高性能混凝土抗裂性能及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,国内外高度重视高性能混凝土的研究和开发。传统混凝土的设计主要考虑强度指标,忽视了混凝土的耐久性。工程实例表明,很多混凝土过早破坏的原因是因为耐久性差。然而,混凝土的开裂、渗漏是引起混凝土耐久性不良的最重要因素之一。目前,解决混凝土开裂的方法是综合的,我们调查研究了混凝土开裂的原因,开发研制了高性能抗裂外加剂,优化混凝土的设计和施工方法,并通过补偿收缩达到混凝土体积稳定,提高抗裂强度,满足混凝土拌和物高工作性能的要求。本研究采用多种测试技术,应用表面物理化学、结构化学、固体化学、复合材料学、断裂力学等多学科的理论与方法,从不同的角度进行深入的研究和探讨。
     通过调查研究建筑工程中出现的混凝土开裂、渗漏问题,发现混凝土在非荷载作用下开裂主要是由混凝土的自收缩、干燥收缩、温度收缩、塑性收缩、碳化收缩等各种收缩变形引起的。各种收缩变形叠加后,混凝土的限制收缩值超过极限拉伸率导致裂缝的产生。混凝土浇筑初期开裂主要是温度变形和自收缩引起,后期开裂则主要是因干缩所致。
     本文讨论了粉煤灰、矿渣、杜拉纤维对混凝土膨胀性能的影响,在补偿收缩混凝土中,掺合料使其膨胀率减低,杜拉纤维可以提高混凝土的体积稳定性,显著提高劈拉强度。施工和养护对混凝土抗裂防渗性能有重要影响;对于复合抗裂防水高性能混凝土,湿养护时间不宜低于14天。
     为了全面地考虑原材料、施工、养护、抗拉强度和极限拉伸率等因素对混凝土抗裂性能的影响, 利用数学概率分析方法,引入体积开裂概率的概念评估混凝土的抗裂性能。
     应用材料复合技术,无机-有机多组份复合,研制出一种新型复合抗裂材料,提高混凝土的抗裂防渗性能,且满足混凝土的强度和工作性要求。同时,提出一套完整的制备抗裂高性能混凝土的技术方法。通过系统深入的理论分析,运用多种现代分析测试手段,从材料各组份间的物理化学作用入手,系统研究材料中各组分与结构性能之间的关系,各相之间化学反应和各相分布状态,在已知的化学反应动力学和反应机理的基础上,探明材料增强和抗裂原理,
    
     胡建勤:高性能混凝土抗裂性能及其机理的研究
    实现材料性能可设计的目的。
     无机增强抗裂材料WJ 掺入普通混凝土中,在水化硬化过程中
    生成一定量的微膨胀结晶体,降低空隙率,改善混凝土中孔结构分
    布。其膨胀驱动力是凝胶尺寸的晶体钙矾石吸水肿胀和结晶状钙矾
    石对孔隙产生膨胀压的共同作用。当WJ掺量为8%一12儿 在钢筋和
    邻位的限制下,使混凝土产生0.02%——一0.06%的膨胀率,可在结构
    内建立自应力值 a/ 0.2-0.6 MP a,抵消了混凝土因各种收缩变形造成
    的拉应力,使混凝土内部的拉应力值降低,从而改善了混凝土的应_
    力状态,体积稳定性和抗裂能力显著提高。
     有机减水保塑剂YJ,提高混凝土拌和物的工作性,降低坍落度
    经时损夫,提高强度和抗渗性能,并降低混凝土早期水化温升,推
    迟水化热高峰出现,有效地防止早期温度收缩裂缝。
     混凝土中掺入复合抗裂材料KLFS 可大幅提高混凝土的抗裂防
    渗能力,混凝土渗透高度比为19%,28d 劈拉强度由基准混凝土的
    2.81MPa 提高到 3.28 MPa;28d 抗压强度比 为 135%;拌和物工作
    性能优良。应用KLFS,成功配制出C50-C70复合抗裂防渗高性能混
    凝土,并在实际工程中得到应用。
     复合抗裂防渗高性能混凝土的抗裂防渗机理:
    … (1)复合抗裂材料KLFS 中的含铝相材料与水泥水化产物氢氧
    化钙反应形成钙矾石,在限制条件下产生体积膨胀,起补偿收缩作
    用,并使混凝土密实:
     (2)KLFS 中的无机物质 人与氢氧化钙反应缓慢形成大量微小
    晶体,填充孔隙,增大密实性;
     (3)KLFS中*组分具有高效减水保塑作用,使高性能混凝土
    获得满意的工作性能:
     (4)纤维在混凝土三维乱向分布,形成交错的网状结构,约
    束混凝土体积的改变;
     (5)优化各原材料间的相对比例,增大混凝土密实性,改善各
    相界面的结构和孔结构。
Research and preparation on high performance concrete have been made great progress both home and abroad near twenty years. The compressive strength has been regarded as a major index when we design traditional concrete, but its durability has been neglected. The examples of engineering have shown that much concrete is prematurely destroyed for their weak durability, and yet, the first reason for weak durability is cracking and leakage of concrete. The methods to solve the problem of concrete cracking is comprehensive. We research the causes of concrete cracking,develop the high performance anti-cracking additive, optimize the concrete mix and construction techniques , increase the stability of concrete volume by shrinkage compensation, enhance splitting tensile strength, and can meet demand of high workability of fresh concrete..In the study, a thorough investigation of this problem is made from all points of view, with the aid of various modern measurement & testing technology and different theories & methods in surface physical chemistry, structural chemistry, solid-state chemistry, composite materials, fracture mechanics, etc.
