钙镁离子浓度及盐度驯化对褐牙鲆幼鱼血清渗透压的影响及其渗透调节机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐牙鲆(Paralichthys olivaceus)是分布于我国、日本和韩国等东北亚沿岸的底栖鱼类,具有重要的经济价值,在海水鱼类养殖业中占有重要地位。本实验以褐牙鲆幼鱼为研究对象,研究了钙镁离子总浓度、钙离子浓度及盐度驯化对其血清渗透压的影响,并对其渗透调节机制进行了探讨,主要得到以下结果及结论:
     1、钙离子浓度对褐牙鲆幼鱼血清渗透压的影响及其渗透调节机制的研究
     Ca2+由自然海水(9.7 mM)向低浓度组(a1:1.25 mM)突变216 h内,褐牙鲆幼鱼血清渗透压在6 h时显著升高(P<0.05),12 h后即恢复至正常水平;鳃和肠Na--K+-ATPase和Ca2+-ATPase活力略有下降,呈现下降(6 h和72 h)后回升(12 h和96 h)并趋于稳定的趋势,肾Na+-K+-ATPase和Ca2+-ATPase活力显著升高(P<0.05),呈现上升(6 h)后下降(24 h)并趋于稳定的趋势;血清Na+、Cl-和K+含量无显著变化,实验6 h后,血清Ca2+含量下降并维持稳定,但与对照组无显著差异(P>0.05),血清Mg2+含量则显著上升并维持稳定(P<0.05);光镜结果显示(216 h),鳃丝横切面内氯细胞密度以及大小与对照组均无显著差异(P>0.05);电镜结果显示(6 h),氯细胞微管系统分支减少。Ca2+由自然海水(9.7 mM)向高浓度组(a3:37.5,a4:75,a5:100 mM)突变216 h内,血清渗透压无显著变化(P>0.05);鳃、肠、肾Na+-K+-ATPase和Ca2+-ATPase活力均升高,呈现上升(6 h、72 h和6 h)后下降(24 h、96 h和24 h)并趋于稳定的趋势;血清Na+、Cl和K+含量无显著变化,a3和a4组血清Ca2+含量与对照组无显著差异(P>0.05),a5组血清Ca2+含量72 h后显著增加并维持稳定(P<0.05),a4、a5处理组血清Mg2+含量显著下降并维持稳定(P<0.05),但a3组血清Mg2+含量无显著变化(P>0.05);光镜结果显示(216 h),各处理组鳃丝氯细胞密度无显著变化,氯细胞大小略有增加,其中a5组显著高于对照组(P<0.05);电镜结果显示(6 h),a5组氯细胞线粒体内嵴发达,而微管系统出现衰弱现象。Ca2+由自然海水(9.7 mM)向低浓度组(b1:5 mM)突变60 d后,除鳃丝氯细胞密度显著增加(P<0.05)外,其它各项指标均无显著变化。Ca2+由自然海水(9.7 mM)向高浓度组(b3:20, b4:37.5, b5:75 mM)突变60 d后,各处理组血清渗透压均无显著变化;b3和b4组鳃、肠、肾Na+-K+-ATPase和Ca2+-ATPase活力恢复至正常水平,而b5组鳃、肠、肾Na+-K+-ATPase和Ca2+-ATPase活力略有增加,其中鳃和肠Na+-K+-ATPase和Ca2+-ATPase活力显著高于对照组(P<0.05);各处理组血清Na+、Cl和K-含量无显著变化,血清Ca2+含量与水中Ca2+浓度呈正相关,其中b5组显著高于对照组(P<0.05),而血清Mg2-含量与水中Ca2+浓度呈负相关且均显著低于对照组(P<0.05);各处理组氯细胞密度均无显著变化(P>0.05),b5组氯细胞大小显著增加(P<0.05),而b3和b4组氯细胞大小无显著变化;b5组氯细胞微管系统密集且管系分支增加。综合分析认为,Ca2+浓度发生突变时,在短期应激反应和长期适应过程中,褐牙鲆幼鱼血清渗透压均无显著变化,但其通过调节鳃、肠和肾Na+-K+-ATPase和Ca2+-ATPase活性及改变血清Ca2+和Mg2+含量来维持体液离子的动态平衡。
     2、钙镁离子总浓度对褐牙鲆幼鱼血清渗透压的影响及其渗透调节机制的研究
     钙镁离子由自然海水(60 mM)向低浓度组(A1: 7.5, A2:27 mM)突变216 h内,A1和A2组血清渗透压分别在72 h和6 h显著增加(P<0.05),在其它取样时间无显著变化;鳃Na+-K+-ATPase和Ca2+-ATPase活力呈先下降(6 h)后上升(72 h)再下降(96 h)并趋于稳定的趋势;A1组血清Na+、K-和Cl-含量无显著变化(P>0.05),血清Ca2+含量在48 h内略有下降,72 h后恢复至正常水平,血清Mg2+含量略有增加,在6 h和144 h时显著高于对照组(P<0.05),A2组血清离子含量无显著变化(P>0.05);光镜结果显示(216 h),A1和A2组氯细胞密度和大小均无显著变化;电镜结果显示(216 h),A1组氯细胞微管系统疏松,线粒体内嵴出现溶解现象。钙镁离子由自然海水(60 mM)向高浓度组(A4:105, A5:180 mM)突变216 h内,A4组血清渗透压在72 h和216 h显著高于对照组(P<0.05),在其它取样时间与对照组无显著差异,A5组血清渗透压在24 h后显著升高并维持稳定(P<0.05);鳃Na+-K+-ATPase和Ca2+-ATPase活力呈现上升(72h)后下降(96 h)并趋于稳定的趋势;A4组血清离子含量无显著变化(P<0.05),A5组血清Na+、Cl和Ca2+分别在48 h、24 h和6 h后显著增加并趋于稳定(P<0.05),K+在72 h和96 h时显著增加(P<0.05),Mg2+含量下降并维持稳定,在6 h和12 h时显著低于对照组(P<0.05);光镜结果显示(216 h),A4组氯细胞密度和大小均无显著变化(P>0.05),A5组氯细胞密度无显著变化,而氯细胞大小显著高于其他各组(P<0.05);电镜结果显示(216 h),A4组氯细胞线粒体体积略有增大,A5组氯细胞线粒体密度显著增加,微管系统管径变粗。钙镁离子由自然海水(60 mM)向低浓度组(B1:27, B2:45 mM)突变60 d后,血清渗透压和血清离子均恢复至正常水平;鳃Na+-K+-ATPase和Ca2+-ATPase活力显著高于对照组(P<0.05);光镜结果显示,B1组氯细胞密度显著增加(P<0.05),氯细胞大小无显著变化;电镜结果显示,B1组氯细胞线粒体密度显著增加,微管系统发达。钙镁离子由自然海水(60 mM)向高浓度组(B4:90, B5:105 mM)突变60 d后,血清渗透压、血清离子和鳃Na+-K+-ATPase和Ca2+-ATPase活力均无显著变化;光镜结果显示,B5组氯细胞密度显著下降(P<0.05),而氯细胞大小显著增加(P<0.05);电镜结果显示,B5组氯细胞微管系统分支增加,管径变粗。综合分析认为,钙镁离子浓度发生突变时,在短期应激反应中,低钙镁处理组和高钙镁处理组褐牙鲆幼鱼血清渗透压均显著增加,经60天适应后均恢复至正常水平,褐牙鲆幼鱼主要通过调节其鳃Na+-K+-ATPase和Ca2+-ATPase活性及血清离子含量来维持其体液离子的动态平衡。
     3、钙镁离子浓度对褐牙鲆幼鱼鳃黏液细胞数量、超微结构及分泌方式的影响
     褐牙鲆幼鱼在低浓度钙镁离子人工海水中(A1:7.5, A2:27mM)适应9 d后,鳃弓黏液细胞数量增加,但与对照组无显著差异(P>0.05),高浓度钙镁离子组(A4:105, A5:180 mM)黏液细胞数量减少,其中A5组显著低于对照组及各低浓度钙镁离子组(P<0.05);在低浓度钙镁离子人工海水中(B1:27 mM)适应60 d后,鳃弓黏液细胞数量显著增加(P<0.05),高浓度钙镁离子处理组(B3:105 mM)鳃弓黏液细胞数量减少,但与对照组无显著差异(P>0.05);在低浓度钙离子人工海水中(C1:1.25 mM)适应9 d后,鳃弓黏液细胞数量增加,各高浓度钙离子组(C3:37.5, C4:75, C5:100 mM)鳃弓黏液细胞数量减少,但各处理组间鳃弓黏液细胞数量无显著差异(P>0.05);在低浓度钙离子人工海水中(D1:5 mM)适应60 d后,鳃弓黏液细胞数量增加,但与对照组无显著差异(P>0.05),各高浓度钙离子处理组(D3:37.5,D4:75 mM)鳃弓黏液细胞数量减少,其中D4组显著低于D1组(P<0.05),但D3、D4组与对照组均无显著差异(P>0.05)。高浓度钙离子胁迫组鳃弓黏液细胞的数量与对照组无显著差异(P>0.05),且其鳃丝黏液细胞的超微结构相同;高浓度钙离子胁迫组和对照组鳃丝黏液细胞的分泌方式相同,均为顶浆分泌,但胁迫组实验鱼黏液细胞分泌活动旺盛,大量黏液正在向胞外排放,而对照组黏液细胞的黏液分泌量较少。综合分析认为,低浓度钙镁离子或钙离子能够刺激褐牙鲆幼鱼鳃弓黏液细胞的增殖,而高浓度钙镁离子或钙离子则能够抑制黏液细胞的增殖,且褐牙鲆幼鱼对高浓度钙离子胁迫具有较强的耐受能力。
     4、盐度驯化对褐牙鲆幼鱼血清渗透压和鳃Na+-K+-ATPase活力的影响
     (1)盐度驯化对血清渗透压的影响:在以不同日盐度变化幅度的低盐和高盐驯化过程中,褐牙鲆幼鱼血清渗透压与驯化到的盐度均呈明显正相关性,随驯化盐度升降而上升或下降。在驯化至高盐47后的适应过程中,以日变幅7驯化的处理组血清渗透压2 d后显著下降并趋于稳定(P<0.05),而以日变幅14驯化的处理组血清渗透压呈逐渐升高趋势;在驯化至低盐5后的适应过程中,以日变幅7驯化的处理组血清渗透压2 d后显著下降并趋于稳定(P<0.05),而以日变幅14驯化的处理组血清渗透压在第2 d时显著下降(P<0.05),4 d后趋于稳定。(2)盐度驯化对鳃丝Na+-K+-ATPase活力的影响:以日变幅3.5驯化至5和47的过程中,Na+-K+-ATPase活力均呈升高趋势,而以日变幅7和14驯化至不同盐度时,Na++K+-ATPase活力均无显著变化(P>0.05)。在驯化至高盐47后的适应过程中,以日变幅7驯化的处理组Na--K+-ATPase活力2 d后显著上升并趋于稳定(P<0.05),而以日变幅14驯化的处理组Na+-K+-ATPase活力呈现上升后下降的趋势,各时间段均无显著差异(P>0.05);在驯化至低盐5后的适应过程中以日变幅7驯化的处理组Na+-K+-ATPase活力第2 d时显著增加,之后略有下降并趋于稳定,而以日变幅14驯化的处理组Na+-K+-ATPase活力则呈先下降后回升再下降的趋势。综合分析认为,褐牙鲆幼鱼鳃丝Na--K+-ATPase活力在其正常生活的环境中最低,而在高盐驯化和低盐驯化时均升高,此外,以日变幅7的盐度驯化能够缩短褐牙鲆幼鱼在盐度适应过程中的调整时间。
Japanese flounder, Paralichthys olivaceus, which is found in the coast of Northeast Asia, such as China, Japan and Korea, is a kind of high-value commercial fish and plays an important role in marine aquaculture. The author studies the effect and the osmoregulation mechanisms of calcium and magnesium concentrations and salinity acclimatization on serum osmolarity of juvenile Japanese flounder. The main results and conclusions from the studies are as follows:
     1. The effect and the osmoregulation mechanisms of calcium concentration on serum osmolarity of juvenile P. olivaceus
     The osmoregulation mechanisms of juvenile Japanese flounder transferred directly from seawater (Ca2+,9.7 mM) to aritificial seawater with different calcium concentrations were studied for 216 hours and 60 days respectively. Changes in serum osmolarity, serum ions, gill, intestine and kidney Na+-K+-ATPase and Ca2+-ATPase activities, as well as the density, size and ultrastructure of chloride cell in gill filament were measured at 6,12,24,72,96,144,216 hour and 60 day. First, changes of experimental parameters were observed in low calcium concentration treatment (a1: 1.25 mM) for 216 h. Serum osmolarity increased significantly at 6 h, and returned to control group level after 12 h. Gill and intestine Na+-K+-ATPase and Ca+-ATPase activities showed transiently decreased at 6 h and 72 h respectively, and quickly returned to control group level at 12 h and 96 h separately. However, kidney Na+-K+-ATPase and Ca+-ATPase activities increased significantly, reached a peak value at 6 h, slightly decreased after 24 h and maintained a new steady state (P<0.05). Serum Na+, Cl- and K+ concentrations showed no significant change (P>0.05). Serum calcium concentration slightly decreased after 6 h and maintained a new steady state, while magnesium concentration increased significantly at 6 h and hold steady (P<0.05). Light microscope results showed that the density and size of chloride cell had no significant change at 216 h (P>0.05), while electron microscope results showed that chloride cell membranous tubules reduced at 6 h. Second, changes of experimental parameters were also observed in high calcium concentration treatments (a3:37.5, a4:75, a5:100 mM) for 216 h. The results showed that serum osmolarity maintained a steady state during the whole experiment (P>0.05). Gill, intestine and kidney Na+-K+-ATPase and Ca2+-ATPase activities increased at 6 h,72 h and 6 h respectively, and then decreased at 24 h,96 h and-24 h separately and hold steady, but higher than control treatment. Serum Na+, Cl- and K+ concentrations showed no significant change (P>0.05). Serum calcium concentration of as increased significantly after 72 h and maintained a new steady state (P<0.05), whlie calcium of a3 and a4 showed no change. Serum magnesium concentration of a4 and as decreased significantly after 6 h and maintained a new steady state (P<0.05), while magnesium of a3 showed no change. Light microscope results showed that the density of chloride cell of the three treatments had no significant change at 216 h (P>0.05), while the size of chloride cell of a5 increased significantly (P<0.05). Electron microscope results showed that the cristae of mitochondria of as were more stronger, but the tubular network became weaker at 6 h. Third, changes of experimental parameters were measured in low calcium concentration treatment (b1:5 mM) at 60 d. The results showed that all of experimental parameters recovered to normal levels except for the density of chloride cell which increased significantly (P<0.05). Last, changes of experimental parameters were also measured in high calcium concentration treatments (b3:20, b4:37.5, b5:75 mM) at 60 d. The results showed that serum osmolarity in the three treatments had no significant change (P>0.05). Gill, intestine and kidney Na+-K+-ATPase and Ca--ATPase activities in b3 and b4 recovered to control group level, while increased in b5. Serum Na+, Cl- and K+ concentrations showed no significant change (P>0.05). Serum calcium concentration was positive with ambient calcium concentration, while serum magnesium concentration was negative with ambient calcium concentration (P<0.05). Light microscope results showed that the density of chloride cell in the three treatments had no significant change (P>0.05), while the size of chloride cell of b5 increased significantly (P<0.05). Electron microscope results showed that chloride cell tubular network of b5 were greater development. We concluded that serum osmolarity of juvenile Japanese flounder had no significant change under short and long adaptive process when calcium concentration abruptly changed, but it could keep ions kinetic equilibrium of body fluid by adjusting Na+-K+-ATPase and Ca2+-ATPase activities in gill, intestine and kidney as well as serum calcium and magnesium concentrations.
     2. The effect and the osmoregulation mechanisms of calcium and magnesium total concentrations on serum osmolarity of juvenile P. olivaceus
     The osmoregulation mechanisms of juvenile Japanese flounder transferred directly from seawater (Ca2++Mg2+:60 mM) to artificial seawater with different calcium and magnesium total concentrations were studied for 216 hours and 60 days respectively. Chages in serum osmolarity, serum ions, gill Na+-K+-ATPase and Ca2+-ATPase activities, as well as the density, size and ultrastructure of chloride cell in gill filament were measured at 6,12,24,48,72,96,144,216 hour and 60 day. First, changes of experimental parameters were measured in low calcium and magnesium total concentrations treatments (A1:7.5, A2:27 mM) for 216 h. Serum osmolarity of A1 and A2 increased significantly only at 72 h and 6 h respectively (P<0.05). Gill Na+-K+-ATPase and Ca2+-ATPase activities decreased at 6 h, but began to increase after 12 h, reached a peak vaule at 72 h, and ruturned to control group level after 96 h. Serum Na+, Cl- and K+ concentrations of A1 had no change (P>0.05), while serum Ca2+ concentration of A1 slightly decreased within 48 h, and returned to control group level after 72 h. Serum Mg2+ concentration of A1 significantly increased at 6 h and 144 h (P<0.05). Serum ions of A2 had no significant change (P>0.05). Light microscope results showed that the density and size of chloride cell of A1 and A2 had no significant change at 216 h (P>0.05). Electron microscope results showed that chloride cell tubular network became loose and the cristae of mitochondria became vague of A1 at 216 h. Second, changes of experimental parameters were also measured in high calcium and magnesium total concentrations treatments (A4:105, A5: 180 mM) for 216 h. Serum osmolarity of A4 significantly increased only at 72 h and 216 h (P<0.05), while serum osmolarity of A5 significantly increased after 24 h and hold steady (P<0.05). Serum ions of A4 had no significant change, while serum Na+ Cl-, and Ca2+ of A5 increased significantly at 48 h,24 h and 6 h respectively and maintained a new steady state (P<0.05). However, serum K+ concentration increased significantly only at 72 h and 96 h (P<0.05). Serum magnesium concentration significantly decreased at 6 h,12 h and maintained at a low state (P<0.05). Light microscope results showed that the density and size of chloride cell of A4 had no significant change, while the size of chloride cell of A5 significantly increased (P<0.05). Electron microscope results showed that the volum of mitochondriale of chloride cell were larger and the tubular network were greater development of A4, and the density of mitochondria were greater abundance of A5. Third, changes of experimental paramters were observed in low calcium and magnesium total concentrations treatments (B1:27, B2:45 mM) at 60 d. Both serum osmolarity and ions returned to normal levels, while gill Na+-K+-ATPase and Ca2+-ATPase activities significantly increased (P<0.05). Light microscope results showed that the density of chloride cell of B1 significantly increased (P<0.05), while the size of chloride cell had no change (P>0.05). Electron microscope results showed that chloride cell mitochondria were more abundance and the tubular network were greater development in B1. Last, changes of experimental parameters were also observed in high calcium and magnesium total concentrations treatments (B4:90, B5:105 mM) at 60 d. Serum osmolarity, serum ions and gill Na+-K+-ATPase and Ca2+-ATPase activities were all no significant change (P>0.05). Light microscope results showed that the density of chloride cell of B5 significantly decreased (P<0.05), while the size of chloride cell significantly increased (P<0.05). Electron microscope results showed that chloride cell mitochondria criatae were stronger, and the tubular network were greater development of B5. We concluded that serum osmolarity of juvenile Japanese flounder increased significantly both in low and high treatments when calcium and magnesium total concentrations changed shortly, but it returned to control group level after long adaptive process by adjusting gill Na+-K+-ATPase and Ca2+-ATPase activities as well as serum ions to keep ions kinetic equilibrium of body fluid.
     3. The effect of calcium and magnesium concentrations on the number, ultrastructure and secretion of gill mucous cells of juvenile P. olivaceus
     This part included 5 experiments. Exp.1, the effect of calcium and magnesium total concentrations on the number of gill arch mucous cells of juvenile Japanese flounder at 9 d. The results showed that the number of mucous cells of A1 (7.5 mM) and A2 (27 mM) increased slightly, but had no significant change comparing with control group (P>0.05). The number of mucous cells of A4(105 mM) and A5 (180 mM) decreased slightly, and it decreased significantly in A5 (P<0.05). Exp.2, the effect of calcium and magnesium total concentrations on the number of gill arch mucous cells of juvenile Japanese flounder at 60 d. The results showed that the number of mucous cells increased significantly in B1 (27 mM) (P<0.05), while decreased in B3 (105 mM). Exp.3, the effect of calcium concentration on the number of gill arch mucous cells of juvenile Japanese flounder at 9 d. The results showed that the number of mucous cells increased in C1 (1.25 mM), and decreased in C3(37.5 mM), C4 (75 mM) and C5 (100 mM), but there was no significant change among different groups (P>0.05). Exp.4, the effect of calcium concentration on the number of gill arch mucous cells of juvenile Japanese flounder at 60 d. The results showed that the number of mucous cells of D1 (5 mM) increased, but had no significant change comparing with control group (P>0.05). The number of mucous cells of D3 (37.5 mM) and D4 (75 mM) decreased, and the D4 were significantly lower than D1 (P<0.05). Exp.5, the effect of high calcium concentration stress on the number, ultrastructure and secretion of mucous cells in the gill of juvenile Japanese flounder. The rusults showed that the number and ultrastructure of mucous cells had no obvious change between stress group and control group. The secretion of mucous cells was same between the two experimental groups, both belonging to apocrine secretion. The mucous cells secretory activity of stress group was vigorous with discharging massive mucus, while it was little in control group. We concluded that low calcium and magnesium total concentraitons or calium concentration could stimulate the proliferation of gill mucous cells, while high calcium and magnesium total concentraitons or calcium concentration'could suppress the proliferation of gill mucous cells. Besides, juvenile Japanese flounder had strong tolerance of high calcium concentration stress.
