SBR单级好氧工艺生物除磷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来经济工业等社会生产生活各方面的飞速发展,环境污染日益严重,伴随着生活污水排入自然界的氮、磷等成为污染天然水体的主要因素,因此对水体中氮、磷以及其中有机物的处理成为水污染处理研究中重要的课题。
     在王冬波等人的前期研究中发现,在采用内循环SBR反应器处理模拟城市生活污水的脱氮除磷的过程中,进水后未经过厌氧段而直接曝气,仍能达到良好的除磷效果。
     本研究基于王冬波等人的前期研究成果,设置两个pH值分别为8.0(R1)和7.0(R2)的SBR单级好氧反应器。稳定运行后,R1中磷进水浓度的为20mg/L,出水浓度降低至3mg/L一下,去除率达到90%。R2磷进水浓度同样为20mg/L,出水浓度在4-6mg/L之间,去除率为75%-85%之间。与此同时两个反应器中COD去除率都达到了95%以上。由此可知在SBR单级好氧工艺中,pH值8.0比pH值7.0更适合除磷的进行。
     在经过前期优化条件的确定后,研究者选用在生活污水中广泛存在的VFAs作为SBR单级好氧工艺的有机碳源研究其除磷性能及可能的生化过程。在pH值为7.5-8.5的条件下,以乙酸钠(R1)和丙酸钠(R2)为反应器的单一碳源,按照好氧(4h)→沉淀出水(0.5h)→静置(7.5h)的方式运行。稳定运行后,R1磷进水浓度为20mg/L,出水浓度为6-7mg/L,去除率为65%-75%,静置结束后系统中释磷量为0.5mg/L。R2磷进水浓度为20mg/L,出水浓度为2-3mg/L,去除率达到85%以上,静置后系统中释磷量为3mg/L。两反应器对COD的去除效果良好,去除率达到95%以上。
     R1主要的储能物质为PHA,R2主要的储能物质为糖原质,在外碳源的消耗过程中,磷浓度的降低不明显,而内碳源则得以积累。在内碳源消耗时,系统中磷的浓度迅速降低。R2系统中微生物生化过程的不同要求更高的能量水平,因而另一储能物质聚磷在其生化过程中扮演着重要的角色,在长达8h的静置期中系统中微生物需要通过水解在好氧段合成的聚磷来为自身生长与新陈代谢提供能量。
In recent years, the economy and the industry develop speedily. it is serious increasingly that the nitrogen, phosphorus compound causes the phenomenon of water pollution. Therefore, the wastewater not only needs to remove COD, but also needs to take off nitrogen and phosphorus. It had become the most important question of the water pollution research.
     Wang Dongbo et al discoverd a phenomenon by the anteriorly research, that is in the course of nitrogen and phosphorus removal of municipal wastewater with inner-loop SBR, wastewater enterd the aeration phase directly, without anaerobic phase, the anaerobic phase was conventionally considered as a key phase for phosphorus removal, but a predominant phosphorus removal were still achieved.
     The research based on Wang Dongbo’s research. Set two reactors, pH was 8.0(R1)and 7.0(R2). After two reactors operate smoothly, the R1’s influent of phosphorus was 20mg/L and effluent was under 3mg/L, the removal rate was 90%. In the same way, the R2’s influent was 20mg/L, but the effluent was 4-6mg/L, the removal rate was 75%-85%. In the same time, two reactors’s COD removal rate were above 95%. So, we consider the condition which pH was 8.0 is better than the pH was 7.0 to sustain the operate of phosphorus removal.
     After confirm the best condition of SBR, the researcher studied the effect of VFAs on the performance of phosphorus removal, and the path of biochemistry were also studied. Two reactor’s pH was in the rang of 7.5~8.5. Two typical substrates of acetate and propionate were, respectively, fed to R1 and R2 qua the sole carbon source. Two reactors operate by the mode that aerobic(4h), deposit(0.5h), settling(7.5h). After two reactors operate smoothly, the R1’s influent of phosphorus was 20mg/L and effluent was under 6-7mg/L, the removal rate was 65%-75%. After the settling phase, phosphorus release was 0.5mg/L. the R2’s influent of phosphorus was 20mg/L and effluent was under 2-3mg/L, the removal rate was above 85%. After the settling phase, phosphorus release was 3mg/L. Two reactors’s effect of COD removal were high, the removal rate was above 95%.
