微/纳米聚苯胺空心结构的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料起初被认为是不导电的,直到导电聚乙炔的出现,这一概念才得以转变。按电导率的高低可把材料分为超导体、导体、半导体和绝缘体四种类型。而导电高分子材料的电导率,可以跨越导体和绝缘体。导电高分子材料的电导率范围跨度如此之大,是其他金属材料和无机非金属材料无法比拟的,它们已经成为科学技术和经济建设中的重要材料。随着聚苯胺导电性能的发现,由于其合成方法简便、化学稳定性好、可方便的进行掺杂与解掺杂等特性,被认为是最有可能进行大规模应用的结构型导电高分子。然而,聚苯胺分子结构中有大量的苯式结构和醌式结构,这些结构使得聚苯胺分子呈刚性,因而聚苯胺被认为是不溶解不熔融的,这便极大地限制了聚苯胺的应用范围。为了克服聚苯胺加工性能差的缺点,人们制备了各种形貌的聚苯胺,如纳米纤维、纳米管、纳米带、空心球等。具有规整形貌的聚苯胺与普通方法制备的非晶粉末状聚苯胺相比,不但其在一般溶剂中的分散性能有所提高,而且它的电性能也有极大地改善。
     论文的研究主要是为聚苯胺空心结构的构筑提供了一些思路和方法。这些思路和方法内容如下:
     (1)以天然埃洛石为模板制备了规整地聚苯胺纳米管。天然埃洛石具有管状结构,它的外层结构主要由Si02构成,而内层结构主要由A1203构成。因此,当以原位无皂乳液聚合法将聚苯胺包覆在埃洛石表面上后,用HCl/HF的混酸溶液可以将埃洛石刻蚀掉,从而得到聚苯胺纳米管状结构。超声作用在埃洛石吸附苯胺过程中起到重要作用,与搅拌作用相比超声作用可以有效地改善苯胺在埃洛石表面的包覆效果,并提升PANI/HNTs复合材料在水中的分散性。
     (2)以甲苯为软模板,以阴离子表面活性剂和磁性纳米颗粒可以为分散介质,通过结合界面聚合法和Pickering乳液法制备了具有电磁双重性能的聚苯胺磁性空心球。着重研究了磁性纳米颗粒的用量对磁性聚苯胺空心球形貌的影响。表面活性剂对最终聚苯胺空心球的尺寸有决定性作用,而磁性纳米颗粒在聚合过程中对胶束形貌有保护作用。甲苯在反应过程中既充当液滴模板的作用,又是苯胺单体的“储藏室”。
     (3)以长轴约50nm,短轴仅约为8nm的纺锤状Fe203为模板,用离子化的对氨基苯甲酸对纳米氧化铁进行修饰,制备了纺锤状聚苯胺空心结构。苯胺单体的用量对聚苯胺最终的形貌有很大的影响,只有当苯胺与模板的质量比为2:1时,才能形成完整地聚苯胺纺锤结构。当苯胺太少时聚苯胺不能完全包覆氧化铁,最终形成的聚苯胺空心结构上会有缺口,而当苯胺太多时又会使苯胺在水溶液中聚合形成聚苯胺团聚体,不利于聚苯胺的包覆。
     (4)在酸性条件下以纳米球状Fe203作为牺牲性模板和氧化剂制备了聚苯胺空心球。反应温度对聚苯胺最终的形貌有很大的影响,温度太低(如室温)不利于形成聚苯胺空心结构。同时还研究了质子酸的种类对制备聚苯胺空心球的效果的影响。
     (5)以Fe3O4@PS核壳结构为“部分可溶性模板”制备磁性聚苯胺复合材料。随引发剂的用量不同,所制备出的模板在苯胺溶胀聚合过程中被溶解的程度也有很大差别。当聚苯乙烯在低浓度引发剂条件下制得时,可制备出Fe3O4@PS@PANI三明治结构;当聚苯乙烯在高浓度引发剂条件下制得时,可制备出Fe3O4@PANI蛋黄结构。同时还发现随着引发剂浓度的增加,最终产物中开孔的尺寸也随之增大。文中讨论了孔形成的原理。
It is thought that the polymer materials are not conductive, until the appearance of conducting polyacetylene. According to the level of conductivity, materials can be separated into four types: superconductor, conductor, semiconductor and insulator. Conductive polymers can change from insulator to conductor with changing the oxidation degree and doped level. The conductive polymers have become an important material in science, technology and economic construction for their changeable conductivity. With the discovery of conductivity of polyaniline, it is considered polyaniline is most likely to be large-scale application among the structured conductive polymers, due to their ease of processability, high environmental stability and special doping mechanism. However, the unsubstituted PANI is intractable and suffers from poor processability due to its rigid, highly conjugated backbones, which have hindered their application in many fields. To overcome this shortcoming, variety of morphologies of PANI (such as nanofibers, nanotubes and hollow microspheres) were prepared by changing the synthesis method. In addition, compared with random connected nanowires, well-ordered nanostructure can improve both the dispersion and electric property of polyaniline.
     This paper aims to provide some new ideas and methods to build polyaniline hollow constructs. These ideas and methods are as follows:
     (1)A template-based fabrication technique for PANI nanotubes with halloysite nanotubes (HNTs) as template. The HNTs associate the chemical properties of halloysite tubule's outermost surface with the properties of SiO2 and properties of the inner cylinder core with Al2O3. So the PANI nanotubes were obtained by etching the template with HCl/HF solution after the PANI layers were coated onto the template via in situ soapless emulsion polymerization. The coated polyaniline layers prepared with ultrasonic irradiation were more symmetrical and the PANI/HNTs hybrids had the better dispersibilities in water than those from the adsorption with stirring, which were conglomeration.
     (2)An ingenious strategy for the synthesis of the magnetic PANI functional hollow microspheres is explored, which combines the interfacial polymerization and Pickering emulsion techniques in an 0/W emulsion system, with Fe3O4-CA nanoparticles as cosurfactant. The effect of the amount of Fe3O4-CA nanoparticles on the formation of integrated Fe3O4-CA-PANI hollow microspheres was investigated. The amount of surfactant plays an important role on maintaining the size of PANI capsules. Toluene acts as the role of "soft-template" and storage of monomer.
     (3)Rod-shaped polyaniline nanocapsules were prepared via the in-situ chemical oxidative polymerization of aniline with a-Fe2O3 nanorods about 50nm in length and about 8nm in width as templates after being modified with p-aminobenzoic acid ion. When the weight ratio of aniline/Fe2O3 nanorods of 2:1 was adopted, the uniform rod-shaped PANI nanocapsules with length and diameter of about 80 and 5 nm were achieved. Above or below this ratio will not get complete PANI capsules.
     (4)Hollow polyaniline nanoparticles were fabricated via the facile chemical oxidative polymerization of aniline with y-Fe2O3 nanoparticle as the reactive template in the presence of the protonic acid. The effects of the reaction temperature and the kind of the protonic acid used on the formation of the hollow nanostructures were discussed.