     4. The effect of salinity acclimatization on serum osmolarity and gill Na--K--ATPase activity of juvenile P. olivaceus
     The osmoregulation mechanisms of juvenile Japanese flounder transferred from seawater (33‰) to high salinity (47‰) and low salinity (5‰) with different (3.5,7, 14) day salinity variations and during adaptive process were studied. Chages in serum osmolarity and gill Na+-K+-ATPase activity were measured every two days in acclimatization and at 1,2,4,8 d in adaptive process. (1) Changes of serum osmolarity were observed. The results showed that serum osmolarity was obviously positive with salinity in acclimatization. Besides, in adaptive process, serum osmolarity significantly decreased in high salinity with 7 day variation and low salinity with 7 and 14 day variations, and reached a steady state at 2 d,2 d and 4 d respevtively. However, serum osmolarity showed increased tendency in high salinity with 14 day variation. (2) Changes of gill Na+-K+-ATPase activity were also observed. The results showed that gill Na+-K+-ATPase activity showed increased tendency both in high and low salinity acclimatization with 3.5 day variation, while it showed no change with 7 and 14 day variation. In adapted process, gill Na+-K+-ATPase activity significantly increased at 2 d and maintained a new steady state in high salinity with 7 day variation, and the same phenomenon was observed in low salinity with 7 day variation. Gill Na+-K+-ATPase activity showed increase-decrease tendency in high salinity with 14 day variation, but there was no significant change. Gill Na+-K+-ATPase activity showed decrease-increase-decrease tendency in low salinity with 14 day variation. We concluded that gill Na+-K+-ATPase activity of juvenile Japanese flounder was lowest in seawater which it natural lived while increased both in high and low salinity acclimatization. Besides, the adaptive time of juvenile Japanese flounder was reduced during adapted process by 7 day variaiton.
引文
[1]Wendelaar B S E, Pang P K T. Control of calcium regulating hormones in the vertebrates: parathyroid hormone, calcitonin, prolactin and stanniocalcin [J]. Int. Rev. Cytol.,1991,128: 139-213.
    [2]Kaneko T, Hirano T. Role of prolaction and somatolactin in calcium regulation in fish [J]. J. Exp.Biol.,1993,184:31-45.
    [3]Riccardi D. Cell surface, Ca2+(cation)-sensing receptor (s):one or many [J]. Cell Calcium, 1999,26:77-83.
    [4]Bijvelds M J C, Flik G, Kolar Z I, et al. Uptake, distribution and excretion of magnesium in Oreochromis mossambicus:dependence on magnesium in diet and water [J]. Fish Physiol. Biochem.,1996a,15:287-298.
    [5]Heaton F W. Distribution and function of magnesium within the cell [M]. In:Magnesium and the Cell, edited by Birch N J. London:Academic Press,1993,121-136.
    [6]Heanton F W. Role of magnesium in enzyme systems [M]. In:Metal Ions in Biological Systems, Compendium on Magnesium and its Role in Biology. Nutrition and Physiology, edited by Sigel H, Sigel A. New York:Marcel Dekker.1990,26:119-133.
    [7]Black C B, Cowan J A. Magnesium-dependent enzymes in general metabolism [M]. In:The Biological Chemistry of Magnesium, edited by Cowan J A. New York:VCA Publishers. 1995,159-182.
    [8]Rubin H. Magnesium deprivation reproduces the coordinate effects of serum removal or cortisol addition on transport and metabolism in chick embryo fibroblasts [J]. J. Cell. Physiol.,1976,89:613-626.
    [9]Maguire M E. Magnesium:a regulated and regulatory cation [M]. In:Metal Ions in Biological Systems, Compendium on Magnesium and its Role in Biology, Nutrition and Physiology, edited by Sigel H, Sigel A. New York:Marcel Dekker,1990,26:135-153.
    [10]Flatman P W. Magnesium and transport in red cells [J]. J. Trace. Elem. Electrolytes Heath Dis.,1992,6:1-5.
    [11]Horie M, Irisawa H, Noma A. Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells [J]. J. Physiol., Lond.,1987,387:251-272.
    [12]Hartzell H C, White R E. Effects of magnesium on inactivation of the voltage-gated calcium current in cardiac myocytes [J]. J. Gen. Physiol.,1989,94:745-767.
    [13]Pusch M, Conti F, Stuhmer W. Intracellular magnesium blocks sodium outward currents in a voltage- and dosedependent manner [J]. Biophys. J.,1989,55:1267-1271.
    [14]Ebel H, Guenther T. Magnesium metabolism:a review [J]. J. Clin. Chem. Clin. Biochem., 1980,18:257-270.
    [15]Ogino C, Chiou J Y. Mineral requirements in fish. Ⅱ. Magnesium requriments of carp [J]. Bull. Japan. Soc. Sci. Fish,1976,42:71-75.
    [16]Cowey C B, Knox D, Adron J W, et al. The production of renal calcinosis by magnesium deficiency in rainbow trout (Salmo gairdneri) [J]. Br. J. Nutr.,1977,38:127-135.
    [17]Ogino C, Takashima F, Chiou J Y. Requirement of rainbow trout for dietary magnesium [J]. Bull. Jap. Soc. scient. Fish,1978,44:1105-1108.
    [18]Knox D, Cowey C B, Adron J W. Studies on the nutrition of rainbow trout (Salmo gairdnrei). Magnesium deficiency:The effects of feeding with a Mg-supplemented diet [J]. Br.J.Nutr.,1983,50:121-127.
    [19]Shim K F, Ng S H. Magnesium requirement of the guppy (Poecilia reticulata Peters) [J]. Aquaculture,1988,73:131-141.
    [20]Dabrowska H, Meyer-Burgdorff K H, Gunther K D. Magnesium status in freshwater fish, common carp (Cyprinus carpio, L.) and the dietary protein-magnesium interaction [J]. Fish Physiol. Biochem.9,1991,165-172.
    [21]施兆鸿,黄旭雄,姜存年.海水中的Ca2+, Mg2+, K+含量对黑鲷胚胎及早期仔鱼发育的影响[J].海洋科学,1995,5:33-38.
    [22]王广军,谢骏,潘德博.海水中Ca2+, Mg2+的含量及Mg2+/ Ca2+对日本鳗鲡受精卵孵化率的影响[J].海洋科学,2002,26(2):69-71.
    [23]Isaia J, Masoni A. The effects of calcium and magnesium on water and ionic permeabilities in the sea water adapted eel, Anguilla anguilla L. [J]. J. Comp. Physiol.,1976,109: 221-233.
    [24]Ketola H G, Longacre D, Greulich A, et al. High calcium concentration in water increases mortality of salmon and trout eggs [J]. The Progressive Fish-Culturist,1988,50:129-135.
    [25]Townsend C R, Silva L V F, Baldisserotto B. Growth and survival of Rhamdia quelen (Siluriformes, Pimelodidae) larvae exposed to different water hardness levels [J]. Aquaculture,2003,215:103-108.
    [26]Silva L V F, Golombieski J I, Baldisserotto B. Incubation of silver catfish, Rhamdia quelen (Pimelodidae), eggs at different calcium and magnesium concentrations [J]. Aquaculture, 2003,228:279-287.
    [27]Shearer K D. Whole body magnesium concentration as an indicator of magnesium status in rainbow trout (Salmo gairdneri) [J]. Aquaculture,1989,77:201-210.
    [28]Van der Velden J A, Spanings F A T, Flik G, et al. Early life stages of carp (Cyprinus carpio L.) depend on ambient magnesium for their development [J]. J. Exp. Biol.,1991c, 158:431-438.
    [29]Gatlin D M, Robinson E H, Poe W E, et al. Magnesium requirement of fingerling channel catfish and signs of magnesium deficiency [J]. J. Nutr.,1982,112:1182-1187.
    [30]Shearer K D, Asgard T. The effect of water-borne magnesium on the dietary magnesium requirement of rainbow trout (Oncorhynchus mykiss) [J]. Fish Physiol. Biochem.,1992,9: 387-392.
    [31]Dabrowska H, Meyer-burgdorff K H, Gunther K D. Interaction between dietary protein and magnesium level in tilapia(Oreochromis niloticus) [J]. Aquaculture,1989,76:277-291.
    [32]Bijvelds M J C, Flik G, Wendelaar B S E. Mineral balance in Oreochromis mossambicus: dependence on magnesium in diet and water [J]. Fish Physiol. Biochem.,1997a,16: 323-331.
    [33]Evans D H. Ionic exchange mechanisms in fish gills [J]. Comp. Biochem. Physiol.,1975, 51A:491-495.
    [34]Carrier J C, Evans D H. Ion and water turnover in the fresh-water elasmobranch Potamotrygon sp. [J]. Comp. Biochem. Physiol.,1976,45A:667-670.
    [35]Breder C M. Ecology of an oceanic freshwater lake, Andros Island, Bahamas, with special reference to its fishes [J]. Zoologica,1934,18:57-88.
    [36]Hulet W H, Masbl S J, Jodrey L H, et al. The role of calcium in the survival of marine teleosts in dilute seawater [J]. Bull. Mar. Set.,1967,17:677-88.
    [37]Jeffrey B, Carrier C, David H E. The role of environmental calcium in freshwater survival of the marine teleost, Lagodon rhomboides [J]. J. Exp. Biol.,1976,65:529-538.
    [38]Curran P F, Gill J R. The effects of calcium on sodium transport by frog skin [J]. J. Gen. Physiol.,1962,45:625-641.
    [39]Schoffeniels E. Cellular aspects of membrane permeability [J]. Pergamon Press, Oxford., 1967,66-69.
    [40]Potts W T, Fleming W R. The effects of environmental calcium and ovine prolactin on sodium balance in Fundulus kansae [J].J. Exp. Biol.,1971,54:63-75.
    [41]Ogawa M. The effects of ovine prolactin, sea water and environmental calcium on water influx in isolated gills of the euryhaline teleosts Anguilla japonica and Salmo gairdneri [J]. Comp, Biochem. Physiol.,1974,49A:545-553.
    [42]Ogawa M. The effects of ovine prolactin, cortisol and calcium-free environment on water influx in isolated gills of Japanese eel, Anguilla japonica [J]. Comp. Biochem. Physiol., 1975,52A:539-543.
    [43]Eddy F B. The effects of calcium on gill potentials and sodium and chloride fluxes in the goldfish, Carassius auratus [J]. J. Comp. Physiol.,1975,96:121-142.
    [44]Pic P, Maetz J. Role of external calcium in sodium and chloride transport in the gills of seawater adapted Mugil capito [J]. J. Comp. Physiol.,1981,141:511-521.
    [45]Wendelaar B S E, Van der Meij. Effect of ambient osmolarity and calcium on prolactin cell activity and osmotic water permeability of the gills in the teleost Sarotherodon mossambicus [J]. Gen. Comp. Endocrinol.,1981,43:432-442.
    [46]Potts W T, Fleming W R. The effects of prolactin and divalent ions on the permeability to water of Fundulus kansae [J]. J. Exp. Biol.,1970,53:317-327.
    [47]Cuthbert A W, Maetz J. The effects of calcium and magnesium on sodium fluxes through gills of Carassius auratus L. [J]. J. Comp. Physiol.,1972,221:633-643.
    [48]林浩然.鱼类生理学[M].广东高等教育出版社,1999,109-127.
    [49]Bornancin M, Cuthbert A W, Maetz J. The effects of calcium on branchial sodium fluxes in the seawater adapted eel, Anguilla anguilla [J]. J. Pkytiol.,1972a,22:487-496.
    [50]Mcdonald D G, Hobe H, Wood, C M. The influence of calcium on the physiological responses of the rainbow trout, Salmo gairdneri, to low environmental pH [J]. J. Exp. Biol., 1980,88:109-131.
    [51]Wendelaar B S E. The effects of changes in external sodium, calcium, and magnesium concentrations on prolactin cells, skin, and plasma electrolytes of Gasterosteus aculeatus [J]. Gen. Comp. Endocrinol.,1978,34:265-275.
    [52]Wendelaar B S E, Van der Meij J C A. The effect of ambient calcium on prolactin cell activity and plasma electrolytes in Sarotherodon mossambicus (Tilapia mossambica) [J]. Gen. Comp. Endocr.,1980,40:391-401.