     The energy storage in R1 was PHA, but in R2 was glycogen, they were accumulated when external carbon source was comsumed and the phosphorus’s decrease was not obvious. The phosphorus decrease fleetly when the endogenous carbon source was comsumed. Because the biochemistry processes of the microorganisms were different, the system of R2 need more energy than R1. That’s the reason why the polyphosphate plays a very important role in the biochemistry processes. The microorganisms need energy to maintain in the long-time settling phase.
引文
[1]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999:1-5,251-262
    [2]景来,王剑波,常冠钦,等.环境生物技术与应用.北京:化学工业出版社, 2002
    [3] Barker P S, Dold P L. Denitrification behaviour in biological excess phosphorus removal in activated sludge systems. Water Res., 1996, 30: 769-780
    [4] Kuba T., van Loosdrecht M.C.M, Heijnen J J. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full scale wastewater treatment plant. Wat. Sci. Tech., 1997, 36(12): 75-82
    [5] Lacko N, Drysdale G D, Bux F. Anoxic phosphorus removal by denitrifying heterotrophic bacteria. Wat. Sci. Tech., 2003, 47(11): 17-22
    [6] Kuba T., Smolders G J F, van Loosdrecht M.C.M, et al. Biological phosphorus removal from wastewater by anaerobic/anoxic sequencing batch reactor. Wat. Sci. Tech., 1993, 27(5-6): 241-252
    [7]耿朝安,张洪林.废水生物处理发展与实践.第一版.沈阳:东北大学出版社, 1997
    [8]徐亚同.废水中氮磷的处理.上海:华东师范大学出版社, 1996
    [9] Levin G V, Shapiro J. Metabolic uptake of phosphorus by wastewater organisms. WPCF. 1965, 37(6): 800~821
    [10] Harold F M. Inorganic polyphoshates in biology structure metabolism and function. Bacteriological. 1966, 30(4): 774~794
    [11] Nicholsl H A, Osborn D W. Bacterial stress: prerequisite for biological removal of phosphorus. WPCF. 1979, 51(3): 557~569
    [12] Wentzel M C, Dold P L, Ekama G A, et al. Enhanced polyphosphate organism cultures in activated sludge system. PartШ: Kinetic Model, Water SA. 1989, 15(2):89~102
    [13] Peng, Y.Z., Wang, X.L., Li, B.K. Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination, 2005, 189: 155-164
    [14] Kim, Y.H., Bae, B., et al. Optimization of Biological Phosphorus Removal from Contaminated Sediments with Phosphate-Solubilizing Microorganisms. J Biosci. Bioeng., 2005, 99: 123-129
    [15] Zhang, H.M., Xiao, J.N., Cheng, Y.J., et al. Comparison between a sequencing batch membrane bioreactor and a conventional membrane bioreactor. Process Biochem., 2006, 41: 87-95
    [16] Auvray, F., van Hullebusch, E.D., Deluchat, V., et al. Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium. Water Res., 2006, 40, 2713-2719
    [17]周群英,高廷耀.环境工程微生物学.北京:高等教育出版社, 2001
    [18] Harper Jr. W.F., Anise, O., Brown, E. Polyphosphate buffering by biomass with different phosphorus contents. Water Res., 2006, 40, 1599-1606
    [19] Tsuneda, S., Ohno, T., Soejima, K., et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem. Eng. J., 2006, 27, 191-196
    [20]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社, 2002
