腺病毒侵染与TRAIL诱导宿主细胞凋亡的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TRAIL作为TNF家族成员,最显著的特征是只选择性的对肿瘤细胞具有凋亡诱导作用,而对正常的组织和细胞不具有明显的毒性效应,体内实验也表明,TRAIL能够明显抑制肿瘤细胞生长,甚至使肿瘤消退,却对宿主细胞没有损害。本室邱松波博士构建了携带人TRAIL基因的重组腺病毒ZD55-hTRAIL,该重组病毒中E1B55KD基因突变,仅能够在p53阴性的细胞中复制。体内、体外实验结果表明,ZD55-hTRAIL单独或联合化疗药物5-FU杀伤肿瘤的效果优于经典的溶瘤病毒ONYX015。为了进一步提高携带TRAIL基因的重组腺病毒治疗肿瘤的效果及其分子机理,本论文研究了腺病毒早期基因(E1A、E1B19KD、E3)与TRAIL诱导调亡之间的相互关系。这些研究将为设计更加合理有效的肿瘤治疗载体提供理论依据,同时也初步揭示了腺病毒感染与宿主细胞之间的分子机制。
     首先,我们运用一种新的细菌内同源重组的方法构建了3株非复制型重组腺病毒,Ad-CMV、Ad-E1A和Ad-TRAIL。在这3株重组腺病毒基因组中,E1、E3区完全缺失,插入了带有GFP报告基因的表达盒。外源基因TRAIL和E1A分别插入在重组病毒基因组CMV启动子下的多克隆位点中。经过E.coli BJ5183内同源重组和293细胞中的病毒包装,得到重组病毒,以应用下面的研究中。
     虽然TRAIL能有效的诱导肿瘤细胞凋亡而不诱导正常细胞凋亡,但有些肿瘤细胞系或同一肿瘤细胞系中的部分细胞对TRAIL诱导的细胞凋亡具有抗性。以往的研究显示,腺病毒早期基因E1A能够调控许多病毒和宿主细胞基因的转录表达。因此,我们探讨了E1A是否能够通过某种机制增强肿瘤细胞或正常细胞对
TRAIL (TNF α-Related-Apoptosis-Inducing-Ligand)/Apo-2 ligand was first described as a TNF-related ligand that selectively induce apoptosis of cancer cells, but not to normal cells. In addition, TRAIL has been shown to be capable of inhibiting tumor development and regression, but has minimal or no toxicity against normal tissues, as examined both in vivo. Our previous data suggested that a novel recombinant adenovirus (ZD55-hTRAIL) with E1B55 kD mutant, which can replicate in the tumor cells with the non-functional p53, alone or in combination with 5-FU has potentially clinical implication compared to the typical oncolytic ONYX-015. However, little is known about the mechanism of its actions. Here we investigated the relationship between adenovirus early genes (E1A、 E1B19KD、E3) and TRAIL-induced apoptosis. Our results may underlie the selection of the optimal adenovirus mutant as effective delivering vector for cancer therapy; and also discover that the molecular mechanism of adenovirus infection and host cell response.Firstly, three replication-deficient adenoviruses, Ad-CMV, Ad-EIA and Ad-TRAIL which all express green fluorescent protein (GFP> as marker, were generated using the AdEasy adenoviral vector system. The recombinant adenoviruses, Ad-El A and Ad-TRAIL, encode Ad5 E1A and human TRAIL gene expressed from the CMV promoter, respectively. The recombinant adenovirus, Ad-CMV, non-encoding any interest gene, was used as virus controls. All of them were confirmed by sequence and western blotting analyses, and were prepared to use for following experiments.Although TRAIL is able to induce apoptosis in the tumor cells but not in normal cells, many tumor cell lines, different cell types or partial cells of same type, were found to be resistant to TRAIL-induced apoptosis. Previous reports demonstrated that adenovirus E1A can regulate many viral genes and host cells response. Therefore, we asked whether E1A enhances tumor cells or
    sensitizes normal cells to TRAIL-induced apoptosis. Here data suggested that TRAIL obviously mediated apoptosis in HeLa cells after co-transfection with pIRES-EGFP-TRAIL and pcDNA3-El A. Though HepG-2 cancer cells were resistant to Ad-TRAIL infection in the different MOI (0, 1,10, 100), this resistance could be overcome by the co-infection with Ad-TRAIL and Ad-El A. Furthermore, TRAIL dramatically induced apoptosis of normal primary human lung fibroblast cells (P-HLF) that expressed ElA following either infection with Ad-EIA or transfection with pcDNA3-ElA. These results indicated that the possibility that the combination of ElA with TRAIL could be used in the treatment of human malignancy. However, the normal cells and tissues need to be protected from El A/TRAIL mediated apoptosis using the tumor special promoters.To determine whether there is any correlation between the sensitivity of TRAIL by ElA and basal level of TRAIL and its receptors expression in the HLF cells tested, we carried out a semiquantitative RT-PCR, Western blot and at the level of cell surface expression by flow cytometry analysis for each of them. Semiquantitative RT-PCR analysis was used to study the relative abundance of distinct TRAIL receptors mRNA in ElA treated or untreated HLF cells. The expression of ElA slightly decreased the abundance of OPG and DcRl mRNA in Ad-EIA infected and pcDNA3-ElA transfected HLF cells. DcR2 mRNA was not detected basally in treated or untreated cells. However, endogenous TRAIL mRNA and protein were not found in P-HLF cells in the presence or absence of ElA. Importantly, treatment with ElA resulted in a significant increase in DR5 mRNA and protein expression, but that of no significant change in DR4. Previous reports suggested that the abundance of membrane-binding TRAIL is indispensable for the cells killing effect of the TRAIL gene. Our results revealed that exogenous TRAIL mRNAs were dramatically expressed in ElA-transfected and ElA-infected HLF cells by semi-quantitative RT-PCR analysis. The results in this study demonstrated that the co-infection with Ad-TRAIL and Ad-EIA leaded to TRAIL protein obvious production by Western blot analysis and flow cytometry analysis. Taken together, our data may imply a novel basis that adenovirus ElA sensitizes normal cell to TRAIL-induced apoptosis.Previous studies demonstrated that the molecular mechanism of TRAIL-mediated apoptosis involved death receptor mediated signal pathway or combining with mitochondria-dependent signal pathway in some tumor cells derived from different tissues. Here we studied the signal
    pathway of ElA/TRAIL-madiated apoptosis in P-HLF cells by a series of methods involving using the dominant negative mutant, caspase inhibitors and western blot analyses. Herein data indicated that FADD is necessary for apoptosis in the co-infected P-HLF cells with Ad-TRAIL and Ad-El A, based on this apoptotic effect to be inhibited by FADD-DN containing the death domain but not the death effector domain. We found that the apoptosis of P-HLF cells co-infected with Ad-TRAIL and Ad-EIA was clearly inhibited by the specific inhibitor of caspase 8 (Z-EETD-FMK) but not by caspase 9 inhibitor (Z-LEHD-FMK), which involved procaspase 3 cleavage and activation. These results demonstrate that ElA/TRAIL-madiated apoptosis in P-HLF cells is typical death receptor-dependent pathway involvement of sufficient TRAIL, DR5 upregulation, recruitment of FADD, capase 8 and caspase 3 activation, as well as degradation of cellular proteins and DNA. Our data may provide evidences for understanding the function of adenovirus El A and TRAIL, the relationship of virus infection and host cell response.Since the induction of apoptosis early after infection would severely limit virus production and reduce or even eliminate the spread of progeny virus in the host, most viruses have evolved strategies to evade or delay early apoptosis in an attempt to allow production of high yields of progeny virus. Therefore, viruses are also known to encode products that directly block the apoptotic signal cascade. To test the hypothesis that whether enhancement of TRAIL-induced apoptosis by El A expression in the cell lines is blocked by these adenoviral proteins, we constructed the recombinant adenovirus, r3/Ad, which was a mutant of E1B55K and contained E1B19K and complete E3 region. The results shown that r3/Ad-infected HLF cells infected with Ad-El A and Ad-TRAIL at the same time, reduce the TRAIL-dependent apoptosis compared with the uninfected cells with r3/Ad. Further studies demonstrated that r3/Ad infection efficiently inhibited the Ad-TRAIL dependent apoptosis of HLF cells in the presence of El A by down-regulation of DR5 and TRAIL expression. Taken together, we speculate that the ability of adenovirus early genes (E1A, ElB19KDs E3) may regulate viral life cycle and host cell 's death or survival; TRAIL may play an important role in limiting virus infections.