    [53]Wendelaar B S E, Loewik C J M, Van der Mcij J C A. Effects of external Mg2+ and Ca2+ on branchial osmotic water permeability and prolatin secretion in the teleost fish Sarotherodon mossambicus [J]. Gen. Comp. Endocr.,1983,52:222-231.
    [54]Wendelaar B S E, Flik G, Fenwick J C. Prolactin and calcium metabolism in fish:effects on plasma calcium and high-affinity Ca2+-ATPase in gills [M]. In:Endocrine Control of Bone and Calcium Metabolism, edited by Cohn D V, Potts J T, Jr, et al. New York:Elsevier, 1984,188-190.
    [55]Arakawa E, Hasegawa S, Kaneko T, et al. Effects of changes in environmental calcium on prolactin secretion in Japanese eel, Anguilla japonica [J]. J. Comp. Physiol.,1993,163B: 99-106.
    [56]Flik G, Wendelaar B S E. Ca2+-dependent phosphatase and Ca2+-dependent ATPase activities in plasma membranes of eel gill epithelium-Ⅲ. stimulation of branchial high-affinity Ca2+-ATPase activity during prolactin-induced hypercalcemia in American eels [J]. Comp. Biochem. Physiol.,1984,79 (4) B:521-524.
    [57]Perry B S F, Wood C M. Kinetics of branchial calcium uptake in the rainbow trout:effects of acclimation to various external calcium levels [J]. J. Exp. Biol.,1985,1-16:411-433.
    [58]Ishihara A, Mugiya Y. Ultrastructural evidence of calcium uptake by chloride cells in the gills of goldfish, Carassius auratus [J]. J. Exp. Zool.,1987,242:121-129.
    [59]Perry S and Flik G. Characterization of branchial transepithelial calcium fluxes in freshwater trout, Salmo gairdneri [J]. Am. J. Physiol.,1988,254:491-498.
    [60]Avella M, Masoni A, Bornancin M, et al. Gill morphology and sodium influx in the Rainbow trout(Salmo gairdneri) acclimated to artificial freshwater environments [J].J. Exp. Zool.,1987.241:159-169.
    [61]Bijvelds M J C, Kolar Z I, Wendelaar B S E, et al. Magnesium transport across the basolateral plasma membrane of the fish enterocyte [J]. J. Membr. Biol.,1996b,154: 217-225.
    [62]Sakamoto T, Ando M. Calcium ion triggers rapid morphological oscillation of chloride cells in the mudskipper, Periophthalmus modestus [J]. J. Comp. Physiol.,2002,172B:435-439.
    [63]Laurent P, Hobe H, Dunel-Erb s. The role of environmental sodium chloride relative to calcium in gill morphology of freshwater salmonid fish [J]. Cell Tissue Res.,1985,240: 675-692.
    [64]Perry B S F, Goss G G, Fenwick J C. Interrelationships between gill chloride cell morphology and calcium uptake in freshwater teleosts [J]. Fish Physiol. Biol.,1992,10(4): 327-337.
    [65]Il-Chi Chang, Tsung-Han Lee, Chi-Hwa Yang, et al. Morphology and function of gill mitochondria-rich cells in fish acclimated to different environments [J]. Physiol. Biol. Zoo., 2001,74(1):111-119.
    [66]Flik G, Fenwick J C, Kolar Z, et al. Whole-body calcium flux rates in cichlid teleost fish Oreochromis mossambicus adapted to freshwater [J]. Am. J. Physiol.,1985a,249:432-437.
    [67]Flik G, van Rijs J H, Wendelaar B S E. Evidence for high affinity Ca2+-ATPase and ATP-driven Ca2+ transport in membrane preparations of the gill epithelium of the cichlid fish Oreochromis mossambicus [J].J. Exp. Biol.,1985b,119:335-347.
    [68]Flik G, Schoenmakers T J M, Groot J A, et al. Calcium absorption by fish intestine:The involvement of ATP- and sodium-dependent calcium extrusion mechanisms [J]. J. Membr. Biol.,1990,113:13-22.
    [69]Verbost P M, Schoenmakers T J M, Flik G, et al. Kinetics of ATP- and Na+-gradient driven Ca2+ transport in basolateral membranes from gills of freshwater- and seawater-adapted tilapia [J]. J. Exp. Biol.,1994,186:95-108.
    [70]Flik G, Kaneko T, Greco A, et al. Sodium dependent ion transporters in trout gills [J]. Fish Physiol. Biochem.,1997,17:385-396.
    [71]Verbost P M, Bryson, S E, Wendelaar B S E, et al. Na+-dependent Ca2+ uptake in isolated opercular epithelium of Fundulus heteroclitus [J]. J. Comp. Physiol.,1997,167B:205-212.
    [72]Marshall W S, and Bryson S. Transport mechanisms of seawater teleost chloride cells:an inclusive model of a multifunctional cell [J]. Comp. Biochem. Physiol.,1998, 119A: 97-106.
    [73]Price E E, Donahue M J, Dickson K L, et al. Effects of elevated calcium concentration on Na+-K+-ATPase activity of two euryhaline species, Cyprinodon variegatus and Mysidopsis bahia [J]. Bull. Environ. Contam. Toxicol.,1990,44:121-128.
    [74]Shuk-mei Ho, Chan D K O. Branchial ATPase and ionic transport in the eel Anguilla japonica-Ⅱ. Ca2+-ATPase [J]. Comp. Biochem. Physiol.,1980,67B:639-645.
    [75]Shephard K L. The activity and characteristics of the Ca2+-ATPase of fish gills in relation to environmental calcium concentrations [J]. J. Exp. Biol.,1981,90:115-121.
    [76]Melancon M J, Deluca H F. Vitamin D stimulation of calcium-dependent adenosine triphosphatase in chick intestinal brush borders [J]. Biochemistry,1970,9:1658-1664.
    [77]Schatzmann H J. Active calcium transport and calcium activated ATPase in human red cells [J]. Curr. Top. Membr. Transp.,1975,6:125-168.
    [78]Burdick C J, Mendlinger S, Pang R K, et al. Effects of environmental calcium and Stannius corpuscle extracts on Ca2+-ATPase in killifish, Fundulus heteroclitus [J]. Am. Zool.,1976, 16,273.
    [79]Bjornsson B T. Persson P, Larsson D, et al. Calcium balance in teleost fish:transport and endocrine control metabolism [M]. In:Calcium Metabolism:Comparative Endocrinology, edited by Danks J, Dacke C, Flik G, et al. BioScientifica Ltd., Bristol, UK,1999,29-38.
    [80]Pang P K T, Griffith R W, Maetz J, et al. Calcium uptake in fishes [M]. In:Epithelia transport in the lower vertebrates, edited by Lahlou B. Cambridge, Cambridge Univeristy Press,1980,122-132.
    [81]Withers P C. An exploration of salt and water balance in invertebrate and vertebrate animals [M]. In:The Comparative Endocrinology of Calcium Regulation, edited by Dacke, Danks J, Caple I, et al. Bristol:Journal of Endocrinology Ltd,1996,17-42.
    [82]Van der Velden J A, Kolar Z I, Flik G. Intake of magnesium from the water by freshwater tilapia fed on low-Mg diet [J]. Comp. Biochem. Physiol.,1991a,99A:103-105.
    [83]Van der Velden J A, Spanings F A T, Flik G, et al. Growth rate and tissue magnesium concentration in adult freshwater tilapia, Oreochromis mossambicus, fed diets differing in magnesium content [J]. J. Fish Biol.,1991b,39:83-91.
    [84]Partridge S P, David R J, Birch N J. The intestinal absorption of magnesium and lithium in the guinea pig [J]. Magnesium Bull.,1987,9:151-155.
    [85]Beyenbach K W, Kirschner L B. Kidney and urinary bladder functions of the rainbow trout in Mg2+ and Na+ excretion [J]. Am. J. Physiol.,1975,229:389-393.
    [86]Mayergostan N, Bornancin M, Derenzis G, et al. Extraintestinal calcium uptake in the killifish, Fundulus heteroclitus [J]. J. Exp. Zool.,1983,227:329-338.
    [87]Marshall W S, Bryson S, Burghardt J, et al. Ca2+ transport by opercular epithelium of the fresh water adapted euryhaline teleost, Fundulus heteroclitus [J]. J. Comp. Physiol.,1995, 165B:268-277.
    [88]Flik G, Verbost P M, Wendelaar B S E. Calcium transport processes in fishes [M]. In: Cellular and molecular approaches to fish ionic regulation, edited by Wood C M, Shuttleworth T J. Fish Physiology. New York:Academic Press,1995,14:317-342.
    [89]Flik G, Klaren P H M, Schoenmakers T J M, et al. Cellular calcium transport in fish -unique and universal mechanisms [J]. Physiol. Zool.,1996,69:403-417.
    [90]Marshall W S. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills:retrospective review and prospective synthesis [J]. J. Exp. Zool.,2002,293:264-283.
    [91]Marshall W S, Bryson S E, Wood C M. Calcium transport by isolated skin of rainbow trout [J]. Exp. Biol.,1992,166:297-316.
    [92]McCormick S D, Hasegawa S, Hirano T. Calcium uptake in the skin of a freshwater teleost [J]. Proc. Natl. Acad. Sci. USA,1992,89:3635-3638.
    [93]Milhaud G, Rankin J C, Bolis L, et al. Calcitonin:its hormonal action on the gill [J]. Proc. natn. Acad. Sci. USA,1977,74:4693-4696.
    [94]Milet C, Peignoux-Deville J, Marletty E. Gill calcium fluxes in the eel, Anguiila anguilla (L.) Effects of Stannius corpuscles and ultimobranchial body [J]. Comp. Biochem. Physiol., 1979,63A:63-70.
    [95]Payan P, Mayer-Gostan N, Pang P K T. Site of calcium uptake in the freshwater trout gill [J]. J. Exp. Zool.,1981,216:345-347.
    [96]Mugiya Y, Ichii T. Effects of estradiol-17/3 on branchial and intestinal calcium uptake in the rainbow trout, Salmo gairdneri [J]. Comp. Biochem. Physiol.,1981,70A:97-101.
    [97]Hwang P P, Tsai Y N, Tung Y C. Calcium balance in embryos and larvae (Oreochromis mossambicus) [J]. Fish Physiol. Biochem.,1994,13:325-333.
    [98]Hwang P P, Tung Y C, Chang M H. Effects of environmental calcium levels on calcium uptake in tilapia larvae (Oreochromis mossambicus) [J]. Fish Physiol. Biochem.,1996,15: 363-370.
    [99]Tsai J C, Hwang P P. Effects of wheat germ agglutinin and colchicine on microtubules of the mitochondria-rich cells and Ca2+ uptake in tilapia (Oreochromis mossambicus) larvae [J]. J. Exp. Biol.,1998,201:2263-2271.
    [100]Schoenmakers T J M, Verbost P M, Flik G, et al. Transcellular intestinal calcium transport in freshwater and seawater fish and its dependence on sodium/calcium exchange [J]. J. Exp. Biol.,1993,176:195-206.
    [101]Larsson D, Lundgren T, Sundell K. Ca2+ uptake through voltage-gated L-type Ca2+ channels by polarized enterocytes from Atlantic cod Gadus morhua [J]. J. Membrane Biol.,1998, 164:229-237.