    [21]肖锦.城市污水处理及回用技术.北京:化学工业出版社,2002
    [22]许保玖.当代给水与废水处理原理(第二版).北京:高等教育出版社,1991
    [23]李军微.生物与水处理工程.北京:化学工业出版社,2002
    [24] Iwenraa A.and Meunier A. Influence of nitate on acetic acid induced biological phosphorus removal. Wat. Sci. Technol., 1985, 17(11): 289-294
    [25] Malnou D., Meganck M,Faup G. M. and du Rostu M. Biological phosphorus removal: study of the mainpara meters. Wat. Sci. Technol., 1984,16 (10/11): 173-185
    [26] Kuba T., van Loosdrecht M.C.M., Brandse F. A. Heijnen J.J. Occurrence of denitrifying phosphorus removing bacteria in modified UCT type wastewater treatment plants. Water Res., 1997, 31(4): 777-786
    [27] Westholm, L.J. Substrates for phosphorus removal—Potential benefits for on-site wastewater treatment Water Res., 2006, 40, 23–36
    [28] Kerren-Jespersen J P, Henze M, Struber R. Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fix-film reactor. Water Res, 1994, 28:1253-1255
    [29] Harold F M, Harold R L. The role of anaerobic stage on biological phosphorus removal. Water Sci Tech, 1965, 17:69-80
    [30] Cech J S, Hartman P. Competition between polyphosphate and polysaccharide accumulating bacteria in biological phosphorus removal systems. Water Res., 1993, 27: 1219-1225
    [31] Mat suo Y. Effect of the anaerobic SRT on enhanced biological phosphorus removal. Water Sci.Tech.l, 1994, 30 (6): 193-202
    [32] Satoh H, Mino T, Matsuo T. Deterioration of enchanced biological phosphate removal by the domination of microorganisms without poly-P accumulation. Water.Sci.Tec., 1994, 30 (6): 203-211
    [33]张国昌,赵丙辰,祝征圣,等.城市污水处理厂增加脱氮除磷功能的改造实践.青岛理工大学学报, 2006, 27(4): 68-71
    [34]丁超.序批式活性污泥法脱氮除磷工艺的分析与改造.市政技术,2006, 24 (4): 231-235
    [35]王冬波,李小明,曾光明,等.内循环SBR反应器单级好氧实现同步脱氮除磷.环境科学,2007, 28 (3): 534-539
    [36]王冬波,李小明,杨麒,等.SBR单级好氧实现生物除磷.环境科学,2008, 29(7):119-125
    [37]国家环保局编委会.水和废水监测分析方法.第三版.北京:中国环境科学出版社,1997, 96-120
    [38]顾夏声,黄铭荣.水处理工程.第一版.北京:清华大学出版社,1985, 4-26
    [39] Takabatake H, Satoh H, Mino T, et al. PHA(polyhydroxyaikanoate) production potential of activated sludge treating wastewater. 2002,45(12):119-126
    [40] Adrian Oehmen, Beatrice Keller-Lehmann, Raymond J.Zeng, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. Journal of Chromatography A. 2005, 1070:131-136
    [41]豆俊峰,罗固源,刘翔.生物除磷过程厌氧释磷的代谢激励及其动力学分析.环境科学学报, 2005,25(9): 1164-1169
    [42] Tay J H,Show K Y and Jeyaseelan S.Effects of media characteristics on performance of upflow anaerobic packed-bed reactors. J. Environ. Eng., 1996, 122(6): 469-476
    [43] Barat, R., van Loosdrecht, M.C.M. Potential phosphorus recovery in a WWTP with the BCFS Process: Interaction with the biological process. Water Res., 2006, 40, 3507-3516
    [44] Casellas, M., Dagot, C., Baudu, M. Set up and assessment of a control strategy in a SBR in order to enhance nitrogen and phosphorus removal. Process Biochem., 2006, 41, 1994-2001
    [45] Van Rijn, J., Tal, Y., Schreier, H.J. Denitrification in recirculating systems: Theory and applications. Aquacult. Eng., 2006, 34, 364-376.