引文
Aalfs JD & Kingston RE. What does 'chromatin remodeling' mean?, Trends Biochem. Sci., 2000,25:548 -555.
    Adams, J. M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 1998, 281:1322-1326.
    Adrain, C., Martin, S. J. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem. Sci., 2001, 26: 390-397.
    Afford, S., Randhawa, S. Apoptosis. Mol. Pathol. 2000, 53: 55-63.
    Alemany, R. et al. Complementary adenoviral vectors for oncolysis. Cancer Gene Ther. 1999, 6:21-25.
    Amalfitano A, Hauser MA, Hu H, et al. Production and characterization of improved adenovirusvectors with the El, E2b, and E3 gene deleted. J Virol, 1998, 72: 926-933.
    Annis, M. G. et al. Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution ofcytochrome c is a late event. Oncogene 2001,20, 1939-1952.
    Askkenazi, A., and Dixit, V. M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol., 1999, 11: 255-260.
    Ashkenazi, A., Dixit, V. M. Death receptors: signaling and modulation. Science, 1998, 281: 1305-1308
    Ashkenazi A. & Dixit V.M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 1999, 11: 255-260.
    Barker D.D. & Berk A.J. Adenovirus proteins from both EIB reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology, 1987, 156: 107-121.
    Barry, M. & McFadden, G. (Apoptosis regulators from DNA viruses. Current Opinion in Immunology 1998, 10: 422-430.
    Bayley ST and Mymryk JS. Adenovirus EIA proteins and transformation.Intl. J. Oncol., 1994, 5: 425-444.
    Benedict, C. A., Norris, P. S., Prigozy, T. I., Bodmer, J. L., Mahr, J. A., Gamett, C. T., Martinon, F., Tschopp, J., Gooding, L. R. & Ware, C. E Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2. Journal of Biological Chemistry, 2001, 276:3270-3278.
    Benedict, C., P. Norris, T. Prigozy, J. L. Bodmer, J. A. Mahr, C. Garnett, F. Martinon, J. Tschopp, L. R. Gooding, and C. F. Ware. 2001. Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factorrelated apoptosis-inducing ligand receptor-1 and -2. J. Biol. Chem. 276: 3270-3278.
    Bernard D., Quatannens B., Vandenbunder B. & Abbadie C. Rel/NF-kappaB transcription factors protect against tumor necrosis factor (TNF)-related apoptosis- inducing ligand (TRAIL)-induced apoptosis by up-regulating the TRAIL decoy receptor DcRI. J. Biol. Chem. 2001, 276: 27322-27328.
    Bernards R, Schrier PI, Houweling A, Bos JL, van der Eb A J, Zijlstra M and Melief CJ. Nature, 1983b. 305:776 - 779.
    Bischoff J.R., Kirn D.H., Williams A., Heise C., Horn S., Muna M., Ng L., Nye J.A., Sampson-Johannes A., Fattaey A., & Mccormick, F. An adenovirus mutant that replicates selectively in p53-deficient human tumor ceils. Science 1996, 274: 373-376.
    Bodmer J.L., Holler N., Reynard S., Vinciguerra P., Schneider P., Juo P., Blenis J. & Tschopp J. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat. Cell. Biol. 2000a, 2: 241-243.
    Bodmer J.L., Meier P., Tschopp J. & Schneider P. Cysteine 230 is essential for the structure and activity of the cytotoxie ligand TRAIL. J. Biol. Chem. 2000, 275: 20632-20637.
    Bonavida B, Ng CP, Jazirehi A, et al. Int J Oncol, 1999 ;15:793~802.
    Bratton, S. B., Cohen, G. M. Apoptotic death sensor: an organelle's alter ego? Trends Pharmacol. Sci., 2001, 22: 306-315.
    Bursch, W., Ellinger, A., Gerner, C., Frohwein, U., Schulte-Hermann, R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann. N. Y. Acad. Sci., 2000, 926: 11-12.
    Cai, J., Yang, J., Jones, D. P. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim. Biophys. Acta., 1998, 1366: 139-149.
    Calmeis, T., Parfiche, M., Burand, H., et al., High efficiency transformation of Tolypoeladium geodes conidiospores to phleomycin resistance. Curr. Genet. 1991, 20:309-14.
    Carlin, C. R., Tollefson, A. E., Brady, H. A., Hoffman, B. L., and Wold, W. S. Cell 1989, 57:135-144
    Cecconi, F. Apafl and the apoptotic machinery. Cell Death Differ, 1999, 6: 1087-1098.
    Chaudhary, P. M., Eby, M., Jasmin, A., Bookwalter, A., Murray, J., and Hood, L. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD dependent apoptosis and activate the NF-kB pathway. Immunity, 1997, 7:821-830.
    Cheung P, Allis CD and Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell, 2000, 103:263-271.
    Chinnadurai, G.Control of apoptosis by human adenovirus genes. Semin. Virol. 1998, 8:399—408.
    Chinnaiyan, A. M. The apoptosome: heart and soul of the cell death machine. Neoplasia, 1999, 1:5-15
    Chinnaiyan A.M., Prasad U., Shankar S., Hamstra D.A., Shanaiah M., Chenevert T.L., Ross B.D. & Rehemtulla A. Combined effect of tumor necrosis factor- related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc. Natl. Acad. Sci. USA. 2000, 97: 1754-1759.
    Chirmadurai G. Adenovirus Ela as a tumor suppressor gene. Oncogene, 1992,7:1255-1258.