    [102]Lafeber F P, Flik G, Wendelaar B S E, et al. Hypocalcin from Stannius corpuscles inhibits gill calcium uptake in trout [J]. Am. J. Physiol. Regul. Integr. Comp. Physiol.,1988,254: 895-896.
    [103]Wagner G F. The molecular biology of the corpuscles of Stannius and regulation of stanniocalcin gene expression [M]. In:Fish Physiology, edited by Sherwood N M, Hew C L. Molecular Endocrinology of Fish,1994,13:273-306.
    [104]Klaren P H M, Flik G, Lock R A C, et al. Ca2+- transport across intestinal brushborder membranes of the cichlid teleost Oreochromis-mossambicus [J]. J. Membrane Biol.,1993, 132(2):157-166.
    [105]Flik G, Verbost P M. Calcium transport in fish gills and in testine [J]. J. Exp. Biol.,1993, 184:17-29.
    [106]Hickman C P. Urine composition and kidney tubular function in southern flounder, Paralichthys lethostigma, in sea water [J]. Can. J. Zool.,1968,46:439-455.
    [107]Hickman C P. Ingestion intestinal absorption and elimination of seawater and salts in the southern flounder, Paralichthyes lethostigma [J]. Can. J. Zool.,1968,457-466.
    [108]Sundell K and Bjornsson B T. Kinetics of calcium fluxes across the intestinal-mucosa of the marine teleost, Gadus-morhua, measured using an in vitro perfusion method [J]. J. Exp. Biol.,1988,140:171-186.
    [109]Guerreiro P M, Fuentes J, Canario A V M, et al. Calcium balance in sea bream (Sparus aurata):the effect of oestradiol- 17beta [J]. J. Endocrinol.,2002,173:377-385.
    [110]Ichii T, Mugiya Y. Effects of dietary deficiency in calcium on growth and calcium uptake from the aquatic environment in the goldfish, Carassius auratus [J]. Comp. Biochem. Physiol.,1983,74A:259-262.
    [111]Walsh P J, Blackwelder P, Gill K A, et al. Carbonate deposits in marine fish intestines:a new source of biomineralization [J]. Limnol Oceanog,1991,36:1227-1232.
    [112]Wilson R W, Wilson J M, Grosell M. Intestinal bicarbonate secretion by marine teleost fish-why and how [J]. Biochim. Biophys. Acta.,2002,1566:182-193.
    [113]Wilson R W, Grosell M. Intestinal bicarbonate secretion in marine teleost fish-source of bicarbonate, pH sensitivity, and consequence for whole animal acid-base and divalent cation homeostasis [J]. Biochim. Biophys. Acta.,2003,1618:163-193.
    [114]Cooper C A, Bury N R, Grosell M. The effects of pH and the iron redox state on iron uptake in the intestine of a marine teleost fish, gulf toadfish (Opsanus beta) [J]. Comp. Biol. Physiol.,2006,143A:292-298.
    [115]Groot J A, Albus H, Bakker R, et al. Chages in sugar transport and in electrophysiological characteristics of intestinal preparations of temperature-acclimated goldfish (Carassius auratus L.) [J]. J. Comp. Physiol.,1983,151:163-170.
    [116]Halm D R, Krasny E J J, Frizzel R A. Electrophysiology of flounder intestinal mucosa Ⅰ.Conductance properties of the cellular and paracellular pathways [J]. J. Gen. Physiol.,1985,85:843-864.
    [117]Van der Velden J A, Groot J A, Flik G, et al. Magnesium transport in fish intestine [J]. J. Exp. Biol.,1990,152:587-592.
    [118]Dipolo R, Beauge L. An ATP-dependent Na+/Mg+ countertransport is the only mechanism for Mg2+ extrusion in squid axons [J]. Biochim. Biophys. Acta.,1988,946:424-428.
    [119]Feray J C, Garay R. An Na+-stimulated Mg2+-transport system in human red blood cells [J]. Biochim. Biophys. Acta.,1986,856:76-84.
    [120]Frenkel E J, Graziani M, Schatzmann H J. ATP requirement of the sodium-dependent magnesium extrusion from human red blood cells [J]. J. Physiol.,1989,414:385-397.
    [121]Xu W, Willis J S. Sodium transport through the amilioride-sensitive Na-Mg pathway of hamster red cells [J]. J. Mem. Biol.,1994:141:277-287.
    [122]Gunther T, Hollriegl V. Characterization of Na+-dependent Mg2+ efflux from isolated hepatocytes [J]. Magnesium Bull,1993,15:121-123.
    [123]Gunther T, Vormann J, Hollriegl V. Characterization of Na+-dependent Mg2+ efflux from Mg2+-loaded rat erythrocytes [J]. Biochim. Biophys. Acta.,1990,1023:455-464.
    [124]Schweigel M, Martens H. Magnesium transport in the gastrointestinal tract [J]. Frontiers in Bioscience,2000,5:666-677.
    [125]Schnidt-Nielsen B, Renfro J L. Kidney function of the American eel Anguilla rostrata [J]. Am. J. Physiol.,1975,228:420-431.
    [126]Nishimura H, lmai M. Control of renal function in freshwater and marine teleosts [J]. Fed. Proc.,1982,41(8):2355-2360.
    [127]Bjornsson B T H, Nilsson S. Renal and extra-renal excretion of calcium in the marine teleost, Gadus morhua [J]. Am. J. Physiol.,1985,248:18-22.
    [128]Elger E, Elger B, Hentschel H, et al. Adaptation of renal function to hypotonic medium in the winter flounder (Pseudopleuronectes americanus) [J]. J. Comp. Physiol.,1987,157B: 21-30.
    [129]Verbost P M, Schoenmakers T J, Flik G, et al. Kinetics of ATP- and Na+-gradient driven Ca2+ transport in basolateral membranes from gills of freshwater- and seawater-adapted tilapia [J]. J. Exp. Biol.,1994,186:95-108.
    [130]Renfro J L, Dickman K G, Miller D S. Effect of Na+ and ATP on peritubular Ca2+ transport by the marine teleost renal tubule [J]. Am. J. Physiol.,1982,243:34-41.
    [131]Doneen B A. High-affinity Ca2+-Mg2+-ATPase in kidney of euryhaline Gillichthys mirabilis: kinetics, subcellular distribution and effects of salinity [J]. Comp. Biochem. Physiol.,1993, 106B:719-728.
    [132]Bijvelds M J C, Van der Heijden A J H, Flik G, et al. Calcium pump activities in the kidneys of Oreochromis mossambicus [J]. J. Exp. Biol.,1995,198:1351-1357.
    [133]Oikari A O J, Rankin J C. Renal excretion of magnesium in a freshwater teleost, Salmo gairdneri [J]. J. exp. Biol.,1985,117:319-333.
    [134]Freire C A, Kinne R K H, Kinne-saffran E, et al. Electrodiffusive transport of Mg2+ across renal membrane vesicles of the rainbow trout Oncorhynchus mykiss [J]. Am. J. Physiol., 1996,270:739-748.
    [135]Bijvelds M J C, Kolar Z I, Wendelaar B S E, et al. Magnesium transport in plasma membrane vesicles of renal epithelium of the Mozambique tilapia (Oreochromis mossambicus) [J]. J. exp. Biol.,1997b,200:1931-1939.
    [136]Nadler M J S, Hermosura M C, Inabe K, et al. LTRPC7 is a Mg ATP-regulated divalent cation channel required for cell viability [J]. Nature,2001,411:590-595.
    [137]Schlingmann K P, Weber S, Peters M, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family [J]. Nat Genet,2002,31:166-170.
    [138]Kolisek M, Zsurka G, Samaj J, et al. Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria [J]. EMBO J.,2003,22:1235-1244.
    [139]Kozak J A, Cahalan M D. MIC channels are inhibited by internal divalent cations but not ATP [J]. Biophys J.,2003,84:922-927.
    [140]Beyenbach K W. Secretory electrolyte transport in renal proximal tubules of fish [M]. In: Cellular and Molecular Approaches to Fish Ionic Regulation, edited by Wood C M, Shuttleworth T J. San Diego C A:Academic,1995,85-105.
    [141]Natochin Y V, Gusev G P. The coupling of magnesium secretion and sodium reabsorption in the kidney of teleost [J]. Comp. Biochem. Physiol.,1970,37:107-111.
    [142]Renfro J L, Shustock E. Peritubular uptake and brush border transport of 28Mg by flounder renal tubules [J]. Am. J. Physiol.,1985,249:497-506.
    [143]Beyenbach K W, Freire C A, Kinne R K, et al. Epithelial transport of magnesium in the kidney of fish [J]. Miner Electrolyte Metab,1993,19:241-249.
    [144]Tashiro M, Konishi M, Iwamoto T, et al. Transport of magnesium by two isoforms of the Na+/Ca2+ exchanger expressed in CCL39 fibroblasts [J]. Pflu. gers Arch.,2000,440: 819-827.
    [145]Standley P R, Standley C A. Identification of a functional Na+/Mg2+ exchanger in human trophoblast cells [J]. Am. J. Hypertens,2002,15:565-570.
    [146]Hentschel H, Zierold K. Morphology and element distribution of magnesium-secreting epithelium:the proximal tubule segment PII of dogfish, Scyliorhinus caniculus (L.) [J]. Eur. J. Cell Biol.,1994,63:32-42.
    [147]Elger M, Werner A, Herter P, et al. Na-Pi cotransport sites in proximal tubule and collecting tubule of winter flounder(Pleuronectes americanus) [J]. Am J. Physiol. Renal. Physiol.,1998,274:374-383.
    [148]Wendelaar B S E. The stress response in fish [J]. Physiol. Rev.,1997,77:591-625.
    [149]Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenouswaste [J]. Physiol. Rev.,2005,85:97-177.
    [150]Evans D H, Piermarini P M, Potts W T W. Ionic transport in the fish gill epithelium [J]. J. Exp. Zool.,1999,283:641-652.
    [151]Miller S A, Harley J P. Zoology [M]. edited by McGraw-HillCompanies, NewYork,2002,5: 275-283,425-426,452-453,461-463.
    [152]Hirose S, Kaneko T, Naito N, et al. Molecular biology of major components of chloride cells [J]. Comp. Biochem. Physiol.,2003,136B:593-620.
    [153]Hwang P P, Lee T H. New insights into fish ion regulation and mitochondrionrich cells [J]. Comp. Biochem. Physiol.,2007,148A:479-497.
    [154]Hirano T. Some factors regulating water intake by the eel Anguilla japonica [J]. J. Exp. Biol.,1974,61:737-747.
    [155]Smith H W. The absorption and excretion of water and salts by marine teleosts [J]. Am. J. Physiol.,1930,93:480-505.
    [156]Mackay W C, Janicki R. Changes in the eel intestine during seawater adaptation [J]. Comp. Biochem. Physiol.,1978,62A:757-761.
    [157]Skadhauge E. Coupling of transmural flows of NaCl and water in the intestine of the eel (Anguilla anguilla) [J]. J. Exp. Biol.,1974,60:535-546.
    [158]Usher M L, Talbot C, Eddy F B. Intestinal water transport in juvenile Atlantic salmon (Salmo salar L.) during smolting and following transfer to seawater [J]. Comp. Biochem. Physiol.,1991,100A:813-818.
    [159]Whittamore J M, Cooper C A, Wilson R W. HCO3- secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo [J]. Am. J. Physiol. Regul. Integr. Comp. Physiol.,2010,298:877-886.