    [46] Cassidya, D.P., Beliab, E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Res., 2005, 39, 4817–4823
    [47] Yang, Y.F., Inamori, Y.H., Ojima, H., et al. Development of an advanced biological treatment system applied to the removal of nitrogen and phosphorus using the sludge ceramics. Water Res., 2005, 39: 859–4868
    [48] Huett, D.O., Morris, S.G., Smith, G., et al. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. Water Res., 2005, 39: 3259–3272
    [49] Lemaire, R., Meyer, R., Taske, A., et al. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. J. Biotechnol., 2006, 122: 62–72
    [50] Pijuan M., Guisasola A., Baeza J.A., et al. Aerobic phosphorus release linked to acetate uptake: Influence of PAO intracellular storage compounds. Biochemical Engineering Journal. 2005, 26:184~190
    [51]方茜,张可方,张朝升,等. SBR法处理低碳城市污水的除磷规律.中国给水排水, 2004, 20(8): 43~46
    [52]王冬波,李小明,曾光明,等.内循环SBR反应器无厌氧段实现同步脱氮除磷.环境科学, 2007, 28: 534-539
    [53]王冬波,李小明,杨麒,等. SBR无厌氧段实现生物除磷.环境科学, 2008, 29: 1867-1873
    [54] Wang D, Li X, Yang Q, et al. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresour Technol 2008, 99: 5466-5473
    [55]王冬波,李小明,杨麒,等. SBR单级好氧工艺实现生物除磷的诱导机理.科学通报,审稿中
    [56] WANG DongBo, LI XiaoMing, YANG Qi,et al. Effect and mechanism of carbon sources on phosphorus uptake by microorganisms in sequencing batch reactors with the single-stage oxic process. Science in China Series B: Chemistry 2009 vol. 52 1-8
    [57] NAIK R V. Enhancement of denit rification using preferment2ers in biological nut rient removal systems. Orlando : Uni2 versity of Cent ral Florida ,1999
    [58] THOMAS M,WRIGHT P ,BLACKALL L ,et al. Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Water Sci. Technol . ,2003 ,47 (12) :1412148
    [59] VonMuench E. DSP prefermenter technology book. Brisbane, Old., Australia: Science Traveller International CRC WMPC Ltd; 1998
    [60] Smolders G J F, Vandermeij J, van Loosdrecht M C M, et al. Model of the anaerobic metabolism of the biological phosphorus removal process—stoichiometry and pH influence. Biotechnol Bioeng 1994, 43: 461-470
    [61]王镜岩,朱圣庚,徐长发.生物化学(下册).北京:高等教育出版社, 2002:98,240
    [62] Oehmen A, Vives M T, Lu H, et al. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Water Res 2005, 39: 3727-3737
    [63] FU KASE T ,SHIBATA M ,MIYAJ I Y. The role of t he anaerobic stage on biological phosphorus removal. Water Sci.Technol 1984 ,17 (1) :69-80
    [64] MINO T ,LIU W T , KURISU F ,et al . Modeling glycogenstorage and denit rification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci. Technol 1995 ,31 (2) :25-34
    [65] NIELSEN A T ,LIU W T , FILIPE C ,et al . Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl . Environ. Microbiol 1999 ,65 (3) :1251-1258
    [66] CROCETTI G R ,BANFIELD J F ,KELL ER J ,et al . Glycogen accumulating organisms in laboratoryscale and fullscalewastewater t reatment processes. Microbiology , 2002 , 148(11)
    [67] KONG Y,ONG S L ,NG W J ,et al . Diversity and dist ribution of a deeply branched novel proteobacterial group found in anaerobic/aerobic activated sludge processes. Environ. Microbiol 2002 ,4 (11)
    [68] OEHMEN A , YUAN Z ,BLACKALL L L , et al . Shortterm effect s of carbon source on t he competition of polyphosphate accumulating organisms and glycogen accumulating organisms. Water Sci. Technol 2004 ,50 (10)
    [69] PIJUAN M ,SAUNDERS A M , GUISASOLA A , et al . Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as t he sole carbon source. Biotechnol . Bioeng 2004 ,85 (1) :56-67
    [70] Maurer M, Gujer W, Hany R, et al. Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems. Water Res 1997, 31: 907-917
    [71]郑弘,陈银广,杨殿海,等.污水起始pH值对序批式反应器(SBR)中增强生物除磷过程的影响研究.环境科学, 2007,28(3): 512-516
    [72] Adrian Oehmen, M. Teresa Vives, Huabing Lu, et al. The effect of pH on the competition between polyphosphate accumulating organisms and glycogen-accumulating organisms. Water Res., 2005,39: 3727-3737

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700