 罗先熔,陈三明,杜建波,等.地球电化学勘查法寻找不同埋深隐伏金矿的研究[J].矿物岩石,2002,22(4):42~46.
    [46] 罗先熔,王桂琴,杜建波,等.锑矿地电化学异常特征、成景机制及找矿预测[J].地质与勘探,2002,38(2):59~62.
    [47] 刘吉敏,刘占元.地电化学勘探法在厚层覆盖区应用研究[J].物探与化探,1990,14(4):255~264.
    [48] 刘吉敏.一种新的隐伏矿勘查技术——地电化学法的现状和展望[J].物探与化探,1993,17(1):33~41.
    [49] 刘占元,刘吉敏,崔爱民.电提取过程作用条件问题讨论[J].物探与化探,1997,21(2):115~122.
    [50] 刘占元,崔爱民.电提取过程中极化现象的讨论[J].物探与化探,1998,22(3):211~215.
    [51] 刘占元,崔爱民.元素提取器周围土壤的PH值变化[J].物探与化探,1998,22(4):267~271.
    [52] 刘占元.电地球化学勘查的理论与方法[A].谢学锦,邵跃,王学求.走向21世纪矿产勘查地球化学[C].北京:地质出版社,1999,pp160~167.
    [53] 刘占元,周国华.地电化学方法技术改进的思路与进展[J].地质与勘探,2002,38(增 刊):173~177.
    [54] 李金铭,卢军.电提取法基础理论研究[J].物探与化探,1992,16(4):275~284.
    [55] 李金铭,卢军.电提取法时量曲线测量中几个问题研究[J].物探与化探,1993,17(5):368~372.
    [56] 李金铭,卢军,严良俊.地电化学提取法的理论与实验研究[J].地学前缘,1998,5(1~2):208~216.
    [57] 潘勇飞.对目前地电化学勘探法找金几个技术问题的商榷[J].黄金地质科技,1989年第1期:45~52.
    [58] 王文龙.电提取离子法中的电流问题[J].黄金地质科技,1991年第2期:63~66.
    [59] 王文龙,肖力,路彦明.电提取离子法中离子来源深度初探[J].黄金地质,1999,5(1):56~62.
    [60] 王文龙,王小牛,陈祥,等.电提取中金的配阴离子运动分析及找矿机理[J].黄金地质,2000,6(1):60~64.
    [61] 王文龙,肖力,路彦明.多电极组合电提取离子法在某金矿的应用研究[J].黄金地质,2001,7(4):52~55.
    [62] 谭克仁.部分地电提取法和吸附提取法在隐伏金矿床普查找矿勘查中的应用[J].黄金科学技术,2000,8(2):26~29.
    [63] Shmakin B. M. The method of partial extraction of metals in a constant current electrical field for geochemical exploration[J]. J. Geochm. Explor., 1985, 23: 27~33.
    [64] Smith D. B., Hoover D. B., Sanzalone R. F. Preliminary studies of the CHIM electrogeochemical method at the Kokomo Mine. Russell Gulch, Colorado[J]. J. Geochem. Explor., 1993, 46: 257~278.
    [65] Leinz R. W., Hoover D. B. The Russion CHIM method-electrically or diffussion-driven collection of ions?[J]. EXPLORE, 1993, 79 (1): 5~9.
    [66] Hamilton S. M., Baje A. F., Farrow C. E. G, et al. Multi-media geochemical sampling in areas of thick overburden: a case study[A]. In: summary of field work and other Activities 1995[C]. Ont. Geol. Surv., Misc. pap., 1995, 164, pp. 258~262.
    [67] Jackson R. G. The application of water and soil geochemistry to detect blind mineralisation in areas of thick overburden[J]. Ont. Geol. Surv., Open-File Report, 1995, 5927, 151pp.
    [68] Hoover D. B., Smith D. B., Leinz R. W. CHIM—An electrogeochemical partial extraction method: a historical review[J]. U. S. Geol. Surv. Open-File Rep., 1997, 97~92, 35pp.
    [69] Hamilton S. M. Electrochemical mass-transport in overburden: a new model to account for the formation of selective leach geochemical anomalies in glacial terrain[J]. J. Geochem. Explor., 1998, 63: 155~172.
    [70] Smee B. W. A new theory to explain the formation of soil geochmical response over deeply covered gold mineralization in arid environments[J]. J. Geochem. Explor., 1998, 61: 149~172.
    [71] Leinz R. W., Hoover D. B., Fey D. L. et al. Electrogeochemical sampling with NEOCHIM—— results of tests over buried gold deposits[J]. J. Geochem. Explor., 1998, 61: 57~86.
    [72] Sato M. and Mooney H. M. The electrochemical mechanism of sulphide self-potentials[J]. Geophysics, 1960, 25: 226~249.
    [73] Smee B. W. Laboratory and field evidence in support of the electrochemically enhanced migration of ions through glaciolacustrine sediment[J]. J. Geochem. Explor., 1983, 19: 277~304.
    [74] Malmqvist L, Kristansson K. Experimental evidence for an ascending micro-flow of geogas in the ground[M]. Earth and Planetary Science Letters, 1984, 70: 407~416.