    Clarke P., Meintzer S.M., Gibson S., Widmann C., Garrington T.P., Johnson G.L. & Tyler K.L. Reovirus-induced apoptosis is mediated by TRAIL. J Virol. 2000, 74: 8135-8139.
    Cook, J., A. Lewis, Jr., and C. Kirkpatrick. Adenovirus EIA Oncogene Expression in Tumor Cells Enhances Killing by TNF-Related Apoptosis-lnducing Ligand (TRAIL). Cancer Res. 1979, 39:3335.
    Cook, J. L., D. N. Ikle, and B. A. Routes. Natural killer cell ontogeny in the athymic rat. Relationship between functional maturation and acquired resistance to EIA oncogeneexpressing sarcoma cells. J. Immunol. 1995, 155:5512-5518.
    Daniel, P. T. Dissecting the pathways to death. Leukemia, 2000, 14: 2035-2044.
    Darzynkiewicz, Z., Bedner, E., Traganos, F., Murakami, T. Critical aspects in the analysis of apoptosis and necrosis. Hum. Cell, 1998, 11: 3-12.
    Debatin, K. M. Activation of apoptosis pathways by anticancer drugs. Adv. Exp. Med. Biol., 1999, 457: 237-244.
    Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes & Development 1993, 7: 546-554.
    Decaudin D, Marzo I, Brenner C, et al. Int J Oncol, 1998,12: 141-152.
    Degregori, J., Kowalik, T. & Nevins, J. R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 1995,15: 4215-4224.
    DeMaria, R. et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 1997, 277: 1652-1655.
    Deng, Y., Lin, Y. & Wu X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 2002, 16: 33-45.
    Deng, Y. & Wu, X. Peg3/Pw1 promotes p53-mediated apoptosis by inducing bax translocation from cytosol to mitochondria. Proc. Natl Acad. Sci. USA.2000, 97: 12050-12055.
    Desagher, S., Martinou, J. C. Mitochondria as the central control point of apoptosis. Trends Cell. Biol., 2000, 10: 369-377
    Deveraux QL and JC Reed. IAP family proteins-suppressors of apoptosis. Genes Dev, 1999, 13: 239-252
    DeWeese T..L, van der Poel H., Li S., Mikhak B., Drew R., Goemann M., Hamper U., DeJong R., Detorie N., Rodriguez R., Haulk T., DeMarzo A.M., Piantadosi S., Yu D.C., Chen Y., Henderson D.R., Carducei M.A., Nelson W,G. & Simons J.W. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 2001, 61: 7464-7472.
    Drocourt, D., Calmels, T., Reynes, J.P., et al., Cassette of the streptoalloleteichus hindustanus ble to phleomycin resistance. Nucleic Acids Research. 1990, 18: 4009.
    Doerfler W. The Molecular Biology of Adenoviruses. Berlin: Springer, rol1-3. Heidelberg New York (current topics in microbiology and immunology, 1983-1984, p109-111.
    Du Q, Lehavi D, Faktor O et al. Isolation of an apoptosis suppressor gene of the Spodoptera littoralis nucleopolyhedrovirus. J Virol, 1999, 73: 1278-1285.
    Duque, P.M. et al. Antitumoral effect of E1B defective adenoviruses in human malignant cells. Gene Ther. 1998, 5,286-287.
    Ekert PG, Silk J and Vaux DL. Caspase inhibitiors. Cell Death Differ, 1999, 6: 1081-1086.
    Fearnthead HO, Rodriguez JE, Govek EE, Guo OW, et al., Oncogene-dependent apoptosis is mediated by caspase-9. Proc. Natl. Acad. Sci. USA. 1998, 95: 13664-13669.
    Ferri, K. F., Kroemer, G. Organelle-specific initiation of cell death pathways. Nat. Cell. Biol., 2001, 3:E255-263
    Fesik, S.W. Insights into programmed cell death through structural biology. Cell 2000, 103, 273-282.
    Field SJ, Tsai FY, Kuo F, et al. E2F21functions in mice to pro-mote apoptosis and suppress proliferation. Cell, 1996, 85: 549-561.
    Fisher AJ, Cruz W, Zoog SJ, Schneider CL, Friesen PD. Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition. EMBO J. 1999, 18: 2031-2039.
    Frese S, Pirnia F, Miescher D, Krajewski S, Borner MM, Reed JC and Schmid RA. PG490-mediated sensitization of lung cancer cells to Apo2L/TRAIL-induced apoptosis requires activation of ERK2. Oncogene, 2003, 22: 5427-5435.
    Freytag, S.O., Rogulski, K.R., Paielli, D.L., Gilbert, J.D. & Kim, J.H. A novel three pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum. Gene Ther. 1998, .9: 1323-1333.
    Fueyo J., Gomez-Manzano C., Alemany R., Lee ES., McDonnell T.J., Mitlianga P., Shi Y.X., Levin V.A., Yung W.K., Kyritsis A.P. A mutant oncolytic adenovirus targeting the RB pathway produces anti-glioma effect in vivo. Oncogene 2000, 19: 2-12.
    Fueyo J, Gomez MC, et al. Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene, 1996, 121: 103-110
    Geske, F. J., Gerschenson, L. E. The biology of apoptosis. Hum. Pathol., 2001, 32: 1029-1038
    Gooding, L. R., Aquino, L., Duerksen-Hughes, P.J., Day, D., Horton, T.M., Yei, S.E, Wold, W.S., The E1B 19,000-molecular-weight protein of group C adenoviruses prevents tumor necrosis factor cytolysis of human cells but not of mouse cells. J. Virol. 1991a, 65: 3083-3094.
    Gooding, L. R., Elmore, L. W., Tollefson, A. E., Brady, H. A. & Wold, W. S. A 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 1988, 53: 341-346.
    Gooding, L. R., I. O. Sofola, A. E. Tollefson, P. Duerksen-Hughes, and W. S. M. Wold. The adenovirus E3-14.7K protein is a general inhibitor of tumor necrosis factor-mediated cytolysis. J. Immunol. 1990, 145: 3080-3086.
    Gooding, L. R., Ranheim, T. S., Tollefson, A. E., Aquino, L., Duerksen-Hughes, P., Horton, T. M. & Wold, W. S. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. Journal of Virology 1991, 65: 4114-4123.
    Goodrum, F. D. & Ornelles, D. A. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J. Virol. 1998, 72:9479-9490.
    Green, D. R., Reed, J. C. Mitochondria and apoptosis. Science, 1998, 281:1309-1312
    Gorziglia MI, Lapcevich C, Roy S, et al., Generation of an adenovirus vector lacking E1,E2A, E3, and all of E4 except open reading frame 3. J.Virol. 1999, 73:6048-6055
    Gross, A., J. McDonnell, and S. Korsmeyer. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999, 13:1899-1911.
    Guozhou Xu, Rebecca L. Rich, Clemens Steegbom, Tongpil Min, Yihua Huang, David G. Myszka, and Hao Wu. Mutational Analyses of the p35-Caspase Interaction. J. Biol. Chem. 2003, 278: 5455-5461.