    Our research results have shown that the various shrinkage of concrete cause concrete cracking in building engineering, such as autogenous shrinkage,dry shrinkage,temperature shrinkage,plastic shrinkage,carbonized shrinkage,etc. When the confined shrinkage value which resulted from the confined action of all above shrinkage exceed the ultimate tensile strain, cracks occur. At the primeval moulded time, cracks are mainly caused by temperature shrinkage and autogenous shrinkage, after that, it is mostly caused by dry shrinkage.
    The effects of mineral additive such as fly ash,slag, and Dura fiber on concrete expansive property are studied, the results show that these mineral admixture reduce shrinkage in common concrete and also reduce expansive value in shrinkage -compensating concrete. It is very important for reducing and compensating concrete shrinkage and preventing cracks forming to construction and curing. The expansive property of concrete curing in water is better than that curing in air.The curing time of multiple anti-cracking and impermeability concrete can not less than 14 days.
    Ill
    
    
    
    To take all account of the factors such as raw materials, construction, curing, and tensile strength, limit tensile strain, etc.,which have effect on anti-cracking property of concrete,the overall crack probability is brought forward to access anti-cracking property of concrete ,with aid of mathematics.
    A new kind of multiple anti-cracking additive composed of multiple organic and inorganic ingredient is developed.lt improves anti-cracking and impermeability property of concrete.and can meet the demands of compressive strength and workability of fresh concrete.At the same time, we offer the integrity manufacture method of anti-cracking HPC.
    We discussed the relationship among compositions, construction and properties, studied the chemical reactions of phases, made the mechanism of reinforced and crack-resistance of concrete clear, and made concrete designed according to properties and engineering demand.
    Inorganic anti-cracking reinforced chemical additive ,called WJ, generates some tittle expansive crystals in hydration process in concrete to reduce the porosity and improve the distribution of pore size.The expansive power is process in common to tumefaction that petty crystalloid AFt suck water and pressure to concrete pores that AFt crystal gather volume.Its adding weight was 8%--12% in cement, its restrained expansive ratio was about 0.02%--0.06% ,and relevantil brought self-stress 0.2Mpa?.6Mpa.
    The concrete added organic water-reduce and plastic agent,called YJ,would improve concrete workability, and reduce slump loss, decrease the exothermic rate at the early stage and postpone the arrival time of the highest temperature.lt is compatible to cement well,and had good retarding property, and some air-entrained effect.