    [160]Grosell M. Intestinal transport processes in marine fish osmoregulation [J]. J. Exp. Biol., 2006,209:2813-2827.
    [161]Grosell M, Taylor J R. Intestinal anion exchange in teleost water balance [J]. Comp. Biochem. Physiol.,2007,148:14-22.
    [162]Scott G R, Baker D W, Schulte, et al. Physiological and molecular mechanisms of osmoregulatory plasticity in killifish after seawater transfer [J]. J. Exp. Biol.,2008:211: 2450-2459.
    [163]Hickman C P, Trump B F. The kidney [M]. In:Fish Physiology, edited by Hoar W S, Randall D J. New York:Academic,1969,1:91-239.
    [164]Kato A, Chang M H, Kurita Y, et al. Identification of renal transporters involved in sulfate excretion in marine teleost fish [J]. Am. J. Physiol. Regul. Integr. Comp. Physiol.,2009, 297:1647-1659.
    [1]Jeffrey C C, David H E. The role of environmental calcium in freshwater survival of the marine teleost, Lagodon rhomboides [J]. J. exp. Biol.,1976,65:529-538.
    [2]Kaneko T, Hirano T. Role of prolaction and somatolactin in calcium regulation in fish [J]. J. Exp. Biol.,1993,184:31-45.
    [3]Townsend C R, Silva L V F, Baldisserotto B. Growth and survival of Rhamdia quelen (Siluriformes, Pimelodidae) larvae exposed to different water hardness levels [J]. Aquaculture,2003,215:103-108.
    [4]Potts W T W, Fleming W R. The effects of prolactin and divalent ions on the permeability to water of the Fundulus kansae [J]. J. Exp. Biol.,1970,53:317-327.
    [5]Potts W T W, Fleming W R. The effect of environmental calcium and ovine prolactin on sodium balance in Fundulus kansae [J]. J. Exp. Biol.,1971,55:63-76.
    [6]Bornancin M, Cuthbert A W, Maetz J. The effects of calcium on branchial sodium fluxes in the seawater adapted eel, Anguilla anguilla [J]. J. Pkytiol.,1972,22a:487-496.
    [7]Fleming W R, Nichols J, Potts W T W. The effect of low calcium sea water and actinomycin D on the sodium metabolism of Fundulus kansae [J]. J. Exp. Biol.,1974,60: 267-273.
    [8]Perry B S F, Wood C M. Kinetics of branchial calcium uptake in the rainbow trout:effects of acclimation to various external calcium levels [J]. J. Exp. Biol.,1985,116:411-433.
    [9]Laurent P, Hobe H, Dunel-Erb s. The role of environmental sodium chloride relative to calcium in gill morphology of freshwater salmonid fish [J]. Cell Tissue Res.,1985,240: 675-692.
    [10]Shuk-mei Ho, Chan D K O. Branchial ATPase and ionic transport in the eel Anguilla japonica-Ⅱ. Ca2+-ATPase [J]. Comp. Biochem. Physiol.,1980,67B:639-645.
    [11]Price E E, Donahue M J, Dickson K L, et al. Effects of elevated calcium concentration on Na+-K+-ATPase activity of two euryhaline species, Cyprinodon variegatus and Mysidopsis bahia [J]. Bull. Environ. Contam. Toxicol.,1990,44:121-128.
    [12]Isaia J, Masoni A. The effects of calcium and magnesium on water and ionic permeabilities in the sea water adapted eel, Anguilla anguilla L. [J]. J. Comp. Physiol.,1976,109: 221-233.
    [13]Sjoerd E, Wendelaar B S E. The role of environmental calcium and magnesium ions in the control of prolactin secretion in the teleost Gasterosteus aculeatus [J]. In:Comparative Endocrinology, edited by Gaillard P J, Boer H H. Elsevier/North-Holland, Amsterdam,1978, 259-262.
    [14]Wendelaar B S E, Van der Meij J C A. The effect of ambient calcium on prolactin cell activity and plasma electrolytes in Sarotherodon mossambicus (Tilapia mossambica) [J]. Gen. Comp. Endocr.,1980,40:391-401.
    [15]Wendelaar B S E. The effects of changes in external sodium, calcium, and magnesium concentrations on prolactin cells, skin, and plasma electrolytes og Gasterosteus aculeatus [J]. Gen. Comp. Endocr.,1978,34,265-275.
    [16]Flik G, Wendelaar Bonga S E, Fenwick J C. Ca2+-dependent phosphatase and ATPase activities in eel gill plasma membranes. Ⅰ. Identification of Ca2+-activated ATPase activities with non-specific phosphatase activities [J]. Comp. Biochem. Physiol.,1983,76B:745-754.
    [17]Flik G, Fenwick J C, Kolar Z, et al. Whole-body calcium flux rates in cichlid teleost fish Oreochromis mossambicus adapted to freshwater [J]. Am. J. Physiol.,1985a,249:432-437.
    [18]Perry S F, Flik G. Characterization of branchial transepithelial calcium fluxes in freshwater trout, Salmo gairdneri [J]. Am. J. Physiol.,1988,254:491-498.
    [19]Flik G, Vander Velden J A, Dechering K J, et al. Ca2+ and Mg2+ Transport in Gill and Gut of Tilapia, Oreochromis mossambicus:A Review [J]. J. exp. Zool.,1993,265:356-365.
    [20]Flik G, Verbost P M. Calcium transport in fish gill and intestine [J]. J. exp. Biol.,1993,184: 17-29.
    [21]Shephard B Y L. The activity and characteristics of the Ca2+-ATPase of fish gill in relation to environment calcium concentrations [J]. J. exp. Biol.,1981,90:115-121.
    [22]Melancon M J, Deluca H F. Vitamin D stimulation of calcium-dependent adenosine triphosphatase in chick intestinal brush borders [J]. Biochemistry 9,1970,1658-1664.
    [23]Schatzmann H J. Active calcium transport and calcium activated ATPase in human red cells [J]. Curr. Top. Membr. Transp.,1975,6:125-168.
    [24]Lafeber F P, Flik G, Wendelaar B S E, et al. Hypocalcin from Stannius corpuscles inhibits gill calcium uptake in trout [J]. Am. J. Physiol. Regul. Integr. Comp. Physiol.,1988,254: 895-896.
    [25]Wilson R W, Wilson J M, Grosell M. Intestinal bicarbonate secretion by marine teleost fish-why and how [J]. Biochim. Biophys. Acta.,2002,1566:182-193.
    [26]Walsh P J, Blackwelder P, Gill K A, et al. Carbonate deposits in marine fish intestines:a new source of biomineralization [J]. Limnol Oceanog,1991,36:1227-1232.
    [27]Wilson R W, Grosell M. Intestinal bicarbonate secretion in marine teleost fish-source of bicarbonate, pH sensitivity, and consequence for whole animal acid-base and divalent cation homeostasis [J]. Biochim. Biophys. Acta.,2003,1618:163-193.
    [28]Cooper C A, Bury N R, Grosell M. The effects of pH and the iron redox state on iron uptake in the intestine of a marine teleost fish, gulf toadfish (Opsanus beta) [J]. Comp. Biol. Physiol.,2006,143A:292-298.
    [29]Grosell M, Genz J. Ouabain sensitive bicarbonate secretion and acidic fluid absorption by the marine teleost intestine play a role in osmoregulation [J]. Am. J. Phys. Regul. Physiol., 2006,291:1145-1156.
    [30]Kurita Y, Nakada T, Kato A, et al. Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish [J]. Am. J. Physiol. Regul. Integr. Comp. Physiol.,2008,294:1402-1412.
    [31]Bjornsson B T H, Nilsson S. Renal and extra-renal excretion of calcium in the marine teleost, Gadus morhua [J]. Am. J. Physiol.,1985,248:18-22.
    [32]Schmidt-nielsen B, Renfro J L. Kidney function of the American eel Anguilla rostrata [J]. Am. J. Physiol.,1975,228:420-431.
    [33]Elger E, Elger B, Hentschel H, et al. Adaptation of renal function to hypotonic medium in the winter flounder Pseudopleuronectes americanus [J]. J. Comp. Physiol.,1987,157: 21-30.
    [34]Hickman C P, Trump B F. The kidney [M]. In:Fish Physiology, edited by Hoar W S, Randall D J. New York:Academic,1969,1:91-239.
    [35]Oikari A O, Rankin J C. Renal excretion of magnesium in a freshwater teleost, Salmo gairdneri [J]. J. exp. Biol.,1985,117:319-333.
    [36]Beyenbach K W. Kidneys sans glomeruli [J], Amer. J. Physiol.,2004,286:811-827.
    [37]Marcel J C B, Angelque J H V D H, Gert F, et al. Calcium pump activities in the kidneys of Oreochromis mossambicus [J]. J. exp. Biol.,1995,198:1351-1357.
    [38]Arakawa E, Hasegawa S, Kaneko T, et al. Effects of changes in environmental calcium on prolactin secretion in Japanese eel, Anguilla japonica [J]. J. Comp. Physiol.,1993,163B: 99-106.
    [39]Wendelaar B S E, Flik G, Fenwick J C. Prolactin and calcium metabolism in fish:effects on plasma calcium and high-affinity Ca2+-ATPase in gills [M]. In:Endocrine Control of Bone and Calcium Metabolism, edited by Cohn D V, Potts J T, Jr, et al. New York:Elsevier, 1984,188-190.
    [40]Wendelaar B S E, Loewik C J M, Van der Mcij J C A. Effects of external Mg2+ and Ca2+ on branchial osmotic water permeability and prolatin secretion in the teleost fish Sarotherodon mossambicus [J]. Gen. Comp. Endocr.,1983,52:222-231.
    [41]Ebel H, Guenther T. Magnesium metabolism:a review [J]. J. Clin. Chem. Clin. Biochem., 1980,18:257-270.
    [42]Flik G, Wendelaar B S E. Ca2+-dependent phosphatase and Ca2+-dependent ATPase activities in plasma membranes of eel gill epithelium-Ⅲ. stimulation of branchial high-affinity Ca2+-ATPase activity during prolactin-induced hypercalcemia in American eels [J]. Comp. Biochem. Physiol.,1984,79(4) B:521-524.
    [43]Ishihara A, Mugiya Y. Ultrastructural evidence of calcium uptake by chloride cells in the gills of goldfish, Carassius auratus [J]. J. Exp. Biol.,1987,242:121-129.
    [44]Bijvelds M J C, Flik G, Kolar Z I, et al. Uptake, distribution and excretion of magnesium in Oreochromis mossabicus:dependence on magnessium in diet and water [J]. Fish Physiol. Biochem.,1996,15(4):287-298.
    [45]I1-Chi Chang, Tsung-Han Lee, Chi-Hwa Yang, et al. Morphology and function of gill mitochondria-rich cells in fish acclimated to different environments [J]. Physio. Biol. Zoo., 2001,74(1):111-119.
    [46]Perry S F, Goss G G, Fenwick J C. Interrelationships between gill chloride cell morphology and calcium uptake in freshwater teleosts [J]. Fish Physiol. Biol.,1992,10(4):327-337.
    [47]Sakamoto T, Ando M. Calcium ion triggers rapid morphological oscillation of chloride cells in the mudskipper, Periophthalmus modestus [J]. J. Comp. Physiol.,2002,172B:435-439.