    Gupta, S. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci., 2001, 69:2957-2964
    Haaskogan DA, Kogan SC, Levi D, et al. Inhibition of apoptosis by the retinoblastoma gene product. EMBO J, 1995, 14: 461-472.
    Hacki, J. et al. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 2000, 19:2286-2295.
    Hallenbeck, P.L. et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum. Gene Ther. 1999, 10: 1721-33.
    Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell 2000, 100: 57-70.
    Haunstetter, A., Izumo, S. Toward antiapoptosis as a new treatment modality. Circ. Res., 2000, 86: 371-376.
    Hawkins, C. J., et al. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J. Biol. Chem. 2000, 275: 27084-27093.
    Heise C., Hermiston T., Johnson L., Brooks G., Sampson-Johannes A., Williams A., Hawkins L., & Kirn D. An adenovirus E1A mutant that demonstrates potent and selective antitumorai efficacy. Nature Med.2000, 6:1134-1139.
    Henkart, P. A., Williams, M. S., Zacharchuk, C. M., Sarin, A. Do CTL kill target cells by inducing apoptosis? Semin. Immunol. 1997, 9:135-144
    Horwitz M S. 1990. Adenoviridae and their replication. In Virology, 2nd ed. Field BN, Knipe DM (eds).New York: Raven Press, 1679-1721
    Hu W.H., Johnson H. & Shu H.B.Tumor necrosis factor-related apoptosis- inducing ligand receptors signal NF-kappaB and JNK activation and apoptosis through distinct pathways. J. Biol. Chem 1999, 274: 30603-30610.
    Hu W.H., Johnson H. & Shu H.B. Activation of NF-kappaB by FADD, Casper, and caspase-8. J. Biol. Chem. 2000, 275: 10838-10844.
    Ikeda MA, Jakoi L, Nevins JR. A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc Natl Acad Sci USA, 1996,93:3215-3220.
    Israels, L. G., Israels, E. D. Apoptosis. Stem Cells, 1999, 17:306-313
    Jansen, B. et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med 1998, 4, 232-234.
    Jansen, B. et al. Bcl-2 antisense plus dacarbazine therapy for malignant melanoma. Proc. Am. Assoc. Cancer Res. Conf. Programmed Cell Death Regul. A59 (2000).
    Jeremias, I., I. Herr, T. Boehler, and K.-M. Debatin. TRAIL/Apo-2- ligand-induced apoptosis in human T cells. Eur. J. Immunol. 1998, 28:143-152.
    Jo M., Kim T.H., Seol D.W., Esplen J.E., Dorko K., Billiar T.R. and Strom S.C. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med.2000, 6: 564-567.
    Jones N. Curr. Top. Microbiol. Transcriptional modulation by the adenovirus EIA gene. Immunol., 1995, 199, 59-80.
    Joza, N., Kroemer, G., Penninger, J. M. Genetic analysis of the mammalian cell death machinery. Trends Genet. 2002, 18: 142-149.
    Kagawa S., He C., Gu J., Koch P., Rha S.J., Roth J.A., Curley S.A., Stephens L.C. & Fang B. Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res 2000, 61: 3330-3338.
    Kamita, S. G., K. Majima, and S. Maeda. Identification and characterization of the p35 gene of Bombyx mori nuclear polyhedrosis virus that prevents virus-induced apoptosis. J.Virol. 1993, 67:455-463
    Katsikis, P. D., M. E. Garcia-Ojeda, J. F. Torres-Roca, I. M. Tijoe, C. A. Smith, L. A. Herzenberg, and L. A. Herzenberg. Interleukin-1 beta converting enzyme-like protease involvement in Fas-induced and activationinduced peripheral blood T cell apoptosis in HIV infection. TNF-related apoptosis-inducing ligand can mediate activation-induced T cell death in HIV infection. J. Exp. Med. 1997, 186:1365-1372.
    Kaufman, R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999, 13, 1211-1233.
    Kayagaki N., Yamaguchi N., Nakayama M., Eto H., Okumura K. & Yagita H. Type Ⅰ interferons (IFNs) regulate tumor necrosis factor-related apoptosis- inducing ligand (TRAIL) expression on human T cells: A novel mechanism for the antitumor effects of type Ⅰ IFNs. J. Exp. Med. 1999, 189: 1451-60.
    Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J, Fox JA. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy pharmacokinetics, and safety. J. Pharrnacol. Exp. Ther. 2001,299:31-38.
    Kenyon, D. J., J. Dougherty, and K. Raska, Jr. Tumorigenicity of adenovirus-transformed cells and their sensitivity to tumor necrosis factor and NK/LAK cell cytolysis. Virology1991, 180: 818.
    Kerr. J. F. R., Wyllie, A.H., Currie, A. R. Apoptosis: a basic biological phenoma with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26:239-257
    Khoobyarian, N., Barone, F., Sabet, T., El-Domeiri, A.A. & Das Gupta, T.K. Inhibition of melanoma growth in hamsters by type-2 adenovirus. J. Surg. Oncol. 1975, 7:421-425.
    Kim KB, Choi YH, Kim IK, Chung CW, Kim BJ, Park YM, Jung YK. Potentiation of Fas- and TRAIL-mediated apoptosis by IFN-gamma in A549 lung epithelial cells: enhancement of caspase-8 expression through IFN-response element. Cytokine. 2002, 21 ;20:283-288.
    Kim M.R., Lee J.Y., Park M.T., Chun Y.J., Jang Y.J., Kang C.M., Kim H.S., Cho C.K., Lee Y.S., Jeong H.Y. & Lee S.J. Ionizing radiation can overcome resistance to TRAIL in TRAIL-resistant cancer cells. FEBS Lett.2001, 505: 179-184.
    Kischkel F.C., Lawrence D.A., Chuntharapai A., Schow P., Kim K.J. & Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000, 12:611-620.
    Knight M.J., Riffkin C.D., Muscat A.M., Ashley D.M. & Hawkins C.J. Analysis of FasL and TRAIL induced apoptosis pathways in glioma cells. Oncogene 2001, 20: 5789-5798.
    Konishi I, Kuroda H. Mandai M. Gonadotropins and Development of Ovarian Cancer. Oncology, 1999; 57:45~48
    Kroemer, G. Cytochrome c. Curr. Biol., 1999, 9:468
    Kroemer, G., Reed, J. C. Mitochondrial control of cell death. Nat. Med., 2000, 6:513-519
    Kuang A.A., Diehl G.E., Zhang J. & Winoto A. FADD is required for DR4- and DR5-mediated apoptosis: lack of trail-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J. Biol. Chem. 2000, 275: 25065-25068.
    Kuan, N. K., Passaro, E. Jr. Apoptosis: programmed cell death. Arch. Surg., 1998, 133: 773-775
    Kuivinen, E., B. L. Hoffman, P. A. Hoffman, and C. R. Carlin. Structurally related class Ⅰ and class Ⅱ receptor protein tyrosine kinases are down-regulated by the same E3 protein coded for by human group C adenoviruses. J. Cell Biol. 1993, 120: 1271-1279.