    HPC which added multiple anti-cracking additive ,called
引文
[1]胡曙光.绿色水泥与混凝土的可持续发展战略.武汉工业大学学报,1998,20〈特刊〉:6
    [2]Hanson C.M. The Advanced Industrial Material of the 21st Century, Metallurgical and Materials Transportation's A. Concrete, 1995,26A(6): 1321-1340
    [3]吴中伟 廉慧珍.高性能混凝土.北京:中国铁道出版社,1999:10
    [4]kazzunmassa Ozawa etc. Development of High Performance Concrete. Journal of the Faculty of Engineering. The Uni. Of Tokyo (b) XLI, 1992, No. 3.23:12
    [5]Alvaredo A.M., Wittmann F.H. Shrinkage and Cracking of Normal and High Performance Concrete. HPC Materials Properties and Design, 1995:45-50
    [6]P.C. Aitcin. Cements of yesterday and today: Concrete of tomorrow. Cement and Concrete Research. Sept. 2000.
    [7]吴中伟.绿色高性能混凝土与科技创新.建筑材料学报,1998,1(1):1
    [8]吴中伟.绿色高性能混凝土——混凝土的发展方向.混凝土与水泥制品,1998(1):3
    [9]P.K. Mehta. Durability Critical Issues for the Future. Concrete International. July 1997.
    [10]吴中伟.高强、特高强水泥基材料的研究与应用.混凝土与水泥制品,1992(5)
    [11]吴中伟.环保型高效水泥基材料.混凝土,1996(4)
    [12]郑念中.建筑施工技术的成就与展望.施工技术,1999(10):5—9
    [13]Li Jinju, Process of 3rd Inter. Colloq. on Concrete in Developing Countries, Beijing, 1990:624
    [14]厦门市建委厦门市房屋建筑楼板墙体渗漏调研报告.内部资料,1998
    [15]厦门市建委厦门市房屋建筑楼板墙体裂缝调研报告.内部资料,1998
    [16]P.K. Mehta. Advancements in Concrete Technology. Concrete International. June 1999.
    [17]冯乃谦.中国的高性能混凝土技术.山东建材学院学报,1998,12(S1):1
    [18]黄士元,蒋家奋,杨南如等.近代混凝土技术——当代土木建筑科技丛书.西安:陕西科学技术出版社,1998
    
    
    [19]BRFL MAJOR PRODUCT DESCRIPTION—Partner for High Performance Concrete Technology (PHPCT) From: Internet. 1999
    [20]吴中伟.高性能混凝土(HPC)的发展趋势与问题.建筑技术,1998(1)
    [21]吴中伟.环保型高效水泥基材料.混凝土,1996(4)
    [22]Mindess S, Young J F. Concrete. In: Prentice—Hall INC. Englewood Cliffs, New Jersey, 1981
    [23]Aitcin PC, Neville AM. High Performance Concrete Demystified. In: Concrete International. 1993
    [24]BRFL MAJOR PRODUCT DESCRIPTION--; Partner for High Performance Concrete Technology (PHPCT). From: Internet. 1999
    [25]冯乃谦.高性能混凝土,北京:中国建筑工业出版社,1996
    [26]Neville A M著.混凝土的性能.北京:中国建筑工业出版社,1983
    [27]廉慧珍、张青等.国内外自密实高性能混凝土研究及应用现状.施工技术 1999(5):1
    [28]李崇智,冯乃谦等.高性能减水剂的研究现状与展望.混凝土与水泥制品,2001(2):3
    [29]叶可明.建筑施工技术的现状与展望.建筑技术,1998(3):152
    [30]王栋民等.超长钢筋混凝土结构无缝设计施工方法.国家发明专利 ZL93117132.6.1999-05-12授权
    [31]戎君明、郭延辉等.高抛免振捣自密实混凝土,施工技术,1999(5):4
    [32]高育海.C70、C80 高性能混凝土的研究.施工技术,1999(5):6
    [33]蒲心诚.高流态超高强混凝土的研制,混凝土,1997(2):3
    [34]游宝坤主编.建筑结构裂渗控制新技术.北京:中国建材出版社,1998.