     (5)Fe3O4@PS nanoparticles were used as "partial sacrificial templates", during the oxidation polymerization partial or all of the polystyrene can be dissolved. When polystyrene was prepared with low concentration of initiator, sandwich Fe3O4@PS@PANi nanoparticles were obtained; when polystyrene was prepared with high concentration of initiator, yolk/shell Fe3O4@PANI structures were prepared; when polystyrene was prepared with middle concentration of initiator, different size of holes presented in final composites. As the concentration of initiator increased, the size of holes increased. The possible process of the formation of hole has been given.
引文
[1]钱保功,王洛礼,王霞瑜等.高分子科学技术发展简史[M].北京:科学出版社.1994.
    [2]Chaing, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gan, S.C., MacDiarmid, A.G. Electrical conductivity in doped polyacetylene[J]. Phys. Rev. Lett.1977, 39:1098-1101.
    [3]蓝立文等.功能高分子材料[M].西安:西北工业大学出版社.1995.
    [4]王东周,李光,江建明.导电高分子研究概述[J].合成技术及应用.2001,16(3):36-39.
    [5]王彦红,王景慧,岳建霞,罗青枝,王德松.导电高分子纳米复合材料研究进展[J].化工时刊,2007,21(1):73-77
    [6]唐英,张进,李维一,郭蕙,李娟.导电聚苯胺的研究进展.西南民族大学学报(自然科学版)[J].2003,29(5):544-547.
    [7]Green, A.G., Woodhead, A.E. Aniline-black and allied compounds. Part I [J]. J. Chem. Soc. Trans.1910,93:2388-2403.
    [8]MacDiarmid A.G., Chiang, J.C., HalPen M., Huang, W.S., Mu, S.L., Somasiri, N.L.D.,Wu, W., Yaniger S.L. "Polyaniline":Iniereonversion of metallic and insulated forms [J]. Mol. Cryst. Liq. Cryst.1985,121:173-180.
    [9]MacDiarmid A.G., Mu, S.L., Somasiri, N.L.D. Electrochemical characteristics of "polyaniline" cathodes and anodes inaqueous electrolytes [J]. Mol. Cryst. Liq. Cryst.1985, 121:187-190.
    [10]MacDiarmid A.G., Chiang, J.C., Huang, W.S. "Polyaniline":Protonic acid doping to the metallic regime [J]. Mol. Cryst. Liq. Cryst.1985,125:309-318.
    [11]Chiang, J.C., MacDiarmid A.G. "Polyaniline":Protonic acid doping of the emeraldine form to the metallic regime [J]. Synth. Met.1986,13(1-3):193-205.
    [12]MacDiarmid A.G., Chiang, J.C., Richter, A.F. "Polyaniline":A new concept in conducting polymers [J]. Synth. Met.1987,18(1-3):285-290.
    [13]Armes, S.P., Miller, J.F. Optimum reaction conductions for the polymerizations of aniline in aqueous solution by ammonium persulphate [J]. Synth. Met.1988,22(4):385-393.
    [14]Diaz, A.F., Logan, J.A. Electroactive polyaniline films [J]. J. Electroanal. Chem.1980,111 (1): 111-114.
    [15]Mengoli, G., Munari, M.T., Bianco, P.A. Anodic synthesis of polyaniline coatings onto Fe sheets [J]. J. Appl. Polym. Sci.1981,26(12):4247-4257.
    [16]Surwade, S.P., Agnihotra, S. R., Dua, V., Manohar, N., Jain, S., Ammu, S., Manohar, S. K. Catalyst-free synthesis of oligoanilines and polyaniline nanofibers using H2O2 [J]. J. Am. Chem. Soc.2009,131 (35):12528-12529.
    [17]Ding, H.J., Long, Y.Z., Shen, J.Y., Wan, M.X. Fe2(SO4)3 as a binary oxidant and dopant to thin polyaniline nanowires with high conductivity [J]. J. Phys. Chem. B.2010,114(1): 115-119.
    [18]Wei, Y., Hsueh, K.F., Jang, G.W. Monitoring the chemical polymerization of aniline by open-circuit-potential measurements [J]. Polymer 1994,35(16):3572-3575.
    [19]Wei, Y., Tang, X., Sun, Y.,Focke, W. W. A study of the mechanism of aniline polymerization [J]. J. Polym. Sci., Part A:Polym. Chem.1989,27(27):2385-2396.
    [20]Breitenbach, M., Heckner, K.H., Elektrochemische untersuchungen der bildung and eigenschaften von polyanilinfilmen auf Platin-und kohleelektroden [J]. J. Eleetroanal. Chem.1971,43:267-286.
    [21]Stejskal, J., Kratochvil, P., Armes, S. P., Lascelles, S.F., Riede, A., Helmsted, M., Prokes, J., Krivka, I. Polyaniline dispersions.6. Stabilization by colloidal silica particles [J]. Macromolecules.1996,29 (21):6814-6819.
    [22]Martin, C. R. Nanomaterials:A membrane-based synthetic approach [J].1994,264(5193): 1757-1759.
    [23]Wu, Q., Wang, Z.Q., Xue, G. Controlling the structure and morphology of monodisperse polystyrene/polyaniline composite particles [J]. Adv. Funct. Mater.2007,17(11):1784-1789.
    [24]Zhang, L.J., Long,Y.Z., Chen, Z.J., Wan, M.X. The effect of hydrogen bonding on self-assembled polyaniline nanostructures [J]. Adv. Funct. Mater.2004,14(7):693-698.
    [25]Huang, J., Kaner, R.B. Nanofiber formation in the chemical polymerization of aniline:a mechanistic study [J]. Angew. Chem. Int. Ed. Engl.2004,43(43):5817-21.
    [26]Li, G,R., Feng, Z.P., Zhong, J.H., Wang, Z.L., Tong, Y.X. Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances [J]. Macromolecules. 2010,43 (5):2178-2183.
    [27]Fu, G.D., Zhao, J.P., Sun, Y.M., Kang, E.T., Neoh, K.G. Conductive hollow nanospheres of polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oxidative graft copolymerization of aniline [J]. Macromolecules.2007,40(6):2271-2275.
    [28]Zhu, C.L., Chou, S.W., He, S.F., Liao, W.N., Chen, C.C. Synthesis of core/shell metal oxide/polyaniline nanocomposites and hollow polyaniline capsules [J]. Nanotechnology. 2007,18(27):275604-275605.
    [29]Zhang, Z.M., Deng, J.Y., Sui, J., Yu, L.M., Wan, M.X. Wei, Y. Hollow microstructured polyaniline prepared using cuprous oxide crystals as templates [J]. Macromol. Chem. Phys.2006,207(8):763-769.
    [30]Donath, E., Sukhorukov, G.B., Caruso, F., Davis, S.A., Mohwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes [J]. Angewandte Chemie. Int. Ed. 1998,37(16):2201-2205.
    [31]Caruso, F. Hollow capsule processing through colloidal templating and self-assembly [J]. Chemi.-A Eur. J.2000,6(3):413-419.
    [32]Shi, X.Y., Shen, M.W., Mohwald, H. Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials [J]. Prog. Polymer Sci.2004,29 (10), 987-1019.
    [33]Sukhorukov, G, Fery, A., Mohwald, H., Interligent micro- and nanocapsules [J]. Progr. Polymer Sci.2005,30 (8-9):885-897.