    [1]Jeffrey C C, David H E. The role of environmental calcium in freshwater survival of the marine teleost, Lagodon rhomboides [J]. J. Exp. Biol.,1976,65:529-538.
    [2]Heanton F W. Role of magnesium in enzyme systems [M]. In:Metal Ions in Biological Systems, Compendium on Magnesium and its Role in Biology, Nutrition and Physiology, edited by Sigel H, Sigel A. New York:Marcel Dekker.1990,26:119-133.
    [3]Silva L V F, Golombieski J I, Baldisserotto B. Incubation of silver catfish, Rhamdia quelen (Pimelodidae), eggs at different calcium and magnesium concentrations [J]. Aquaculture, 2003,228:279-287.
    [4]Townsend C R, Silva L V F, Baldisserotto B. Growth and survival of Rhamdia quelen (Siluriformes, Pimelodidae) larvae exposed to different water hardness levels [J]. Aquaculture,2003,215:103-108.
    [5]Potts W T W, Fleming W R. The effects of prolactin and divalent ions on the permeability to water of the Fundulus kansae [J]. J. Exp. Biol.,1970,53:317-327.
    [6]Potts W T W, Fleming W R. The effect of environmental calcium and ovine prolactin on sodium balance in Fundulus kansae [J]. J. Exp. Biol.,1971,55:63-76.
    [7]Cuthbert A W, Maetz J. The effects of calcium and magnesium on sodium fluxes through gills of Carassius auratus, L. [J]. J. Physiol., 1972,221:633-643.
    [8]Fleming W R, Nichols J, Potts W T W. The effect of low calcium sea water and actinomycin D on the sodium metabolism of Fundulus kansae [J]. J. Exp. Biol.,1974,60: 267-273.
    [9]Isaia J, Masoni A. The effects of calcium and magnesium on water and ionic permeabilities in the sea water adapted eel, Anguilla anguilla L. [J]. J. Comp. Physiol.,1976,109: 221-233.
    [10]Sakamoto T, Ando M. Calcium ion triggers rapid morphological oscillation of chloride cells in the mudskipper, Periophthalmus modestus [J]. J. Comp. Physiol.,2002,172B:435-439.
    [11]Perry B S F, Wood C M. Kinetics of branchial calcium uptake in the rainbow trout:effects of acclimation to various external calcium levels [J]. J. Exp. Biol.,1985,116:411-433.
    [12]Laurent P, Hobe H, Dunel-Erb S. The role of environmental sodium chloride relative to calcium in gill morphology of freshwater salmonid fish [J]. Cell Tissue Res.,1985,240: 675-692.
    [13]Avella M, Masoni A, Bornancin M, et al. Gill morphology and sodium influx in the Rainbow trout (Salmo gairdneri) acclimated to artificial freshwater environments [J]. J. Exp. Zool.,1987,241:159-169.
    [14]Marshall W S, Bryson S E, Wood C M. Calcium transport by isolated skin of rainbow trout [J]. J. Exp. Biol.,1992,166:297-316.
    [15]Perry S F, Goss G G, Fenwick J C. Interrelationships between gill chloride cell morphology and calcium uptake in freshwater teleosts [J]. Fish Physiol. Biol.,1992,10(4):327-337.
    [16]Il-Chi Chang, Tsung-Han Lee, Chi-Hwa Yang, et al. Morphology and function of gill mitochondria-rich cells in fish acclimated to different environments [J]. Physiol. Biol. Zool., 2001,74(1):111-119.
    [17]Flik G, Kaneko T, Greco A M, Li J, et al. Sodium dependent ion transporters in trout gills [J]. Fish Physiol. Biochem.,1997,17:385-396.
    [18]Shuk-mei Ho, Chan D K O. Branchial ATPase and ionic transport in the eel Anguilla japonica-Ⅱ. Ca2+-ATPase [J]. Comp. Biochem. Physiol.,1980,67B:639-645.
    [19]Price E E, Donahue M J, Dickson K L, et al. Effects of elevated calcium concentration on Na+-K+-ATPase activity of two euryhaline species, Cyprinodon variegatus and Mysidopsis bahia [J]. Bull. Environ. Contam. Toxicol.,1990,44:121-128.
    [20]Bornancin M, Cuthbert A W, Maetz J. The effects of calcium on branchial sodium fluxes in the seawater adapted eel, Anguilla anguilla [J]. J. Pkytiol.,1972a,22:487-496.
    [21]Sjoerd E, Wendelaar B S E. The role of environmental calcium and magnesium ions in the control of prolactin secretion in the teleost Gasterosteus aculeatus [M]. In:Comparative Endocrinology, edited by Gaillard P J, Boer H H. Elsevier/North-Holland, Amsterdam,1978, 259-262.
    [22]Wendelaar B S E, Van der Meij J C A. The effect of ambient calcium on prolactin cell activity and plasma electrolytes in Sarotherodon mossambicus (Tilapia mossambica) [J]. Gen. Comp. Endocr.,1980,40:391-401.
    [23]Wendelaar B S E. The effects of changes in external sodium, calcium, and magnesium concentrations on prolactin cells, skin, and plasma electrolytes of Gasterosteus aculeatus [J]. Gen. Comp. Endocrinol.,1978,34:265-275.
    [24]Chan D K O, Chester J. Regulation and distribution of plasma and inorganic phosphate in the European eel(Anguilla anguilla L.) [J]. J. Endocr.,1968,42:91-98.
    [25]Chan D K O. Hormonal regulation of calcium balance in teleost fish [J]. Gen. comp. Endocr.,1972,3:411-420.
    [26]Flik G, Wendelaar B S E, Fenwick J C. Ca2+-dependent phosphatase and ATPase activities in eel gill plasma membranes. Ⅰ. Identification of Ca2+-activated ATPase activities with non-specific phosphatase activities [J]. Comp. Biochem. Physiol.,1983,76B:745-754.
    [27]Flik G, Vander Velden J A, Dechering K J, et al. Ca2+ and Mg2+ Transport in Gills and Gut of Tilapia, Oreochromis mossambicus:A Review [J]. J. Exp. Zool.,1993,265:356-365.
    [28]Fenwick J C. Calcium exchange across fish gills [M]. In:Vertebrate Endocrinology: Fundamentals and Biomedical Implications, edited by Pang P K T, Schreibman M P. Academic Press, New York,1989,3:319-342.
    [29]Shephard K L. The activity and characteristics of the Ca2+-ATPase of fish gills in relation to environmental calcium concentrations [J]. J. Exp. Biol.,1981,90:115-121.
    [30]Melancon M J, Deluca H F. Vitamin D stimulation of calcium-dependent adenosine triphosphatase in chick intestinal brush borders [J]. Biochemistry 9,1970,1658-1664.
    [31]Schatzmann H J. Active calcium transport and calcium activated ATPase in human red cells [J]. Curr. Top. Membr. Transp.,1975,6:125-168.
    [32]Burdick C J, Mendlinger S, Pang R K, et al. Effects of environmental calcium and Stannius corpuscle extracts on Ca2+-ATPase in killifish, Fundulus heteroclitus [J]. Am. Zool.,1976, 16,273.
    [33]Mcdonald D G, Hobe H, Wood, C M. The influence of calcium on the physiological responses of the rainbow trout, Salmo gairdneri, to low environmental pH [J]. J. Exp. Biol., 1980,88:109-131.
    [34]Arakawa E, Hasegawa S, Kaneko T, et al. Effects of changes in environmental calcium on prolactin secretion in Japanese eel, Anguilla japonica [J]. J. Comp. Physiol.,1993,163B: 99-106.
    [35]Wendelaar B S E, Flik G, Fenwick J C. Prolactin and calcium metabolism in fish:effects on plasma calcium and high-affinity Ca2+-ATPase in gills [M]. In:Endocrine Control of Bone and Calcium Metabolism, edited by Cohn D V, Potts J T, Jr, et al. New York:Elsevier, 1984,188-190.
    [36]Wendelaar B S E, Loewik C J M, Van der Mcij J C A. Effects of external Mg2+ and Ca2+ on branchial osmotic water permeability and prolatin secretion in the teleost fish Sarotherodon mossambicus [J]. Gen. Comp. Endocr.,1983,52:222-231.
    [37]Ebel H, Guenther T. Magnesium metabolism:a review [J]. J. Clin. Chem. Clin. Biochem., 1980,18:257-270.
    [38]Flik G, Wendelaar B S E. Ca2+-dependent phosphatase and Ca2+-dependent ATPase activities in plasma membranes of eel gill epithelium-Ⅲ. stimulation of branchial high-affinity Ca2+-ATPase activity during prolactin-induced hypercalcemia in American eels [J]. Comp. Biochem. Physiol.,1984,79 (4) B:521-524.
    [39]Ishihara A, Mugiya Y. Ultrastructural evidence of calcium uptake by chloride cells in the gills of goldfish, Carassius auratus [J]. J. Exp. Biol.,1987,242:121-129.
    [40]Perry S F, Flik G. Characterization of branchial transepithelial calcium fluxes in freshwater trout, Salmo gairdneri [J]. Am. J. Physiol.,1988,254:491-498.
    [41]Bijvelds M J C, Flik G, Kolar Z I, et al. Uptake, distribution and excretion of magnesium in Oreochromis mossabicus:dependence on magnessium in diet and water [J]. Fish Physiol. Biochem.,1996,15(4):287-298.
    [1]Ebel H, Guenther T. Magnesium metabolism:a review [J]. J. Clin. Chem. Clin. Biochem., 1980,18:257-270.
    [2]Heanton F W. Role of magnesium in enzyme systems [M]. In:Metal Ions in Biological Systems,26, Compendium on Magnesium and its Role in Biology, Nutrition and Physiology, edited by Sigel H, Sigel A. New York:Marcel Dekker,1990,119-133.
    [3]Kaneko T, Hirano T. Role of prolaction and somatolactin in calcium regulation in fish [J]. J. Exp.Biol.,1993,184:31-45.
    [4]Black C B, Cowan J A. Magnesium-dependent enzymes in general metabolism [M]. In:The Biological Chemistry of Magnesium, edited by Cowan J A. New York:VCA Publishers, 1995,159-182.
    [5]Riccardi D. Cell surface, Ca2+(cation)-sensing receptor (s):one or many [J]. Cell Calcium, 1999,26:77-83.
    [6]Wenderlaar B S E. The effects of changes in external sodium, calcium and magnesium concentrations on prolactin cells, skin and plasma electrolytes of Gasterosteus aculeatus L. [J]. Gen. Comp. Endocrinol.,1978,34:265-275.
    [7]Wendelaar B S E, Meis S. Effects of external osmolality, calcium and prolactin on growth and differentiation of the epidermal cells of the cichlid teleost Sarotherodon mossambicus [J]. Cell Tissue Res.,1981,221:109-123.
    [8]Wendelaar B S E, Van der Meij J C A. Effect of ambient osmolarity and calcium on prolactin cell activity and osmotic water permeability of the gills in the teleost Sarotherodon mossambicus [J]. Gen. Comp. Endocrinol.,1981,43(4):432-442.
    [9]Flik G, Van Rijs J H, Wendelaar B S E. Evidence for the presence of calmodulin in fish mucus [J]. Eur. J. Biochem.,1984,138:651-654.
    [10]Shephard K L. Functions for fish mucus [J]. Reviews in Fish Biology and Fisheries,1994, 4(4):401-429.
    [11]杨桂文,安利国.鱼类黏液细胞研究进展[J].水产学报,1999,23(4):403-408.