    [35]游宝坤,王栋民等.混凝土膨胀剂应用的若干问题.施工技术,2000(10):41
    [36]吴中伟.膨胀混凝土.北京:中国铁道出版社.1991:14
    [37]吴中伟.补偿收缩混凝土,北京:中国建筑工业出版社,1979
    [38]徐浩.自防水混凝土技术.混凝土,1994,(2):11—14
    [39]冷发光,冯乃谦等.提高普通混凝土强度和耐久性正交试验研究.混凝土,2000,(1):18—23.
    [40]蒲心诚.论混凝土工程的超耐久性化.混凝土,2000,(1):3—7.
    
    
    [41]黄士元.混凝土早期裂纹的成因及防治.混凝土,2000(7):3—5.
    [42]王宏伟,王善拔.水泥与减水剂相容性问题雏议.混凝土与水泥制品,2001(2):9
    [43]覃维祖.混凝土组分的复合与相容性.施工技术,1998(5):1—3
    [44]陈婿兮.混凝土膨胀剂的应用及发展.混凝土,1998,(6):2-4
    [45]史美生.膨胀混凝土的裂缝问题讨论.混凝土,2001(5):22
    [46]解松善.水泥基复合材料中界面粘结的研究.硅酸盐学报,1983(11):4
    [47]Mehta P. K. 混凝土的结构、性能与材料.祝永年等译.上海:同济大学出版社,1991
    [48]Lyubinmova T Yu, Pinus E R. Crystallization Structure in the Contact Zone Between Aggregate and Cement in Concrete. Coloid J USSR, 1962, (24)5
    [49]Baalbaki M, Baalbaki W, Barkar S L, Comparison Study on mechanical properties and Microstructure of High Performance Concrete with Natural Aggregate and Synthetic Aggregate. In: Proceedings of International Conference on High Strength Concrete, Lilehammer, Noway, 1993(2)
    [50]吴中伟.水泥基复合材料的界面问题.武汉建材学院学报,1982(2)
    [51]Mehta P K, Manmohan D. Pore Size Distribution and Permeability of Hardened Cement Paste. In: 7th International Symposium on the Chemistry of Cement, Paris, 1980
    [52]Verbeck J J, Helmuth R A. Structures and Physical Properties of Cement Paste. In: Proceeding of Fifth International Symposium on the Chemistry of Cement, Tokyo, 1968(3)
    [53]王铁梦.建筑物的裂缝控制.上海科技出版社.1987:7-8
    [54]王铁梦.工程结构裂缝控制.北京,中国建筑工业出版社 1999:
    [55]王铁梦.工程结构裂缝控制的综合方法.施工技术,2000(5):5
    [56]崔启峰.商品混凝土梁板结构施工早期裂纹控制初探.混凝土,2001(5):20
    [57]黄国兴,惠荣炎.混凝土的收缩.中国铁道出版社.1990.5邓坊编.建筑工程防水材料手册.中国建筑工业出版社.1994:11-15
    [58]邓进标著.水工混凝土建筑物裂缝分析及其处理.武汉水利电力大学出版社.1998:11—13
    [59]Davis, H.E. Autogenous Volume Change of Concrete Proc. of ASTM. 1970, (40): 1103
    
    
    [60]T.C. Powers, Studies of the Physical Properties of Hardened Portland Cement Pastes. Proc. of American concrete institute (41):1946-1947
    [61]安明哲,章维祖,朱金给.高强混凝土的自收缩试验研究.山东建材学院学报,1998,12(S1):139—143
    [62]E. Tazawa, S. Miyazawa, T. kasai. Chemical Shrinkage and Autogenous Shrinkage of Hydrating Cement Paste. Cement and Concrete Research, 1995,25(2):288-292
    [63]C. Hua, P. Acker, A. EhrlaCher-Analyses and Models of the Autogenous Shrinkage of Hardening Cement Paste (Ⅰ) Modeling at Mactroscopic Scale).Cement and Concrete Research. 1995,25(7):1457-1468
    [64]C. Hua, A. Ehrlacher, P. Acker. Analyses and Models of The Autogenous Shrinkage of Hardening Cement Paste (Ⅱ) Modeling at Scale of Hydrating Grains).Cement and Concrete Research, 1997,27(2):245-258