    Kumar, S., Colussi, P. A. Prodomains--adaptors--oligomerization: the pursuit of caspase activation in apoptosis. Trends Biochem. Sci., 1999, 24: 1-4.
    Kushner DB and Ricciardi RP. Reduced phosphorylation of p50 is responsible for diminished NF-kappaB binding to the major histocompatibility complex class Ⅰ enhancer in adenovirus type 12-transformed cells. Mol. Cell. Biol., 1999,19, 2169-2179.
    Ko LJ, Prives C. P53 puzzle and paradigm. Genes Dev, 1996,10: 1054-1072.
    Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer [see comments]. Nat Med 2000, 6:879-85.
    Lane D.P. Exploiting the p53 pathway for cancer diagnosis and therapy. Br. J. Cancer1999, 80[Suppl 1]: 1-5.
    Lassus E, Opitz-Araya X., Lazebnik Y. Requirement for Caspase-2 in Stress-lnduced Apoptosis Before Mitochondrial Permeabilization. Science, 2002, 297:1352-1354.
    Lawrence D., Shahrokh Z., Marsters S., Achilles K., Shih D., Mounho B., Hillan K., Totpal K., DeForge L., Schow E, Hooley J., Sherwood S., Pai R., Leung S., Khan L., Gliniak B., Bussiere J., Smith C.A., Strom S.S., Kelley S., Fox J.A., Thomas D., Ashkenazi A. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Med. 2001, 7:383-385.
    LeBlanc, H. et al. Tumor cell resistance to death receptor induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nature Med. 2002, 8, 274-281.
    LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 2003, 10:66-75.
    Lee J.W., Hampl M., Albert P., And Fine H.A. Antitumor activity and prolonged expression from a TRAIL-expression adenoviral vector. Neoplasia 2002, 4:312-323.
    Leverkus M., Walczak H., McLellan A., Fries H.W., Terbeck G., Brocker E.B. & Kampgen E. Maturation of dendritic cells leads to up-regulation of cellular FLICE-inhibitory protein and concomitant down-regulation of death ligand-mediated apoptosis. Blood 2000, 96:2628-2631.
    Li, H., Yuan, J. Deciphering the pathways of life and death. Curr. Opin. Cell. Biol., 1999, 11: 261-266
    Li, H., Zhu, H., Xu, C. J., Yuan, J. Clearage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998, 94: 491-501.
    Li, Y., Kang, J., Friedman, J., Tarassishin, L., Ye, J., Kovalenko, A., Wallach, D., Horwitz, M.S., 1999. Identification of a cell protein (FIP-3) as a modulator of NF-kappaB activity and as a target of an adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis. Proc Natl Acad Sci. 1999, 96, 1042-1047.
    Lill NL, Grossman SR, Ginsberg D, DeCaprio JA and Livingston DM. p300/CBP/p53 interaction and regulation of the p53 response. Nature, 1997, 387:823-827.
    Lin T., Gu J., Zhang L., Huang X., Stephens L.C., Curley S.A. & Fang B. Targeted expression of green fluorescent protein/tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effects on primary human hepatocytes. Cancer Res.2002a, 62: 3620-3625.
    Lin T., Huang X., Gu J., Zhang L., Roth J.A., Xiong M., Curley S.A., Yu Y., Hunt K.K. & Fang B. Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene 2002b, 21: 8020-8028.
    Lin Y., Devin A., Cook A., Keane M.M., Kelliher M., Lipkowitz S. & Liu Z.G. The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase. Mol. Cell Biol. 2000, 20: 6638-6645.
    MacCorkle, R. A., Freeman, K. W., Spencer, D. M. Syathetic activation of caspases: artificial death switches. Proc. Natl. Acad. Sci. USA, 1998, 95:3655-3660
    Mahr, J. A., and L. R. Gooding. Immune evasion by adenoviruses. Immunol. Rev. 1999, 168:121-130.
    Makin, G., Dive, C. Modulating sensitivity to drug-induced apoptosis: the future for chemotherapy? Breast Cancer Res., 2001, 3:150-153.
    McConkey, D. J. Biochemical determinants of apoptosis and necrosis. Toxicol. Lett., 1998, 99: 157-168.
    McKenna, S. L., McGowan, A. J., Cotter, T. G. Molecular mechanisms of programmed cell death. Adv. Biochem. Eng. Biotechnol., 1998, 62: 1-31.
    McNees, A. M., C. T. Garnett, and L. R. Gooding. The adenovirus E3 RID complex protects some cultured human T and B lymphocytes from Fas-induced apoptosis. J. Virol. 2002, 76:9716-9723.
    Mehmet, H. Caspases find a new place to hide. Nature, 2000, 403:29-30
    Meier, P., et al.The Drosophila caspase Dronc is regulated by DIAP1. EMBO J. 2000, 19:598-611
    Miller, L. K. Baculovirus interaction with host apoptotic pathways. Journal of Cellular Physiology 1997, 173:178-182.
    Motoi, F. et al. Effective gene therapy for pancreatic cancer by cytokines mediated by restricted replication-competent adenovirus. Hum. Gene Ther.2000, 11,:223-235.
    Mymryk JS and Smith MM. (1997). Influence of the adenovirus 5 E1A oncogene on chromatin remodelling.Biochem. Cell. Biol.,1997, 75:95-102.
    Pestell RG, Albanese C, Lee RJ, Watanabe G, Moran E, Johnson J and Jameson JL. Cell Growth Differ. 1996, 7:1337-1344.
    Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankerner, B. A., Yuan, J.Y. Caspase-12 mediates endoplusmic reticulum-specific apoptosis and cytotoxicity by comyloid-β. Nature, 2000, 403:98-103
    Nakano, H., Shinobara, K. X-ray-induced cell death: apoptosis and necrosis. Radia Res., 1994,140:1
    Nemunaitis J., Ganly I., Khuri E, Arseneau J., Kuhn J., McCarty T., Landers S., Maples P., Romel L., Randlev B., Reid T., Kaye S. & Kirn D. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: phase Ⅱ trial. Cancer Res 2000,60: 6359-6366.
    Nagata, S. Apoptosis by death factor. Cell 1997, 88:355-365.
    Nemunaitis J., Khuri F., Ganly I., Arseneau J., Posner M., Vokes E., Kuhn J., McCarty T., Landers S., Blackburn A., Romel L., Randlev B., Kaye S. & Kirn D. Phase Ⅱ trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol. 2001,19: 289-298.
    Nicholson, D.W. From bench to clinic with apoptosis-based therapeutic agents. Nature, 2000, 407: 810-816.
    Nicotera, P., Leist, M., Ferrando-May, E. Apoptosis and necrosis: different execution of the same death. Biochem. Soc. Symp., 1999, 66: 69-73.
    Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science2000, 288:1053-1058.
    Orlinick, J. R., Chao, M. V. TNF-related ligands and their receptors. Cell Signal, 1998, 10: 543-551.