    [34]Johnson, A.P.R., Cortez, C., Angelatos, A.S., Caruso, F. Layer by layer engineered capsules and their applications [J]. Curr. Opin. Colloid Interface Sci.2006,11 (4):203-209.
    [35]Park, M.K., Onishi, K., Locklin, J., Caruso, F., Advincula, R.C. Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells [J]. Langmuir.2003,19 (20):8550-8554.
    [36]Shi, X.Y., Briseno, A.L., Sanedrin, R.J., Zhou, F.M. Formation of uniform polyaniline thin shells and hollow capsules using polyelectrolyte-coated microspheres as templates [J]. Macromolecules.2003,36(11):4093-4098.
    [37]Niu, Z.W., Yang, Z.Z., Hu, Z.B., Lu, Y.F., Han, C.C. Polyanilinesilica composite conductive capsules and hollow spheres [J]. Adv. Funct. Mater.2003,13(12):949-954.
    [38]Yang, Y, Chu, Y, Yang, F.Y., Zhang, Y.P., Uniform hollow conductive polymermicrosp heres synthesized with the sulfonated polystyrene template [J]. Mater. Chem. Phys.2005,92(1): 164-171.
    [39]Feng, X.M., Mao, C.J., Yang, G., Hou, W.H., Zhu, Y.J. Polyaniline/Au composite hollow spheres:synthesis, characterization, and application to the detection of dopamine [J]. Langmuir.2006,22(9):4384-4389.
    [40]Li, J.B., Jia, Q.M., Zhu, J. W., Zheng, M.S. Interfacial polymerization of morphologically modified polyaniline:from hollow microspheres to nanowires [J]. Polym. Int.2008, 57(2):337-341.
    [41]Wei, Z.X., Wan, M.X. Hollow microspheres of polyaniline synthesized with an aniline emulsion template [J]. Adv. Mater.2002,14(18):1314-1317.
    [42]Zhang, Y.S., Xu, W.H., Yao, W.T., Yu, S.H. Oxidation-reduction reaction driven approach for hydrothermal synthesis of polyaniline hollow spheres with controllable size and shell thickness [J]. J. Phys. Chem. C.2009,113 (20):8588-8594.
    [43]Wang, X., Liu, N., Zhang, W.J. Studies on multi morphology of polyaniline guided by alkali [J]. Solid. State. Phenom.2007,121-123(1):429-432.
    [44]Tan, Y.W., Bai, F., Wang, D.S., Peng, Q., Wang, X., Li, Y.D. Template-free synthesis and characterization of single-Phase voided poly(o-anisidine) and polyaniline colloidal spheres [J]. Chem. Mater.2007,19(23),5773-5778.
    [45]Parthasarathy, R.V., Martin, C.R. Template-synthesized polyaniline microtubules [J]. Chem. Mater.1994,6(10):1627-1632.
    [46]Joo, J., Park, K.T., Kim, B.H., Kim, M.S., Lee, S.Y, Jeong, C.K., Lee, J.K., Park, D.H., Yi, W.K., Lee, S.H., Ryu, K.S. Conducting polymer nanotubes and nanowires synthesized by using nanoporous template:Synthesis, characteristics, and applications [J]. Synth. Metals. 2003,4(135-136):7-9.
    [47]Pan, L.J., Pu,L., Shi,Y, Song,S.Y, Xu, Z., Zhang,R., Zheng, YD. Synthesis of polyaniline nanotubes with a reactive template of manganese oxide [J]. Adv. Mater.2007,19(3):461-464.
    [48]Gao,Y, Yao, S., Gong, J., Qu, L.Y. Preparation of polyaniline nanotubes via "thin glass tubes template" approach and its gas response [J]. Macromolec. Rapid. Commun.2007,28(3): 286-293.
    [49]Kim, T.H., Kim, Y, Lee, S.J., Han, W.S., Jung, J.H. Fabrication of polyaniline silica nanotubes and closed polyaniline nanotubes using a template of silica nanotube [J]. Chem. Lett.2008,37(6):598-599.
    [50]Dong, H., Prasad, S., Nyame, V, Jones, W.E., Submicrometer conducting polyaniline tubes prepared from polymer fiber templates [J]. Chem. Mater.2004,16(6):371-373.
    [51]Dai, T.Y., Lu, Y. Water-soluble methyl orange fibrils as versatile templates for the fabrication of conducting polymer microtubules [J]. Macromolec. Rapid Commun.2007,28(5): 629-633.
    [52]Qiu, H.J., Wan, M.X. Synthesis, characterization, and electrical properties of nanostructural polyaniline doped with novel sulfonic acids (4-{n-[4-(4-nitrophenylazo)phenyloxy]alkyl} aminobenzene sulfonic acid [J]. J. Polym. Sci., Part A:Polym. Chem. 2001,39(20):3485-3497.
    [53]Zhang, L.J., Peng, H., Sui, J., Kilmartin, P.A., Travas-Sejdic, J. Polyaniline nanotubes doped with polymeric acids [J]. Curr. Appl. Phys.2008,8(3-4),312-315.
    [54]Feng, X.M., Yang, G. Xu, Q., Hou, W.H., Zhu, J.J. Self-Assembly of polyaniline/Au composites:From nanotubes to nanofibers [J]. Macromol. Rapid Commun.2006,27(1): 31-36.
    [55]Zhang, L J., Wan M.X., Chiral polyaniline nanotubes synthesized via a self-assembly process [J]. Thin Solid Films.2005,477(1-2),24-31.
    [56]Huang, K., Zhang, Y.J., Long, Y.Z., Yuan, J.H., Han, D.X., Wang, Z.J., Niu, L., Chen, Z.J. Preparation of highly conductive, self-assembled gold/polyaniline nanocables, and polyaniline nanotubes [J]. Chem. Eur. J.2006,12(20),5314-5319.
    [57]Pinto, N.J., Carrion, P.L., Ayala, A.M., Ortiz-Marciales, M. Temperature dependence of the resistance of self-assembled polyaniline nanotubes doped with 2-acrylamido-2-methyl-l-propanesulfonic acid[J]. Synth. Metals.2005,148(3):271-274.
    [58]Long, Y.Z., Chen, Z.X., Wang, N.L., Ma, Y.J., Zhang, Z., Zhang, L.J., Wan, M.X. Electrical conductivity of a single conducting polyaniline nanotube [J]. Appl. Phys. Lett.2003,83(9), 1863-1865.
    [59]Wei, Z.X., Wan, M.X. Synthesis and characterization of self-doped poly(anilineco-aminonaphthalene sulfonic acid) nanotubes [J]. J. Appl. Polym. Sci.2003, 87(8):1297-1301.
    [60]Wei, Z.X., Zhang, Z.M.,Wan, M.X. Formation mechanism of self-assembled polyaniline micro/nanotubes [J]. Langmuir.2002,18(3):917-921.
    [61]Qiu, H.J., Wan, M.X., Matthews, B., Dai, L.M. Conducting polyaniline nanotubes by template-free polymerization [J]. Macromolecules.2001,34(4),675-677.