    [65]Arshad A.K.,William D.C. and Denis M.,Creep, Shrinkage, and Thermal Strains in Normal, Medium, and High-Strength Concretes During Hydration .ACI Materials Journal, 1997,94(2):156-162
    [66][美]A. W. 亚当森.表面物理化学.科学出版社.1985:156
    [67]Crassous J.,Charlaix E.,Gayvallet H. Experimental Study of Nanometric Liquid Bridge With a Surface Force Apparatus. Langmuir, 1993,9(8):1995——1998
    [68]Fisher L.R. Forces Due to Capillary-Condensed Liquids: Limits of Calculation From Thermodynamics. Advances in colloid and interface Science. 1982,16:117-125
    [69]A. E. 谢依金等著.胡春芝,袁孝敏等译.水泥混凝土的结构与性能.北京:中国建筑工业出版社,1984,204——212
    [70]Mindess S, Young J F著.方秋清,等译.混凝土.北京:中国建筑工业出版社,1989
    [71]冈田青,车六煦.工学.改订新版.日本朝仓书店 1981
    [72]B. H. 维诺格拉多夫著周新益译.集料对混凝土性能的影响.北京:中国建筑工业出版社,1985,105-107
    [73]Deng Min and Tang Mingshu. Formation and Expansion of Ettringite Crystals ,Cement and Concrete Research, 1994,24(1):119
    [74]B. Mather. Field and Laboratory Studies of the Sulphate Resistance of Concrete. Cement and Concrete Research, 1973,3(5):651
    
    
    [75]W.C. Hansen. Attack on Portland Cement Concrete by Alkali Soils and Waters, A Critical Review. Cement and Concrete Research, 1973,3(5):655
    [76]P.K. Mehta. Laboratory Testing of Cements for Long Term Resistanceto Sulphate. Cement and Concrete Research, 1973,3(5):653
    [77]P.K. Mehta. Scanning Electron Micrographic Studies of Ettringite Formation ,Cement and Concrete Research, 1976,6(2):168
    [78]K. Ogawa, D.M. Roy. C_4A_3S Hydration, Ettringite Formation, and its Expansion Mechanism:Ⅱ Micro structural Observation of Expansion.Cement and Concrete Research, 1982,12(1):101-109
    [79]M. OKushima, R. Kondo, H. MugurLIma. The International Symp. Chem. Cem. Tokyo, 1968, Vol-4:419
    [80]P.K. Mehta. Mechanism of Expansion Associated with Ettringite Formation .Cement and Concrete Research, 1973,3(1):1
    [81]P.K. Mehta, F. Hu, J. American Ceramic Society, 1978,61(3-4):179
    [82]H.F.W. Taylor, A.E. Moor. Nature, 1968, (218):1048
    [83]]P.K. Mehta . Mechancism of Sulfate Attack on Portland Cement Another Look .Cement and Concrete Research, 1983,13(3):401
    [84]刘崇熙.钙矶石脱水前后晶体结构的演变.水泥学术会议论文选集(1980,1981),246
    [85]P.K. Mehta, S. Wang. Expansion of Ettringite by Water Adsorption. Cement and Concrete Research, 1982,12(1):121
    [86]游宝坤.钙矶石与膨胀水泥(膨胀剂),建筑物裂渗控制新技术(首届全国混凝土膨胀剂学术交流会论文集).中国建材工业出版社.1994:82-90
    [87]薛君玕、吴中伟主编.膨胀和自应力水泥及其应用.中国建筑工业出版社,1985.
    [88]R. H. 鲍格著.波特兰水泥化学.中国建筑工业出版社,1980.