    Oshima K., Yanase N., Ibukiyama C., Yamashina A., Kayagaki N., Yagita H. & Mizuguchi J. Involvement of TRAIL/TRAIL-R interaction in IFN-alpha-induced apoptosis of Daudi B lymphoma cells. Cytokine 2001,14:193-201.
    Ozoren N.and El-Deiry W.S. Defining Characteristics of Types Ⅰ and Ⅱ Apoptotic Cells in Response to TRAIL. Neoplasia 2004, 4:551-557.
    Ozoren N., Kim K., Burns T.F., Dicker D.T., Moscioni A.D. & El-Deiry W.S. The caspase 9 inhibitor Z-LEHD-FMK protects human liver cells while permitting death of cancer cells exposed to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res.2000, 60: 6259-6265.
    Pan G., O'Rourke K., Chinnaiyan A.M., Gentz R., Ebner R., Ni J. & Dixit V.M. The receptor for the cytotoxic ligand TRAIL. Science 1997,276:111-113.
    Patil, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol.2001, 13, 349-356.
    Pei Z et al Characterization of the apoptosis suppressor protein P49 from the Spodoptera littoralis nucleopolyhedrovirus. J. Biol. Chem. 2002, 277: 48677-84.
    Perez, L., Tiraly, G., Kallerhoff, J., et al., Phleomycin resistance as a dominant marker for plant cell transformation. Plant Mol. Biol., 1989, 13:365-73.
    Peter, M. E., Scaffidi, C., Medema, J. P., Kischkel, F., Krammer, P. H. The death receptors. Results Probl Cell Differ. 1999, 23: 25-63.
    Peter, M.E., Kischkel, F.C., Hellbardt, S., Chirmaiyan, A.M., Krammer, P.H., Dixit, V.M., Deathsignals and diseases, 1996. Cell Death Differ 3,161-170.
    Pinkoski, M. J., Brunner, T., Green, D. R., Lin, T. Fas ligand in gut and liver. AJP-Gastro Liver phys., 2000, 218: 354-366.
    Pitti R.M., Marsters S.A., Ruppert S., Donahue C.J., Moore A. & Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 1996, 271: 12687-12690.
    Qin J.Z., Chaturvedi V., Bonish B. & Nickoioff B.J. Avoiding premature apoptosis of normal epidermal cells. Nature Med. 2001,7: 385-386.
    Qiu S., Ruan H., Pei Z., Hu B., Lan P., Wang J., Zhang Z., Gu J., Sun L., Qian C., Liu X., Qi Y., Combination of gene-virotherapy (Zd55-hTRAIL) and chemotherapy (5-FU) enhances antitumor and oncolytic efficacy in malignant colorectal carcinoma cancer. Jounal of interferon and cytokine research, 24(3): 219-230, 2004.
    Querido E, Teokoro J G, Branton PE. Accumulation of p53 induced by adenovirus E1A proteins requires regions involved in the stimulation of DNA synthesis. J Virol, 1997, 71: 3526-3533.
    Qu X., Qi Y., Qi B. Generation of multiple mRNA transcripts from the novel human apoptosis-inducing gene hap by alternative polyadenylation utilization and the translational activation function of 3' untranslated region. Arch. Biochem. Biophys, 2002, 400:233-244
    Raffray, M., Cohen, G. M. Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death? Pharmacol. Ther., 1997, 75:153-177
    Raj K., Ogston P. & Beard P. Virus-mediated killing of cells that lack p53 activity. Nature 2001, 412: 914-917.
    Rancourt, C. et al. Interleukin-6 modulated conditionally replicative adenovirus as an antitumor/cytotoxic agent for cancer therapy. Clin. Cancer Res. 1999, 5: 43-50.
    Rao, L., Debbas, M., Sabbatini, P., Hockenbery, D., Korsmeyer, S., and White, E. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc. Natl. Acad. Sci. 1992, 89: 7742-7746.
    Raper SE, Haskal ZJ, Ye X et al., Selective gene transfer into the liver of non-human primates with E1-deleted, E2A-defective, or E1-E4 deleted recombinant adenoviruses. Hum Gene Ther, 1998, 9: 671-679.
    Reed, J. C. Bcl-2 family proteins. Oncogene 1998, 17: 3225-3236.
    Rippo, M. R. et al. Ganglioside GD3 directly targets mitochondria in a Bcl-2 controlled fashion. FASEB J. 2000, 14: 2047-2054.
    Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca~(2+) responses. Science, 1998, 280:1763-1766.
    Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 1997, 57, 2559-2563.
    Roth W and Reed JC, Apoptosis and cancer: When BAX is TRAILing away. Nat. Med. 2002, 3:216-218.
    Routes, J., Ryan, S., Clase, A., Miura, T., Kuhl, A., Potter, T., and Cook J. E1A Oncogene Expression in Tumor Cells Enhances Killing by TNF-Related Apoptosis Inducing Ligand (TRAIL). J. Immunol. 2000, 165: 4522-4527.
    Rowe WP, Huebner RJ, Gilmore LK et al. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exper Boil Med, 1953, 84: 570-583.
    Roy. S, Nicholson, D. W. Cross-talk in cell death signaling. J. Exp. Med., 2000, 192: 21-25.
    Sabbatini, P., Han, J., Chiou, S.K., Nicholson, D. W., and White, E. Interleukin 1 beta converting enzyme-like proteases are essential for p53-mediated transcriptionally dependent apoptosis. Cell Growth Differ. 1997, 8: 643-653.
    Sabelko-Downes, K., and J. H. Russell. The role of fas ligand in vivo as a cause and regulator of pathogenesis. Curr. Opin. Immunol. 2000, 12:330-335.
    Salvesen, G. S., Dixit, V. M. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA., 1999, 96:10964-10967
    Salvesen, G., Dixit, V.M., Caspases: intracellular signaling by proteolysis. Cell 1997, 91: 443-446.
    Salvesen, G. S., Renatus, M. Apoptosome: the seven-spoked death machine. Dev. Cell, 2002, 2: 256-257
    Sambrook, J., Fristch, E.F., Maniatis, Y., Molecular Cloning: A Laboratory Manual, second ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 1989.
    Samuilov, V. D., Oleskin, A. V., Lagunova, E. M. Programmed cell death. Biochemistry, 2000, 65: 873-887
    Sanchez PR, Quintanilla M , Cano A , et al. Carcinoma cell lines become sensitive to DNA-damaging agents by the expression of the adenovirus E1A gene. Oncogene, 1996, 13: 1083-1092.
    Sarnow P, Ho YS,Williams J and Levine AJ. Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell, 1982, 28: 387-394.
    Sartorius, U., Schmitz, I., Krammer, P. H. Molecular mechanisms of death-receptor-mediated apoptosis. Chembiochem. 2001, 2: 20-29.
    Sauthoff, H., Heitner, S., Rom, W.N. & Hay, J.G. Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum.Gene Ther.2000, 11: 379-388.