    [62]Zhang, L.J, Wan, M.X. Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid [J]. Nanotechnology.2002,13(6):750-754
    [63]Zhang, Z.M., Wan, M.X. Composite films of nanostructured polyaniline with poly(vinyl alcohol) [J]. Synth. Met.2002,128(10):83-89.
    [64]Huang, K., Wan, M.X. Self-assembled polyaniline nanostructures with photoisomerization function [J]. Chem. Mater.2002,14 (8):3486-3492.
    [65]Long, Y.Z., Zhang, L.J., Ma, Y.J., Chen, Z.J., Wang, N.L., Zhang, Z., Wan, M.X. Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method [J]. Macromolec. Rapid. Commun.2003,24(16),938-942.
    [66]Hopkins, A.R., Lipeles, R.A., Kao, W.H. Electrically conducting polyaniline microtube blends [J]. Thin Solid Films.2004,447-448:474-480.
    [67]Cheng, C.X., Jiang, J., Tang, R.P., Xi,F. Polyaniline nanostructures doped with mono-sulfonated dendrons via a self-assembly process [J]. Synth. Met.2004,145(1):61-65.
    [68]Zhang, Z.Z., Wei, Z.X., Zhang, L.J., Wan, M.X. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids [J]. Acta Mater.2005,53(5):1373-1379.
    [69]Xia, H.B., Cheng, D.M., Lam, P., Chan, H.S.O. Crown ether derivative assisted growth of oriented polyaniline nanotubes [J]. Nanotechnology.2006,17(15):3957-3961.
    [70]Huang, J., Wan, M.X. Polyaniline doped with different sulfonic acids by in situ doping polymerization [J]. J. Polym. Sci., Part A:Polym. Chem.1999,37(9):1277-1284.
    [71]Zhang, Z.M., Wan, M.X., Wei, Y. Highly crystalline polyaniline nanostructures doped with dicarboxylic acids [J]. Adv. Funct. Mater.2006,16(8),1100-1104.
    [72]Stejskal, J., Sapurina, I. Trchova, M., Konyushenko, E.N. Oxidation of aniline:Polyaniline granules, nanotubes, and oligoaniline microspheres [J]. Macromolecules.2008,41(10): 3530-3536.
    [73]Sun, Q.H., Deng, Y.L. The unique role of DL-tartaric acid in determining the morphology of polyaniline nanostructures during an interfacial oxidation polymerization [J]. Mater. Lett. 2008,62(12-13):1831-1834.
    [74]Petrov, P., Mokreva, P., Tsvetanov, C. B. Terlemezyan, L. Colloidal aqueous dispersion of polyaniline nanotubes grafted non-covalently with poly(ethylene oxide)-blockpoly(acrylic acid) copolymer [J]. Colloid. Polym. Sci.2008,286(6-7):691-697.
    [75]Zhang, L.J., Wan, M.X. Self-assembly of polyaniline-from nanotubes to hollow microspheres [J]. Adv. Functi. Mater.2003,13(10):815-820.
    [76]Zhou, C.Q., Han,J. Guo, R. Dilute anionic surfactant solution route to polyaniline rectangular sub-microtubes as a novel nanostructure [J]. J. Phys. Chem. B.2008,112 (16):5014-5019.
    [77]Zhou, C.Q., Han,J. Guo, R. Synthesis of polyaniline hierarchical structures in a dilute SDS/HCl solution:Nanostructure-covered rectangular tubes [J]. Macromolecules.2009, 42(4):1252-1257.
    [78]Zhou, C.Q., Han,J. Guo, R. Polyaniline fan-Like architectures of rectangular sub-microtubes synthesized in dilute inorganic acid solution [J]. Macromol. Rapid Commun.2009,30(3): 182-187.
    [79]Han,J., Liu,Y., Guo, R. A novel templateless method to nanofibers of polyaniline derivatives with size control [J]. J. Polym. Sci., Part A:Polym. Chem.2008,46(2):740-746.
    [80]Zhang, Z.M., Wei, Z.X., Wan, M.X. Nanostructures of polyaniline doped with inorganic acids [J]. Macromolecules,2002,35 (15), pp 5937-5942.
    [81]Ding, H.J., Shen, J.Y., Wan, M.X., Chen, Z.J. Formation mechanism of polyaniline nanotubes by a simplified template-free method [J]. Macromolec. Chem. Phys.2008,209(8):864-871.
    [82]Lu, X.F., Mao, H., Chen, D.M., Zhang, W.J., Wei,Y. Fabrication of polyaniline nanostructures under ultrasonic irradiation:from nanotubes to nanofibers [J]. Macromolec. Chem. Phys. 2006,207(22):2142-2152.
    [83]Chiou, N.R., Lee, L.J., Eostein, A.J. Self-assembled polyaniline nanofibers/nanotubes [J]. Chem. Mater.2007,19(15):3589-3591.
    [84]T. Nakajima and T. Kawogoe, Polyaniline:Structural analysis and application for battery [J]. Synth. Metals,28,629 (1989).
    [85]S. Chao and M.S. Wrighton, Characterization of a solid-state polyaniline-based transistor: water vapor dependent characteristics of a device employing a poly(vinyl alcohol)/phosphoric acid solid-state electrolyte [J]. J. Am. Chem. Soc.,109,6627 (1987).
    [86]S.K. Dhawan and D.C. Trivedi, Electrochemical behaviour of polyaniline in aromatic sulphonic acids [J]. Polymer Int.,25,55 (1991).
    [87]A.J. Heeger, Y. Yang, E. Westerwele, C. Zhang, Y. Cao, and P. Smith, Polyaniline network electrodes (enhanced performanceof polymer light-emitting diodes), in:The polymeric materials encyclopedia:synthesis, properties and applications [M]. J.C. Salamone, Ed., CRC Press, Boca Raton, FL,5500 (1996).
    [88]A.J. MacDiarmid, L.S. Yang, W.S. Huang, and B.D. Humphrey, Polyaniline:electrochemistry and application to rechargeable batteries [J]. Synth. Metals,18,393 (1987).
    [89]A.J. Heeger, Semiconducting and metallic polymers:The fourth generation of polymeric materials [J]. J. Phys. Chem. B,105,8475 (2001).
    [90]K. Amano, H. Ishikawa, A. Kobayashi, M. Satoh, and E. Hasegawa, Thermal stability of chemically synthesized polyaniline [J]. Synth. Metals,62,229 (1994).
    [91]N. Gospodinova and L. Terlemezyan, Conducting polymers prepared by oxidative polymerization:polyaniline [J]. Progr. Polymer Sci.,23,1443 (1998).
    [92]A. Pron and P. Rannou, Processible conjugated polymers:from organic semiconductors to organic metals and superconductors [J]. Prog. Polymer Sci.,27,135 (2002).
    [93]E.T. Kang, K.G. Neoh, and K.L. Tan, Polyaniline:A polymer with many interesting intrinsic redox states [J]. Prog. Polymer Sci.,23,277 (1998).
    [1]Sukhorukov, G., Fery, A., Mohwald, H. Intelligent micro-and nanocapsules [J]. Prog. Polym. Sci.2005,30(8-9):885-897.
    [2]Kimberly, S. Single-component polymer nanocapsules for drug delivery application [J]. Nanoscale Res. Lett.2008,3(7):265-267.