    [89]游宝坤,李光明等.大体积补偿收缩混凝土的结构稳定性问题.混凝土.2001(5):7—11
    [90]吴中伟.补偿收缩混凝土的新动向,建筑物裂渗控制新技术(首届全国混凝土膨胀剂学术交流会论文集).中国建材工业出版社.1994:14
    [91]陈建奎.混凝土外加剂的原理与应用.中国计划出版社.1997.222
    
    
    [92]冯浩 朱清江编著.混凝土外加剂工程应用手册.中国建筑工业出版社.1999.321—369
    [93]张云理.混凝土外加剂.中国建筑工业出版社.1988.40-43
    [94]张冠伦 张云理编著.混凝土外加剂原理及其应用技术.上海科学技术文献出版社.1985,140—220
    [95]张冠伦,王玉吉,孙振平编.混凝土外加剂原理与应用.中国建筑工业出版社.1996.72—73
    [96]游宝坤.我国混凝土膨胀剂的发展情况.建筑结构裂渗控制新技术.中国建材出版社,1998.44
    [97]游宝坤,王栋明等.混凝土膨胀剂应用的若干问题.混凝土,2000(10):41——43
    [98]游宝坤,韩立林等.我国补偿收缩混凝土的研究与应用.水泥基复合材料科学与技术,中国建材工业出版社.1999:72——81
    [99]A. Sar ja. Durability Design of Concrete Structures—committee Report 130-CSL. Materials and Structures. Jan-Feb 2000
    [100]杨南如主编.无机非金属材料测试方法.武汉工业大学出版社.1990.158
    [101]Dan Ravina. Slump retention of concrete with and without chemical admixtures. Concrete Research, 1992,22(12):1115-1129
    [102]沈威,黄文熙,闵盘荣.水泥工艺学,武汉工业大学出版社.1991,205
    [103]游宝坤,韩立林,陈富银等.膨胀剂与碱—集料反应.建筑物裂渗控制新技术.中国建材出版社.1994.108-111
    [104]陈建奎王栋民.复合超塑化剂(CSP)对FLC和HPC塌落度损失的控制.水泥基复合材料科学与技术,中国建材工业出版社.1999.116—119
    [105]李崇智,李永德,冯乃谦.21世纪的高性能减水剂.混凝土,2001(5):3-6.
    [106]田培,姚燕等.我国混凝土外加剂的发展现状与展望.水泥基复合材料科学与技术.北京:中国建材工业出版社,1999:161—164
    [107]陈建奎,王栋民。复合超塑化剂(CPS)对FLC和HPC塌落度损失的控制.水泥基复合材料科学与技术.北京:中国建材工业出版社,1999:116—119
    [108]ASTM C1202-91. Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration
    [109]Streicher P E Alexander M G.A Chloride Conduction Test for Concrete. Cement and Concrete Research, 1995, (25),15-19
    
    
    [110]赵铁军,朱金俭,冯乃谦.用交流电测量混凝土渗透性试验方法的参数确定.混凝土,1997,〈2〉:159—161
    [111]T.J. Zhao et al. An Alternating Test Method for Concrete Permeability, Cement and Concrete Research, 1998, Vol-28, No.1:7-12
    [112]沈且申.粉煤灰混凝土.中国铁道出版社.1989.120—144
    [113]刘崇熙.低热微膨胀水泥研究中若干哲学问题.水泥基复合材料科学与技术,中国建材工业出版社.1999.54—55
    [114]吴学礼.浅谈粉煤灰在高效能混凝土中的应用.粉煤灰,1996(2)
    [115]ACI232 Commitee. Proposed Report: Use of Nature Pozzolanas in Concrete. ACI Materials Journal, 1994
    [116]杨全兵,吴学礼,黄士元.掺粉煤灰混凝土的抗盐冻剥蚀性能.粉煤灰混凝土现代技术论文集.第八届全国粉煤灰利用学术研讨会、上海市土木工程学会和工程材料学术委员会第一次年会,1992
    [117]胡建勤,管斌君,何庆丰.粉煤灰对混凝土补偿收缩性能的影响.混凝土与水泥制品.2001(2):15—17
    [118]刘崇熙.低热微膨胀水泥研究中若干哲学问题.水泥基复合材料科学与技术,中国建材工业出版社.199:56
    [119]Lee F.M. The Chemistry of Cement and Concrete. London: Anorld, 1970
    [120]安明吉.高性能混凝土自收缩的研究.[博士论文].北京:清华大学.1999