    [75] 伍宗华,金仰芬.山东邹平铜矿床上方地气流的组分特征及赋存状态研究[J].物探与化探,1996,20(1):14~19.
    [76] 施俊法编译.金属气相迁移新机制——金属矿床气体地球化学测量新技术[M].北京:中国地质矿产信息研究院出版社,1997,43~56.
    [77] 童纯菡,李巨初.地壳内上升气流对物质的迁移及地气测量原理[J].矿物岩石,1997,17(3):83~88.
    [78] 吴传壁,施俊法.上置晕与物质的“类气相”垂向迁移[J].地学前缘,1998,5(1~2):185~194
    [79] Bajc A. F. A comparative analysis of enzyme leach and mobile metal ion selective extractions; case studies from glaciated terrain, northern Ontario[J]. J. Geochem. Explor., 1998, 61: 113~148.
    [80] 王学求.深穿透勘查地球化学[J].物探与化探,1998,22(3):166~169.
    [81] 谢学锦.战略性与战术性深穿透地球化学方法[J]。地学前缘,1998,5(2):171~183.
    [82] Bolviken B. and Logn O. An electrochemical model for element distribution around sulphide bodies[A]. In: I. L. Elliott and W. K. Fletcher (Editors), Geochemical Expoloration[C]. Elsevier, Amsterdam, 1974, pp. 631~648.
    [83] 邓涛声.关于电子导体矿物形成自然电场机理的初步研究[J].桂林冶金地质学院学报,1983年第4期:41~45.
    [84] 邓涛声.硫化矿物的稳定电位[J].桂林冶金地质学院学报,1987,7(1,2):113~118.
    [85] 仇勇海.狭义氧化还原场[A].傅良魁主编.电法勘探文集[C].北京:地质出版社,1986,154~163.
    [86] 仇勇海.金属硫化矿自然电场形成机理的探讨[J].地质与勘探,1981年第8期:47~52.
    [87] 克维亚特柯夫斯基.电法勘探(上册)[M].地质出版社,1957,94~97.
    [88] 温佩琳,仇勇海,陈白珍.地电化学基础及应用[M].中南工业大学出版社,1991,168~191。
    [89] Г.В.斯维仕尼科夫(林译).关于硫化矿床上地下水的化学成分对形成自然电场所起的作用[J].物探化探快报,1964,12:19~23.
    [90] 傅良魁.电法勘探教程[M].地质出版社,1983.
    [91] Alekseev S. G., Dukhanin A. S., Veshev S. A., Voroshilov N. A. Some aspects of practical use of geoelectrochemical methods of exploration for deep-seated mineralization[J]. J. Geochem. Explor., 1996, 56: 79~86.
    [92] Goldberg I. S. Vertical migration of elements from mineral deposits[J]. J. Geochem. Explor., 1998, 61: 191~202.
    [93] Webber GR. Efficacy of electrochemical mechanism for ion transport in the formation of geochemical anomalies[J]. J. Geochem. Explor., 1975, 4: 231~233.
    [94] 周子勇.石油层上方重金属元素的射流晕分布及其地电化学研究方法[J].地质科技情报,2001,20(4):39.
    [95] 伍宗华,古平等.隐伏矿床的地球化学勘查[M].北京:地质出版社,2000,P.178.
    [96] 蒋敬业.水化学找金方法评述[J].地质科技情报,1998,17(1):97~101.
    [97] Boyle R. W. The geochemistry of gold and its deposits[M]. Geological survey Bulletin, 1979, 280.
    [98] 邓涛声.隐伏金矿中金离子晕形成机理的探讨[J].桂林冶金地质学院学报,1991,11(2):171~175.
    [99] Talapatra A. K., Talakdar R. C., De P. K. Electrochemical technique for exploration of base-metal sulphides[J]. J. Geochm. Explor., 1986, 25: 389~396.
    [100] 王鑫春.地电化学法在四平地区的试验效果[J].地质与勘探,1987年第6期:57~59.
    [101] 伍宗华,金仰芬,黄宏库.水电化学方法寻找运积物覆盖区的金矿床[J].物探与化探,1987,11(4):251-255.
    [102] 伍宗华,金仰芬.地电化学和水电化学方法在金矿勘查中的应用[A].地质矿产部物化探研究所编.地球化学探矿实例[C].北京:地质出版社,1991,163~170.
    [103] 李江,高明海,王示梅,等.地电化学提取法在找金矿中的应用[J].地质与勘探,1989,25(1):52~54.
    [104] 王学求,聂风军.西部荒漠戈壁区大型铜镍金矿勘查评价技术及综合示范[R].廊坊:中国地质科学院地球物理地球化学研究所,2003.
    [105] 姜新强,张瑞忠,姜新德等.大尹格庄金矿床构造及控矿特征[A].林吉照主编.山东招金集团公司矿山地质论文集[C].北京:地震出版社,2001,173~180.
    [106] 康明,罗先熔,庞保成等.地电化学法在广西横县泰富金矿的应用效果[J].桂林工学院学报,2004,24(1):24~27.
    [107] 杨少平,孔牧,刘华忠等.大兴安岭森林沼泽景观区水系沉积物的地球化学特征[J].地质与勘探,2002,38(增刊):193~198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700