    [3]Xu, P., Li, S.-Y., Li, Q., Van Kirk, E. A., Ren, J., Murdoch, W. J., Zhang, Z., Radosz, M., Shen, Y. Virion-mimicking nanocapsules from pH-controlled hierarchical self-assembly for gene delivery [J]. Angew. Chem. Inter. Ed.2008,47(7):1260-1264.
    [4]Pisani, E., Tsapis, N., Galaz, B., Santin, M., Berti, R., Taulier, N., Kurtisovski, E., Lucidarme, O., Ourevitch, M., Doan, B.T., Beloeil, J.C., Gillet, B., Urbach, W., Bridal, S.L., Fattal, E. Perfluorooctyl bromide polymeric capsules as dual contrast agents for ultrasonography and magnetic resonance imaging [J]. Adv. Funct. Mater.2008,18(19):2963-2971.
    [5]Heo, J.-S., Park, N.-H., Ryu, J.-H., Suh, K.-D. Novel light-emitting diodes using organic electroluminescent nanocapsules [J]. Adv. Mater.2005,17(7):822-826.
    [6]Miao, S., Zhang, C., Liu, Z., Han, B., Xie, Y., Ding, S., Yang, Z. Highly efficient nanocatalysts supported on hollow polymer nanospheres:Synthesis, characterization, and applications [J]. J. Phys. Chem. C.2008,112(3):774-780.
    [7]Pei, Q., Yu, U., Zang, C., Yang, Y., Heeger, A.J. Polymer light-emitting electrochemical cells [J]. Science.1995,269(5227):1086-1088.
    [8]Koehler, S., Ueda, M., Efimov, I., Bund, A. An EQCM study of the deposition and doping/dedoping behavior of polypyrrole from phosphoric acid solutions [J]. Electrochim. Acta.2007,52(9):3040-3046.
    [9]Park, M., Onishi, K., Locklin, J., Caruso, F., Advincula, R. Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells [J]. Langmuir.2003,19(20):8550-8554.
    [10]Huang, J.X., Kaner, R.B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study [J]. Angew. Chem.2004,43(43):5817-5821.
    [11]Zhang, Z.M., Sui, J., Zhang, L.J., Wan, M.X., Wei, Y, Yu, L.M. Synthesis of polyaniline with a hollow, octahedral morphology by using a cuprous oxide template [J]. Adv. Mater.2005, 17(12),2854-2857
    [12]Zhu, C.L., Chou, S.W., He, S.F., Liao, W.N., Chen, C.C. Synthesis of core/shell metal oxide/polyaniline nanocomposites and hollow polyaniline capsules [J]. Nanotechnology. 2007,18(27):275604.
    [13]Hao, L., Zhu, C, Jiang, W., Chen, C., Hu, Y, Chen, Z. Sandwich Fe2O3@SiO2@PPy ellipsoidal spheres and four types of hollow capsules by hematite olivary particles [J]. J. Mater. Chem.2004,14(19):2929-2934.
    [14]Xuan, S., Fang, Q., Hao, L., Jiang, W., Gong, X., Hu, Y, Chen, Z. Fabrication of spindle Fe2O3@polypyrrole core/shell particles by surface-modified hematite templating and conversion to spindle polypyrrole capsules and carbon capsules [J]. J. Colloid Interface. Sci. 2007,314(2):502-509.
    [15]Liu, P., Liu, W.M., Xue, Q.J. In situ chemical oxidative graft polymerization of aniline from silica nanoparticles [J]. Mater. Chem. Phys.2004,87(1):109-113.
    [16]Liu, P., Zhang, L.X., Su, Z.X. Surface-initiated ATRP of HEA from nanocrystal a-Fe2O3 under ultrasonic irradiation [J]. J. Nanosci. Nanotechnol.2005,5(10):1713-1717.
    [1]Wei, Z.X., Zhang, Z.M.,Wan, M.X. Formation mechanism of self-assembled polyaniline micro/nanotubes [J]. Langmuir.2002,18(3):917-921.
    [2]Li, W.G., M. Wan, X. Porous polyaniline films with high conductivity [J]. Synth. Met.1998, 92(2):121-126.
    [3]Zhang, Z.M., Sui, J., Zhang, L.J., Wan, M.X., Wei, Y., Yu, L.M. Synthesis of polyaniline with a hollow, octahedral morphology by using a cuprous oxide template [J]. Adv. Mater. 2005,17(23):2854-2857.
    [4]Sun, Z.C., Geng, Y.H., Li, J., Wang, X.H., Jing, X.B., Wang, F.S. Catalytic oxidization polymerization of aniline in an H2O2-Fe2+ system [J]. J. Appl. Polym.Sci.1999,72(8): 1077-1084.
    [5]Kim, B.K., Kim, Y.H., Won, K., Chang, H., Choi, Y., Kong, K., Rhyu, B.W., Kim, J. J., Lee, J.O. Electrical properties of polyaniline nanofibre synthesized with biocatalyst [J]. Nanotechnology.2005,16(8):1177-1182.
    [6]Palaniappan, S. Benzoyl peroxide oxidation route to polyaniline salts-Part Ⅰ [J]. Polym. Adv. Technol.2004,15(3):111-117.
    [7]Rao, P.S., Sathyanarayana, D.N., Palaniappan, S. Polymerization of aniline in an organic peroxide system by the inverted emulsion process [J]. Macromolecules.2002,35 (13): 4988-4996.
    [8]Li, G.C., Jiang, L., Peng, H.R. One-dimensional polyaniline nanostructures with controllable surfaces and diameters using vanadic acid as the oxidant [J]. Macromolecules.2007,40 (22): 7890-7894.
    [9]Kogan, I., Fokeeva, L., Shunina, I., Estrin, Y., Kasumova, L., Kaplunov, M., Davidova, G., Knerelman, E. Electrochemical synthesis of polyaniline on tantalum and stainless-steel electrodes [J]. Synth. Met.1995,63 (2):133-134.
    [10]Yang, C.H., Du, J.J., Peng, Q., Qiao, R.R., Chen, W., Xu, C.L., Shuai, Z.G., Gao M.Y. Polyaniline/Fe3O4 nanoparticle composite:Synthesis and reaction mechanism [J]. J. Phys. Chem. B.2009,113 (15):5052-5058.
    [11]Ding, H.J., Long, Y.Z., Shen, J.Y., Wan, M.X. Fe2 (SO4)3 as a binary oxidant and dopant to thin polyaniline nanowires with high conductivity [J]. J. Phys. Chem. B.2010,114 (1): 115-119.
    [12]Wang, Y., Liu, Z.M., Han, B.X., Sun, Z.Y., Huang, Y., Yang, G.Y. Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant [J]. Langmuir.2005,21 (3): 833-836.
    [13]Fei, J.B., Cui, Y., Yan, X.H., Yang. Y., Su, Y., Li, J.B. Formation of PANI tower-shaped hierarchical nanostructures by a limited hydrothermal reaction [J]. J. Mater. Chem.2009, 19(20):3263-3267.