    [121]F.J. SarKaz. and J.W. Meusel. Evaluation of durability and strength development of ground granulated blast furnace slag. ASTM Cem. Coner. Aggreg, 3(1):40-45
    [122]M. Regourd et al. Use of condensed silica fume as filler in blended cement. ACI, SP-79.851
    [123]沈荣熹.低掺率合成纤维在混凝土中的作用机制.水泥基复合材料科学与技术,中国建材工业出版社.1999:12
    [124]Wittmann F H, Schwesinger P. High performance concrete material properties and design, 冯乃谦译.北京:中国铁道出版社,1998.31—44
    [125]孙伟,硅灰及聚合物对钢纤维水泥性能的影响.混凝土与水泥制品,1987,No.2:1
    [126]孙伟.硅灰及聚合物的掺入对钢纤维与水泥基材料界面层的影响.硅酸盐学报,1987,15(6):503
    
    
    [127]Shen Rongxi, Hill M L, Tian Yongxing. Crack—Arresting Effect of Polypropylene Monofilament Fiber at Small Dosage. Proceeding of the International Conference on Fiber Reinforced Concrete, Guandong Science and Technology Press, 1997:27—33
    [128]Paillere A M. Effect of fider addition on the autogenous shrinkage of silica fume concrete, ACI Materials Journal. 1989,86(2):139-144.
    [129]冯乃谦,邢锋.高性能混凝土技术.原子能出版社.2000.251-253
    [130]B.K. Nyame. Relationships between permeability and pore structure of hardened cement paste-ACI, 1993, (5):139-146
    [131]叶琳昌,沈义.大体积混凝土施工.中国建筑工业出版社.1987.156-158
    [132]龚召熊.水工混凝土的温控与防裂.中国水利水电出版社.1999.19、
    [133]杨明,周士琼等.粉煤灰高性能混凝土养护方法的试验研究.混凝土,2001(7):34
    [134]胡建勤 管斌君等.关于高强混凝土裂缝控制的探讨.福建建设科技,2001(1):30-31
    [135]尚晓琳 孙乐庭.对 C80 高性能泵送混凝土若干问题的认识与实践.施工技术,2000,(5):21—23
    [136]林力勋,樊仕健等.C60 现浇钢筋混凝土楼板大面积开裂原因分析.施工技术,2000(10):19—21
    [137]张永泉,李乃珍等。无黏结预应力补偿收缩混凝土楼板施工.施工技术,2000,(12):24--25
    [138]李家和,高强混凝土收缩及补偿措施研究.混凝土,2000(2):28
    [139]朱清江主编.高强高性能混凝土研制及应用.中国建材工业出版社,1999,
    [140]王寿华,黄荣源等编著.建筑工程质量症害分析及处理.中国建筑工业出版社.1993
    [141]R. Springenschmid. Avoidance of Thermal Cracking in Concrete at Early Ages. E & FN SPON. 1998.
    [142]覃维祖.混凝土的收缩、开裂及其评价与防治.混凝土,2001(7):3
    [143]R. Springenschmid. Thermal Cracking in Concrete at Early Ages. E & FN SPON. 1994.
    [144]R.W. Burrows, The Visible and Invisible Cracking of Concrete. Monograph of ACI. 1998.
    [145]集智,概率论基础与数理统计初步.人民教育出版社.1982.16
    
    
    [146]巴恒静等.高性能混凝土裂缝与显微结构的研究.混凝土,2000(1):24
    [147]邹泓荣.现浇屋盖干缩温度裂缝的形态与预防.建筑技术,1997(12):863—881
    [148]吴中伟.混凝土科学技术的反思.混凝土与水泥制品,1988(6):1
    [149]郑念中.我国建筑业的技术进步和发展重点.建筑技术,1998(4):232
    [150]李悦.钢管高强膨胀混凝土组成、结构与性能的研究.[博士论文].武汉:武汉工业大学.1999年6月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700