    Sayers T.J., Brooks A.D., Koh C.Y., Ma W., Seki N., Raziuddin A., Blazar B.R., Zhang X., Elliott P.J. & Murphy W.J.The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 2003, 102: 303-310.
    Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998, 17: 1675-1687.
    Schiedner, Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet, 1998,18: 180-183.
    Schnieder, P., Thome, M., Burns, K., Bodmer, J. L., Hofman, K., Kataoka, T., Holler, N., and Tschopp, J. TRAIL receptors 1(DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kB. Immunity, 1997, 7:831-836.
    Schlagbauer-Wadl, H. et al. Bcl-2 antisense oligonucleotides (G3139) inhibit Merkel cell carcinoma growth in SCID mice. J. Invest. Dermatol.2000, 114, 725-730.
    Schrier PI, Bemards R, Vaessen RT, Houweling A and van der Eb AJ. Expression of class Ⅰ major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature, 1983, 305: 771-775.
    Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S., and Peter, M. E. Apoptosis signaling by death receptors. Eur. J. Biochem., 1998, 254: 439-459.
    Screaton, G., & X.-N. Xu. T cell life and death signalling via TNFreceptor family members. Curr. Opin. Immunol. 2000, 12:316-322.
    Sedger, L., D. Shows, R. Blanton, J. Peschon, R. Goodwin, D. Cosman, &S. Wiley. IFN-γ mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J. Immunol. 1999, 163: 920-926.
    Seol J.Y., Park K.H., Hwang C.I., Park W.Y., Yoo C.G., Kim Y.W., Han S.K., Shim Y.S. & Lee C.T. Adenovirus-TRAIL can overcome TRAIL resistance and induce a bystander effect. Cancer Gene Ther.2003, 10: 540-548.
    Serrone L., Horsey P. The chemoresistance of human malignant melanoma. Melanoma Res. 1999; 9:51~58
    Shao RP, Karunagaran D, Zhou BH, et al. Inhibition of nuclear factor-κ B activity is involved in E1A mediated sensitization of radiation-induced apoptosis. J Biol Chem. 1997, 272: 32739-32742
    Sheikh, M. S., and Fomace, A. J., Jr. Death and decoy receptors in p53-mediated apoptosis. Leukemia (Baltimore), 2000, 14:1509-1513.
    Shenk T. In: Fields Virology, 3rd edn., Fields BN, Knipe DM, Howley PM et al. (eds). Lippincott-Raven Publishers: Philadelphia, pp. 2111-2148. 1996.
    Shin E.C., Ahn J.M., Kim C.H., Choi Y., Ahn Y.S., Kim H., Kim S.J. & Park J.H. IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway. Int. J. Cancer 2001,93: 262-268.
    Shinoura, N. et al. Highly augmented cytopathic effect of a fiber-mutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Res.1999, 59:3411-3416.
    Shisler, J., Yang, C., Walter, B., Ware, C., Gooding, L., The adenovirus E3-10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis. J. Virol.1997, 71, 8299-8306.
    Siman, R., Hood, D. G., Thinakaran, G., Neumar, R. W. Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons. Effects of an Alzheimer's dissase-linked preseneilin-1 knock-in mutation. J. Biol. Chem., 2001, 276: 44736-44743.
    Simonet W.S., Lacey D.L., Dunstan C.R., Kelley M., Chang M.S., Luthy R., Nguyen H.Q., Wooden S., Bennett L., Boone T., Shimamoto G., DeRose M., Boyle W.J., et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997, 89:309-319.
    Smirnov DA, Hou S, Liu X, Claudio E, Siebenlist UK and Ricciardi RP. Coup-TFII is up-regulated in adenovirus type 12 tumorigenic cells and is a repressor of MHC class Ⅰ transcription. Virology 2001, 284:13-19.
    Smith, R.R., Huebner, R.J., Rowe, W.P., Schatten, W.F. & Thomas, L.B. Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer1956, 9:1211-1218.
    Sohn B.H., Moon H.B., Kim T.Y., Kang H.S., Bae Y.S., Lee K.K. & Kim S.J. Interleukin-10 up-regulates tumour necrosis factor alpha related apoptosis-inducing ligand (TRAIL) gene expression in mammary epithelial cells at the involution stage. Biochem. J. 2001, 360:31-38.
    Somasundaram K and El-Deiry WS. Inhibition of p53-mediated transactivation and cell cycle arrest by E1 A through its p300/CBP-interacting region. Oncogene, 1997, 14:1047-1057.
    Song, Z., Steller, H. Death by design: mechanism and control of apoptosis. Trends Cell. Biol., 1999, 9: 49-52.
    Sprick M.R., Weigand M.A., Rieser E., Rauch C.T., Juo P., Blenis J., Krammer P.H. & Walczak H. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 2000,12: 599-609.
    Steele R.J., Thompson A.M., Hall P.A., Lane D.P. The p53 tumour suppressor gene. Br. J. Surg. 1998, 85: 1460-1467.
    Stoka, V. et al. Lyosomal protease pathways to apoptosis: cleavage of bid, not pro-caspase, is the most likely route. J. Biol. Chem. 2001, 276, 3149-3157.
    Strasser, A., O'Connor, L., Dixit, V. M. Apoptosis signaling. Annu. Rev. Biochem., 2000, 69: 217-245
    Strater, J., Moller, P. Expression and function of death receptors and their natural ligands in the intestine. Ann. N. Y. Acad. Sci., 2000, 915: 162-172.
    Su, F., Schneider, R.J., Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc. Natl. Acad. Sci. 1997, 94:8744-8749.
    Suliman A et al Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 2001,20:2122-33.
    Tagarni, S., Eguchi, Y., Kinoshita, M., Takeda, M. & Tsujimoto, Y. A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene 2000, 19:5736-5746.
    Teodoro J G, Shore GC, Branton PE. Adenovirus E1A proteins induced apoptosis by both p53-independent and p532dependent mechanisms. Oncogene, 1995, 11: 467-474.
    Thornberry, N. A., Lazebnik, Y. Caspases: enemies within. Science, 1998, 281: 1312-1326.
    Thompson CB, Apoptosis in pathogenesis and treatment of disease. Science, 1995, 267:1465-1462.
    Tollefson, A. E., Stewart, A. R., Yei, S. P., Saha, S. K., and Wold, W. S. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus form a complex and function together to down-regulate the epidermal growth factor receptor. J. Virol. 1991,65:3095-3105.
    Toilefson, A.E., Hermiston, T.W., Lichtenstein, D.L., Colle, C.F., Tripp, R.A., Dimitrov, T., Toth, K., Wells, C.E., Doherty, P.C., Wold, W.S., Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature 1998, 392, 726-730.
    Trabzuni D., Famuiski K.S. & Ahmad M. Functional analysis of tumour necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL): cysteine-230 plays a critical role in the homotrimerization and biological activity of this novel tumoricidal cytokine. Biochem J. 2000,350: 505-510.