    [14]Fei, J.B., Cui, Y., Yan, X.H., Yang, Y., Wang, K.W., Li, J.B. Controlled fabrication of polyaniline spherical and cubic shells with hierarchical nanostructures [J]. ACS Nano.2009, 3(11),3714-3718.
    [15]Pan, L.J., Pu,L., Shi,Y., Song,S.Y., Xu, Z., Zhang,R., Zheng,Y.D. Synthesis of polyaniline nanotubes with a reactive template of manganese oxide [J]. Adv. Mater.2007,19(3): 461-464.
    [16]Lou, X.W., Archer, L.A., Yang, Z. Hollow micro-/nanostructures:Synthesis and applications [J]. Adv. Mater.2008,20(21):3987-4019.
    [17]Zhang, Z.M., Deng, J.Y., Sui, J., Yu, L.M., Wan, M.X. Wei, Y. Hollow microstructured polyaniline prepared using cuprous oxide crystals as templates [J]. Macromol. Chem. Phys.2006,207(8):763-769.
    [18]Ding, H.J., Wan, M.X., Wei, Y. Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential [J]. Adv. Mater.2007,19(3):465-469.
    [19]Chen, S.A., Lee, H.T. Structure and properties of poly(acrylic acid)-doped polyaniline [J]. Macromolecules.1995,28 (8):2858-2866.
    [20]Kim, S.G., Kim, J.W., Choi, H.J., Suh, M.S., Shin, M.J., Jhon, M.S. Synthesis and electrorheological characterization of emulsion-polymerized dodecylbenzenesulfonic acid doped polyaniline-based suspensions [J]. Colloid Polym. Sci.2000,278(9):894-898.
    [21]Tang, J.S., Jing, X.B., Wang, B.C., Wang, F.S. Interactions of evaporated aluminum atoms with polyaniline films-effects of dopant anion and adsorbed oxygen [J]. Synth. Met.1988, 92(3):213-222.
    [22]Lu, X.F., Mao, H., Chen, D.M., Zhang, W.J., Wei, Y. Fabrication of polyaniline nanostructures under ultrasonic irradiation:from nanotubes to nanofibers [J]. Macromolec. Chem. Phys.2006,207(22):2142-2152.
    [1]Kingsborough, R.P., Swager, T.M. Electroactivity enhancement by redox matching in cobalt salen-based conducting polymers [J]. Adv. Mater.1998,10 (14):1100-1104.
    [2]Park, M., Onishi, K., Locklin, J., Caruso,F., Advincula, R. Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells [J]. Langmuir.2003,19 (22):8550-8554.
    [3]Morrin, A., Wilbeer, F., Ngamna, O., Moulton, S.E., Killard, A. J., Wallace, G., Smyth, M.R. Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles [J]. Electrochem. Commun.2005,7 (3):317-322.
    [4]Huang, J.X., Kaner, R.B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study [J]. Angew. Chem.2004,43(43):5871-5821.
    [5]Zhang, L., Long, Y., Chen, Z., Wan, M. The effect of hydrogen bonding on self-assembled polyaniline nanostructures [J]. Adv. Mater.2004,14(7):693-698.
    [6]Wu, Q., Wang, Z.Q., Xue, G. Controlling the structure and morphology of monodisperse polystyrene/polyaniline composite particles [J]. Adv. Funct. Mater.,2007,17 (11): 1784-1789.
    [7]Li, G.R., Feng, Z.P., Zhong, J.H., Wang, Z.L., Tong, Y.X. Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances [J]. Macromolecules. 2010,43 (5):2178-2183.
    [8]Xu, J.J., Wang, K., Zu, S.Z., Han, B.H., Wei, Z.X. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage [J]. ACS Nano.2010,4 (9):5019-5026.
    [9]Liu, P., Zhang, L. Hollow Nanostructured polyaniline:Preparation, properties and applications [J]. Crit. Rev. Solid State Mater. Sci.2009,34(1&2):75-87.
    [10]Yang, C.M., Li, H.Y., Xiong, D.B., Cao, Z.Y. Hollow polyaniline/Fe3O4 microsphere composites:Preparation, characterization, and applications in microwave absorption [J]. React. Funct. Polym.2009,69 (2):137-144.
    [11]Wang, X.C., Liu, J., Feng, X.F., Guo, M.J., Sun, D.L. Fabrication of hollow Fe3O4-polyaniline spheres with sulfonated polystyrene templates [J]. Mater. Chem. Phys. 2008,112(2):319-321.
    [12]Li, Y.X., Wang, Z.Q., Wang, C.J., Zhao, Z. Xue, G. Controlling the morphology of micrometre-size polystyrene/polyaniline composite particles by Swelling-Diffusion-Interfacial-Polymerization method [J]. Polymer.2011,52(2):409-414.
    [13]Blinova, N.V., Reynaud, Roby, S.F. Trchova, Stejskal, M. J. The polymerization of aniline in polystyrene latex particles [J]. Synth. Met.2010,160 (15-16):1598-1602.
    [14]Frimpong, R.A., Hilt, J.Z. Poly (n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization [J]. Nanotechnology.2008, 19(17):175101-195107.
    [15]Zhang, M., Cushing, B.L., O'Connor, C.J. Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles [J]. Nanotechnology 2008,19(8): 085601-085602.
    [16]Huang, J., Chen, W.M., Zhao, W., Li, Y.Q., Li, X.G., Chen, C.P. One-dimensional chainlike arrays of Fe3O4 hollow nanospheres synthesized by aging Iron nanoparticles in aqueous solution [J]. J. Phys. Chem. C.2009,113(28):12067-12071.
    [I]Caruso, F. Nanoengineering of particle surfaces [J]. Adv. Mater.2001,13(1):11-22.
    [2]Tamber, H., Johansen, P., Merkle, H.P., Gander, B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery [J]. Adv. Drug Delivery Rev.2005,57(3):357-376.
    [3]Liu, P., Zhang, L. Hollow nanostructured polyaniline:preparation, properties and applications critical reviews in solid state and materials sciences [J]. Crit. Rev. Solid State Mater. Sci.2009,34(1&2):75-87.
    [4]Park, M., Onishi, K., Locklin, J., Caruso, F., Advincula, R. Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-soated colloidal particles and dollow shells [J]. Langmuir.2003,19(20):8550-8554.
    [5]Niu, Z., Yang, Z., Hu, Z., Lu, Y, Han, C. Polyaniline-silica composite conductive capsules and hollow spheres [J]. Adv. Funct. Mate.2003,13(12):949-954.
    [6]Shi, X., Briseno, A., Sanedrin, R.J., Zhou, F. Formation of uniform polyaniline thin shells and hollow capsules using polyelectrolyte-coated microspheres as templates [J]. Macromolecules,2003,36(11):4093-4098.
    [7]Scott, C., Wu, D., Ho, C., Carlos, C. Liquid-core capsules via interfacial polymerization:A free-radical analogy of the nylon rope trick [J]. J. Am. Chem. Soc. 2005,127(12):4160-4161.
    [8]Zhang, L., Liu, P. Polyaniline micro/nano capsules via facile interfacial polymerization approach [J]. Soft Mater.2010,8(1):29-38.
    [9]Jimenez, P., Castell, P., Sainz, R., Anson, A., Martinez, M., Benito, A.M., Wolfgang, K.M. Carbon nanotube effect on polyaniline morphology in water dispersible composites [J]. J. Phys. Chem. B.2010,114(4):1579-1585.
    [10]Ding, H.J., Long, Y.Z., Shen, J.Y., Wan, M.X. Fe2 (SO4)3 as a binary oxidant and dopant to thin polyaniline nanowires with high conductivity [J]. J. Phys. Chem. B. 2010,114(1):115-119.
    [11]Morrin, A., Wilbeer, F., Ngamna, O., Moulton, S.E., Killard, A.J., Wallace, G. Smyth, M.R. Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles [J]. Electrochem. Commun.2005,7(3):317-322.
    [12]Huang, J.X., Kaner, R.B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study [J]. Angew. Chem.2004,43(43):5817-5821.
    [13]Zhang, Z.M., Wei, Z.X., Wan, M.X. Nanostructures of polyaniline doped with inorganic acids [J]. Macromolecules.2002,35(15):5937-5942.
    [14]Wu, Q., Wang, Z.Q., Xue, G. Controlling the structure and morphology of monodisperse polystyrene/polyaniline composite particles [J]. Adv. Funct. Mater.2007, 17(11):1784-1789.
    [15]Xu, J.J., Wang, K., Zu, S.Z., Han, B.H., Wei, Z.X. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage [J]. ACS Nano.2010,4 (9):5019-5026.
    [16]Gallon, B. J., Kojima, R.W., Kaner, R.B., Diaconescu, P.L. Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water [J]. Angew. Chem. Int. Ed.2007,46(36):7251-7254.
    [17]Liu, G.Y., Ji, H.F., Yang, X.L., Wang, Y.M. Synthesis of a Au/silica/polymer trilayer composite and the corresponding hollow polymer microsphere with a movable Au core [J]. Langmuir.2008,24(3):1019-1025.
    [18]Lee, J.A., Krogman, K.C., Ma, M.L., Hill, R.M., Hammond, P.T., Rutledge, G.C. Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers [J]. Adv. Mater.2009,21(12):1252-1256.
    [19]Li, G.C., Zhang, C.Q., Peng, H.R., Chen, K.Z. One-dimensional V2O5@polyaniline core/shell nanobelts synthesized by an in situ polymerization method. Macromol [J]. Rapid Commun.2009,30(21):1841-1845.
    [20]Zhang, Z.M., Wan, M.X. Nanostructures of polyaniline composites containing nano-magnet [J]. Synth. Met.2003,132(2):205-212.
    [21]Aveyard, R., Binks, B.P., Clint, J.H. Emulsions stabilised solely by colloidal particles. Adv [J]. Colloid Interf. Sci.2003,100-102:503-546.
    [22]Pickering, S.U.J. CXCⅥ-emulsions [J]. Chem. Soc.1907,91,2001-2021.
    [23]Frimpong, R.A., Hilt, J.Z. Poly (n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization [J]. Nanotechnology. 2008,19(17):175101-195107.
    [24]Liao, W., Chen, C. Synthesis of core/shell metal oxide/polyaniline nanocomposites and hollow polyaniline capsules [J]. Nanotechnology.2007,18(27):275604-275609.
    [25]Jang, J., Lee, K. Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization [J]. Chem. Commun.2002,5(10):1098-1099.
    [26]Huang, J., Kaner, R. B. Nanofiber formation in the chemical polymerization of aniline: a mechanism study [J]. Angew. Chem. Int. Ed.2004,43(43):5817-5827.
    [27]Peng, Q., Dong, Y.J., Li, Y.D. ZnSe semiconductor hollow microspheres [J]. Angew. Chem. Int. Ed.2003,42(26):3027-3030.
    [28]Pujii, S., Binks, B.P. Stimulus-responsive emulsifiers based on nanocomposite microgel particles [J]. Adv. Mater.2005,17(8):1014-1018.
    [29]Ngai, T., Behrens, S.H., Anwder, H. Novel emulsions stabilized by pH and temperature sensitive microgels [J]. Chem. Commun.2005,3(3):331-333.
    [30]Mell, S., Lask, M., Puller, G.G. Pickering emulsions with controllable stability [J]. Langmuir.2005,21(6):2158-2162.
    [31]Nigama, S., Barickb, K.C., Bahadur, D. Development of citrate-stabilized Fe3O4 nanoparticles:Conjugation and release of doxorubicin for therapeutic applications [J]. J. Magn. Magn. Mater.2011,323 (2):237-243.
    [32]Feng, S. S., Ren, Z.Y., Wei, Y. L., Jiang, B. J., Liu, Y, Zhang, L. Y, Zhang, W. B., Fu, H.G. Synthesis and application of hollow magnetic graphitic carbon microspheres with/without TiO2 nanoparticle layer on the surface [J]. Chem. Commun.2010,46(34): 6276-6279.
    [33]Zhang, M., Cushing, B.L., O'Connor, C.J. Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles [J]. Nanotechnology 2008, 19(8):085601-085602.
    [34]Huang, J., Chen, W.M., Zhao, W., Li, Y.Q., Li, X.G., Chen, C.P.One-dimensional chainlike arrays of Fe3O4 hollow nanospheres synthesized by aging iron nanoparticles in aqueous solution [J]. J. Phys. Chem. C 2009,113(28):12067-12071.
    [1]Gospodinona, N., Terlemezyan, L. Conducting polymers prepared by oxidative polymerization:polyaniline [J]. Prog. Polym. Sci.1998,23(8):1443-1484.
    [2]Kang, E.T., Neoh, K.G., Tan, K.L. Polyaniline:A polymer with many interesting intrinsic redox states [J]. Prog. Polym. Sci.1998,23 (2):277-324.
    [3]Neqi, Y.S., Adhyapak, P.V. Development in polyaniline conducting polymers [J]. J. Macromol. Sci. Polym. Rev.2002,42 (1):35-53.
    [4]Chuang, F.Y., Yang, S.M. Cerium dioxide/polyaniline core-shell nanocomposites [J]. J. Colloid Interface Sci.2008,320 (1):194-201.
    [5]Luo, X.L., Killard, A.J., Morrin, A., Smyth, M.R. In situ electropolymerised silica-polyaniline core-shell structures:Electrode modification and enzyme biosensor enhancement [J]. Electrochim. Acta.2007,52 (5):1865-1870.
    [6]Asim, N., Radiman, S., Yarmo, M.A. Preparation and characterization of core-shell polyaniline/V2O5 nanocomposite via microemulsion method [J]. Mater. Lett.2008,62 (6-7): 1044-1047.
    [7]Yavuz, O., Ram, M.K., Aldissi, M., Poddar, P., Hariharan, S. Synthesis and the physical properties of MnZn ferrite and NiMnZn ferrite-polyaniline nanocomposite particles [J]. J. Mater. Chem.2005,15 (7):810-817.
    [8]Karim, M.R., Lim, K.T., Lee, C.J., Bhuiyan, M.T.I., Kim, H.J., Park, L.S., Lee, M.S. Synthesis of core-shell silver-polyaniline nanocomposites by gamma radiolysis method [J]. J. Polym.Sci.:Polym. Chem.2007,45 (24):5741-5747.