    Truneh A., Sharma S., Silverman C., Khandekar S., Reddy M.P., Deen K.C., McLaughlin M.M., Srinivasula S.M., Livi G.P., Marshall L.A., Alnemri E.S., Williams W.V. & Doyle M.L. Temperature-sensitive differential affinity of TRAIL for its receptors. J. Biol. Chem. 2000, 275: 23319-23325.
    Ueno NT, Hung MC, Zhang S, et al. Phase 1 E1A gene therapy in patients with advanced breast and ovarian cancers. Proc AACR. 1998,39: 360.
    Uil TG, Seki T, Dmitriev I, Kashentseva E, Douglas JT, Rots MG, Middeldorp JM, Curiel DT. Generation of an adenoviral vector containing an addition of a heterologous ligand to the serotype 3 fiber knob. Cancer Gene Ther. 2003, 10: 121-124.
    Verheij, M., Bartelink, H. Radiation-induced apoptosis. Cell Tissue Res., 2000, 301: 133-142
    Verma, I. M. and Somia, N. Gene therapy - promises, problems and prospects. Nature 2001, 389: 239-242.
    Vickers TA, Griffith MC, Ramasamy K, Risen LM, Freier SM. Inhibition of NF-kappa B specific transcriptional activation by PNA strand invasion. Nucleic Acids Res. 1995, 23: 3003-8
    Vidalain, P., O. Azocar, B. Lamouille, A. Astier, C. Rabourdin-Combe, and C. Servet-Delprat. Measles virus induces functional TRAIL production by human dendritic cells. J. Virol. 2000, 74: 556-559.
    Vincenz, C. Death receptors and apoptosis. Deadly signaling and evasive tactics. Cardiol. Clin., 2001, 19: 31-43
    Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 2000, 16: 307-310.
    Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 2001, 13: 389-400.
    Walczak H., Miller R.E., Ariail K., Gliniak B., Griffith T.S., Kubin M., Chin W., Jones J., Woodward A., Le T., Smith C., Smolak P., Goodwin R.G., Rauch C.T., Schuh J.C. & Lynch D.H. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 1999,5: 157-163.
    Walker, T. A., B. A. Wilson, A. M. Lewis, Jr., and J. L. Cook. E1A Oncogene Induction of Cytolytic Susceptibility Eliminates Sarcoma Cell Tumorigenicity. Proc. Natl. Acad. Sci. USA 1991,88: 6491-6495.
    Wang CY, Cusack JC, Liu R, et al. Control of inducible chemoresistance: enhanced antitumor therapy through increased apoptosis by inhibition of NF-kappa B. Nat Med. 1999, 5: 412~417.
    Warner, H. R. Apoptosis: a two-edged sword in aging. Anticancer Res., 1999, 19: 2837-2842.
    Waters, J. S. et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J. Clin. Oncol. 2000, 18: 1812-1823.
    Wei, M.C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001,292: 727-730.
    Werthman PE, Drazan KE. p53 Mutation in Bladder Cancer Patients in Japan and Inhibition of Growth by in Vitro Adenovirus-Mediated Wild-Type p53 Transduction in Bladder Cancer Cells. et al. J-Urol. 1996,155: 753-756.
    White E. Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene. 2001,20: 7836-46.
    Wildner, O., Blaese, R.M. & Morris, J.C. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res.1999, 59: 410-413.
    Wiley S.R., Schooley K., Smolak P.J., Din W.S., Huang C.P., Nicholl J.K., Sutherland G.R. & Smith T.D. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995, 3: 673-682.
    White, E., Regulation of apoptosis by adenovirus E1A and E1B oncogenes. Semin. Virol. 1995, 8: 505-513.
    Wold, W. S. M., and A. E. Tollefson. Adenovirus E3 proteins: 14.7K, RID, and gp19K inhibit immune-induced cell death; adenovirus death protein promotes cell death. Semin. Virol. 1998, 8: 515-523.
    Wold, W. S. M., K. Doronin, K. Toth, M. Kuppuswamy, D. L. Lichtenstein, and A. E. Tollefson. Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic. Curr. Opin. Immunol. 1999, 11:380-386.
    Yeh, W. C., Pompa, J. L., McCurrach, M. E,, Shu, H. B., Elia, A. J., Shahinian, A., Ng, M., Wakeham, A., Khoo, W., Mitchell, K., El-Deiry, W. S., Lowe, S. W., Goeddel, D. V., and Mak, T. W. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998, 279: 1954-1958.
    Yew PR and Berk AJ. Inhibition of p53 transactivation required for transformation by adenovirus early 1 B protein. Nature, 1992, 357: 82-85.
    Yoo GH, Ensley J, Jacobs J, et al. Intratumoral E1A gene therapy for patients with unresectable and recurrent head and neck cancer. Proc AACR. 1998, 39: 322-324.
    Yuan, J., Yankner, B. A. Apoptosis in the nervous system. Nature, 2000, 407: 802-809.
    Yu D.C., Chen Y., Seng M., Dilley J. & Henderson D.R. The addition ofadenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res. 1999b. 59: 4200-4203.
    Yu D.C., Sakamoto G.T. & Henderson D.R. Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replicationcompetent adenovirus for prostate cancer therapy. Cancer Res. 1999a, 59: 1498-1504.
    Yu DH, Hung MC. The Her22/neu gene in human cancer [A]. In :Molecular basis of oncology[M]. E J Freirech ,S. A. Strass (Eds). Blackwell Science Inc. 1995: 131~162.
    Yu, J., Zhang, L., Hwang, P. M., Kinzler, J. W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 2001,7, 673-682.
    Yu K.Y., Kwon B., Ni J., Zhai Y., Ebner R. & Kwon B.S.. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT mediated apoptosis. J. Biol. Chem. 1999, 274: 13733-13736.
    Zamzami, N., Brenner, C., Marzo, I., Susin, S. A., Kroemer, G. Subcellular and submitochondrial mode of action of Bcl-2-1ike oncoproteins. Oncogene, 1998, 16: 2265-2282.
    Zhang, J.F. et al. Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc. Natl. Acad. Sci. USA 1996, 93:4513-4518.
    Zimmermann, K. C., Green, D. R. How cells die: apoptosis pathways. J. Allergy Clin. Immunol., 2001, 108: 99-103.
    Zoog,S.J., Bertin,J. and Friesen, P.D. Caspase inhibition by baculovirus P35 requires interaction between the reactive site loop and the β-sheet core. J. Biol. Chem., 1999, 274, 25995-26002.
    Zoog, S. J., Schiller, J. J., Wetter, J. A., Chejanovsky, N., Friesen,P. D. Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J. 2002, 21: 5130-5140.
    Zou W., Lou C., Zhang Z., Liu J., Gu J., Pei Z., Qian C. & Liu X. A novel oncolytic adenovirus targeted to telomerase activity in cancer cells with potent antitumroal efficacy. Oncogene 2003, 24: 1-8.
    Zylka, M.J., Schnapp, B.J., Optimized filter set and viewing conditions for the S65T mutant of GFP in living cells. Biotechniques. 1996, 220: 224-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700