    [9]Wu, K.H., Shin, Y.M., Yang, C.C., Ho, W.D., Hsu, J.S. Preparation and ferromagnetic properties of Nio.5Zno.5Fe2O4/polyaniline core-shell nanocomposites [J]. J. Polym. Sci.: Polym. Chem.2006,44(8):2657-2664.
    [10]Kassiba, A., Bednarski, W., Pud, A., Errien, N., Makowska-Janusik, M., Laskowski, L., Tabellout, M., Kodjikian, S., Fateyeva, K., Ogurtsov, N., Noskov, Y. Hybrid core-shell nanocomposites based on silicon carbide nanoparticles functionalized by conducting polyaniline:Electron paramagnetic resonance investigations [J]. J. Phys. Chem. C 2007, 111(31):11544-11551.
    [11]Wu, T.M., Lin, Y.W., Liao, C.S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites [J]. Carbon.2005,43 (4):734-740.
    [12]Zhang, X.T., Lu, Z., Wen, M.T., Liang, H.L., Zhang, J., Liu, Z.F. Single-walled carbon nanotube-based coaxial nanowires:Synthesis, characterization, and electrical properties [J]. J. Phys. Chem. B.2005,109(3):1101-1107.
    [13]Zhi, C.Y., Bando, Y., Tang, C.C., Honda, S., Sato, K., Kuwahara, H., Golberg, D. Characteristics of boron nitride nanotube-polyaniline composites [J]. Angew.Chem. Int. Ed. 2005,44 (48):7929-7932.
    [14]Ginic-Marlena, M., Matisons, J.G., Cervini, R., Simon, G.P., Fredericks, P.M. Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization [J]. Chem. Mater.2006,18 (26):6258-6265.
    [15]Xu, J., Li, X.L., Liu, J.F., Wang, X., Peng, Q., Li, Y.D. Solution route to inorganic nanobelt-conducting organic polymer core-shell nanocomposites [J]. J. Polym. Sci.:Polym. Chem.2005,43(13):2892-2900.
    [16]Liu, Y.S., Liu, P., Su, Z.X. Core-shell attapulgite@polyaniline composite particles via in situ oxidative polymerization [J]. Synth. Metal.2007,157(13-15):585-591.
    [17]Gangopadhyay, R., De,A. Conducting polymer nanocomposites:A brief overview [J]. Chem. Mater.2000,12 (3):608-622.
    [18]Levis, S.R., Deasy, P.B. Characterisation of halloysite for use as a microtubular drug delivery system [J]. Int. J. Pharm.2002,243(1-2):125-134.
    [19]Viseras, M.T., Aguzzi, C., Cerezo, P., Viseras, C., Valenzuela, C. Micropor. Equilibrium and kinetics of 5-aminosalicylic acid adsorption by halloysite [J]. Mesopor.Mater.2007,108 (1-3):112-116.
    [20]Zhao, M.F., Liu, P. Adsorption behavior of methylene blue on halloysite nanotubes [J]. Micropor. Mesopor. Mater.2008,112 (1-3):419-424.
    [21]Zhao, M.F., Liu, P. Preparation of halloysite nanotubes/polystyrene (HNTs/PS) core-shell particles via soap-less microemulsion polymerization [J]. J. Macromol. Sci. B Phys.2007,46 (5):891-897.
    [22]Ye, Y.P., Chen, H.B., Wu, J.S., Ye, L. High impact strength epoxy nanocomposites with natural nanotubes [J]. Polymer.2007,48 (26):6426-6433.
    [23]Du, M.L., Guo, B.C., Jia, D.M. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene) [J]. Eur. Polym. J.2006,42 (6):1362-1369.
    [24]Liu, M.X., Guo, B.C., Du, M.L., Jia, D.M. Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film [J]. Appl. Phys. A 2007,88 (2):391-395.
    [25]Liu, M.X., Guo, B.C., Du, M.L., Cai, X.J., Jia, D.M. Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems [J]. Nanotechnology.2007,18 (45): 455703-455704.
    [26]Liu, M.X., Guo, B.C., Zou, Q.L., Du, M.L., Jia, D.M. Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites [J]. Nanotechnology.2008,19 (20): 205709-205711.
    [27]Antill, S.J. Halloysite:A low-cost alternative [J]. Aust. J. Chem.2003,56 (7):723-723.
    [28]Shchukin, D.G., Sukhorukov, G.B., Price, R.R., Lvov, Y.M. Halloysite nanotubes as biomimetic nanoreactors to nanotubes as biomimetic nanoreactors [J]. Small.2005,1 (5): 510-513.
    [29]Wang, A.P., Kang, F.Y., Huang, Z.H., Guo, Z.C., Chuan, X.Y. Micropor. Synthesis of mesoporous carbon nanosheets using tubular halloysite and furfuryl alcohol by a template-like method [J]. Mesopor. Mater.2008,108 (1-3):318-324.
    [30]Luca, V., Thomson, S. Intercalation and polymerisation of aniline within a tubular aluminosilicate [J]. J. Mater. Chem.2000,10 (9):2121-2126.
    [31]Aleshin, A.N. Polymer nanofibers and nanotubes:Charge transport and device applications [J]. Adv. Mater.2006,18 (1):17-27.
    [32]Kanungo, M., Kumar, A., Contractor, A.Q. Microtubule sensors and sensor array based on polyaniline synthesized in the presence of poly(styrene sulfonate) [J]. Anal. Chem.2003, 75(21):5673-5679.
    [33]Baughman, R.H. Playing nature's game with artificial muscles [J]. Science.2005,308 (5718): 63-65.
    [34]Cheng, F.Y., Tang, W., Li,C.S., Chen, J., Liu, H.K., Shen, P.W. Conducting poly(aniline) nanotubes and nanofibers:Controlled synthesis and application in lithium/poly(aniline) rechargeable batteries [J]. Chem. Eur. J.2006,12(11),3082-3088.
    [35]Huang, J., Wan, MX. Polyaniline doped with different sulfonic acids by in situ doping polymerization [J]. J. Polym. Sci., Part A:Polym. Chem.1999,37(9):1277-1284.
    [36]Parthasarathy, R.V., Martin, C.R. Template-synthesized polyaniline microtubules [J]. Chem. Mater.1994,6 (10):1627-1632.
    [37]Joo, J., Park, K.T., Kim, B.H., Kim, M.S., Lee, S.Y., Jeong, C.K., Lee, J.K., Park, D.H., Yi, W.K., Lee, S.H., Ryu, K.S. Conducting polymer nanotubes and nanowires synthesized by using nanoporous template:Synthesis, characteristics, and applications [J]. Synth. Metals. 2003,4(135-136):7-9.
    [38]Pan, L.J., Pu,L., Shi,Y, Song,S.Y., Xu, Z., Zhang,R., Zheng,YD. Synthesis of polyaniline nanotubes with a reactive template of manganese oxide [J]. Adv. Mater.2007,19(3):461-464.
    [39]Gao,Y, Yao, S., Gong, J., Qu, L.Y. Preparation of polyaniline nanotubes via "thin glass tubes template" approach and its gas response [J]. Macromolec. Rapid. Commun.2007,28(3): 286-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700