    [12]Hughes G M, Wright D E. A comparative study of the ultrastructure of the waterblood pathway in the secondary lamellae of teleost and elasmobranch fishes-benthic forms [J]. Z. Zellforsch. mikrosk. Anat.,1970,104:478-493.
    [13]Marshall W S. On the involvement of mucus secretion in teleost osmoregulation [J]. Can. J. Zool.,1978,56:1088-1091.
    [14]Rosen M W, Cornford N E. Fluid friction in fish slimes [J]. Nature,1971,234:49-51.
    [15]Ellis A E. Non-specific defence mechanisms in fish and their role in disease processes [J]. Dev. Biol. Stand.,1981,49:337-352.
    [16]Roberts S D, Powell, M D. Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (Salmo salar L.) [J]. Comp. Biochem. Physiol.,2003,134A:525-537.
    [17]Fagan M S, O'Byrne-Ring N, Ryan R, et al. A biochemical study of mucus lysozyme, proteins and plasma thyroxine of Atlantic salmon(Salmo salar L.) during smoltification [J]. Aquaculture,2003,222(1-4):287-300.
    [18]Gabowski L D, LaPatra S E, Cain K D. Systemic and mucosal antibody response in tilapia, Oreochromis niloticus (L.), following immunization with Flavobacterium columnare [J]. J. Fish Diseases,2004,27(10):573-581.
    [19]Prasad M S. Histochemical observation oncrude oil poisoning in the respiratory epithelium of Puntius sophore [J]. Acta hydrochim hydrubiol,1987,15(5):535-539.
    [20]Diaz A O, Garcia A M, Devincenti C V, et al. Mucous Cells in Micropogonias furnieri gills: Histochemistry and Ultrastructure [J]. Anat. Histol. Embryologia,2001,30(3):135-139.
    [21]Whitear M. The skin surface of bony fishes [J]. J. Zool. London,1970,160:437-454.
    [22]Perera K M L. Ultrastructure of the primary gill lamellae of Scomber australasicus [J]. J. Fish Biol.,1993,43(1):45-59.
    [23]乔志刚,陈生智,程鸿轩,等.鲇肠道黏液细胞的类型、分布、发育及分泌方式研究[J].分子细胞生物学报,2007,40(1):24-30.
    [24]Luchtel D L, Martin A W, Deyrup-Olsen I. Ultrastructural and permeability characteristics of the membranes of mucous granules of the hagfish [J]. Tissue and Cell,1991,23(6):939-948.
    [25]陆宏达,朱光来,张连义,等.异育银鲫上皮瘤中黏液细胞类型、分布和分泌方式[J].动物学杂志,2008,43(4):85-91.
    [26]Neutra M R. Grand R J, Trier J S. Glycoprotein synthesis, transport, and secretion by epithelial cells of human rectal mucoua: normal and cystic fibrosis [J]. Lab. Invest.,1977,36: 535-547.
    [27]Freeman J A. Goblet Cell Fine Structure [J]. Anat Rec.,1966,154(1):121-147.
    [28]Boeuf G, Payan P. How should salinity influence fish growth [J]. Comp. Biochem. Physiol., 2001,130C:411-423.
    [29]Imsland A K, Gustavsson A, Gunnarsson S, et al. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut (Hippoglossus hippoglossus L.) [J]. Aquaculture,2008,274:254-259.
    [30]王文博,李爱华.环境胁迫对鱼类免疫系统影响的研究概况[J].水产学报,2002,26(4):368-374.
    [1]Kamaky K J. Structure and function of the chloride cell of Fundulus heteroclitus L. and other teleosts [J]. Am. Zool.,1986,26:209-224.
    [2]McCormick S D. Hormonal control of gill Na+-K+-ATPase and chloride cell function [M]. In: Cellular and molecular approaches to fish ionic regulation, edited by Wood C M, Shuttleworth T J. San Diego:Academic Press,1995,14:285-315.
    [3]Marshall W S, Bryson S E. Transport mechanisms of seawater teleost chloride cells:an inclusive model of a multifunctional cell [J]. Comp. Biochem. Physiol.,1998,119A:97-106.
    [4]Hwang P P, Lee T H. New insights into fish ion regulation and mitochondrionrich cells [J]. Comp. Biochem. Physiol.,2007,148A:479-497.
    [5]Mancera J M, McCormick S D. Rapid activation of gill Na+, K+-ATPase in the euryhaline teleost Fundulus heteroclitus L. [J]. J. Exp. Zool.,2000,287:263-274.
    [6]Kultz D, Bastrop R, Jurss K, et al. Mitochondria-rich (MR) cells and the activities of the Na+-K+-ATPase and carbonic anhydrase in the gill and opercular epithelium of Oreochromis mossambicus adapted to various salinities [J]. Comp. Biochem. Physiol.,1992,102B: 293-301.
    [7]Uchida K, Kaneko T, Yamauchi K, et al. Reduced hypoosmoregulatory ability and alteration in gill chloride cell distribution in mature chum salmon (Onchorhynchus keta) migrating upstream for spawning [J]. Mar. Biol.,1997,129:247-253.
    [8]Arjona F J, Vargas-Chacoff L, Ruiz-Jarabo, et al. Osmoregulatory response of Senegalese sole (Solea senegalensis) to changes in environmental salinity [J].Comp. Biochem. Physiol., 2007,148A:413-421.
    [9]Marshall W S, Emberley T R, Singer T D, et al. Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus heteroclitus L.:a multivariable approach [J]. J. Exp. Biol.,1999,202:1535-1544.
    [10]Sampaio L A, Bianchini A. Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus [J]. Journal of Experimental Marine Biology and Ecology, 2002,269:187-196.
    [11]Lee T H, Feng S H, Lin C H, et al. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus [J]. Zool. Sci.,2003,20:29-36.
    [12]Lin C H, Huang C L, Yang C H, et al. Time-course changes in the expression of Na+-K+-ATPase and the morphometry of mitochondrion-rich cells in gills of euryhalie tilapia (Oreochromis mossambicus) during freshwater acclimatization [J]. J. Exp. Zool.,2004a, 301A:85-96.
    [13]Steunkel E L, Hillyard S D. Effects of temperature and salinity on gill Na+-K+-ATPase activity in the pupfish Cyprinodon salinus [J]. Comp. Biochem. Physiol.,1980,67A: 179-182.
    [14]Yoshikawa J S M, McCormick S D, Young G, et al. Effects of salinity on chloride cells and Na+, K+-ATPase activity in the teleost Gillichthys mirabilis Cooper [J]. Comp. Biochem. Physiol.,1993,105A:311-317.
    [15]Kelly S P, Chow I N K, Woo N Y S. Haloplasticity of black seabream (Mylio macrocephalus):hypersaline to freshwater acclimatization [J]. J. Exp. Zool.,1999,283: 226-241.
    [16]Jarvis P L, Ballantyne J S. Metabolic reponses to salinity acclimatization in juvenile shortnose sturgeon Acipenser brevirostrum [J]. Aquaculture,2003,219:891-909.
    [17]Jensen M K, Madsen S S, Kristiansen K. Osmoregulation and salinity effects on the expression and activity of Na+-K+-ATPase in the gills of the European sea bass Dicentrarchus labrax (L.) [J]. J. Exp. Zool.,1998,282:290-300.
    [18]Varsamos S, Diaz J P, Charmantier G, et al. Chloride cells in the European sea bass Dicentrarchus labrax (L.) adapted to FW, SW and doubly-concentrated SW [J]. J. Exp. Zool., 2002b,293:12-26.
    [19]Lin C H, Tsai R S, Lee T H. Expression and distribution of Na+-K+-ATPase in gills and kidneys of the green spotted pufferfish, Tetraodon nigroviridis, in response to salinity challenge [J]. Comp. Biochem. Physiol.,2004b,138A:287-295.
    [20]Laiz-Carrion R, Sangiao-Alvarellos S, Guzman J M, et al. Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions:Implications for osmoregulation and energy metabolism [J]. Aquaculture,2005,250:849-861.
    [21]Sangiao-Alvarellos S, Arjona F J, Martin del Rio M P, et al. Time course of osmoregulatory and metabolic changes during osmotic acclimatization in Sparus auratus [J]. J. Exp. Biol., 2005,208:4291-4304.
    [22]Saoud I P, Sawsan K, Antoine C, et al. Influence of salinity on survival, growth, plasma osmolality and gill Na+-K+-ATPase activity in the rabbitfish Siganus rivulatus [J]. Journal of Experimental Marine Biology and Ecology,2007,348:183-190.
    [23]Jacob W F, Taylor M H. The time course of seawater acclimatization in Fundulus heteroclitus L. [J]. J. Exp. Zool.,1983,228:33-39.
    [24]Fiess J C, Kunkel-Patterson A, Mathias L, et al. Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromis mossambicus) [J]. Comp. Biochem. Physiol.,2007, 146A:252-264.
    [25]Tipsmark C K, Baltzegar D A, Ozden O, et al. Salinity regulates claudin mRNA and protein expression in the teleost gill [J]. Am. J. Physiol.,2008a,294:1004-1014.
    [26]Kang C K, Tsai S C, Lee T H, et al. Differential expression of branchial Na+-K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater [J]. Comp. Biochem. Physiol.,2008, 151A:566-575.
    [27]Choi C Y, An K W. Cloning and expression of Na+-K+-ATPase and osmotic stress transcription factor 1 mRNA in black porgy, Acanthopagrus schlegeli during osmotic stress [J]. Comp. Biochem. Physiol.,2008,149B:91-100.
    [28]Lin Y M, Chen C N, Lee T H. The expression of gill Na+-K+-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water [J]. Comp. Biochem. Physiol., 2003,135A:489-497.
    [29]Varsamos S, Nebel C, Charmantier G. Ontogeny of osmoregulation in postembryonic fish:A review [J]. Comp. Biochem. Physiol.,2005,141A:401-429.
    [30]Tsui W C. Studies on the Oxygen Consumption, Nitrogenous Excretion, Cortisol and Osmoregulation in Epinephelus malabaricus at Salinity Changes [J]. M S Thesis. Keelung, Taiwan:National Taiwan Ocean University,2005.
    [31]徐利文,刘广峰,王瑞旋,等.急性盐度胁迫对军曹鱼稚鱼渗透压调节的影响[J].应用 生态学报,2007,18(7):1596-1600.
    [32]Foss A, Evensen T H, Imsland A K, et al. Effects of reduced salinities on growth, food conversion efficiency and osmoregulatory status in the spotted woldfish [J]. J. Fish Biol., 2001,59:416-426.
    [33]Le Fran N R, Lamarre S G, Blier P U, et al. Tolerance, growth and haloplasticity of the Atlantci woldfish (Anarhichas lupus) exposed to various salinity [J]. Aquaculture,2004,236: 659-675.
    [34]潘鲁青,唐贤明,刘宏宇,等.盐度对褐牙鲆(Paralichthys olivaceus)幼鱼血浆渗透压和鳃丝Na+-K+-ATPase活力的影响[J].海洋与湖沼,2006,37(1):1-6.
    [35]Wood C M, Marshall W S. Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus L.-a euryhaline estuarine teleosts [J]. Estuaries, 1994,17:34-52.
    [36]Evans D H, Piermarini P M, Potts W T W. Ionic transport in the fish gill epithelium [J]. J. Exp.Zool.,1999,283:641-652.
    [37]Marshall W S. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills:retrospective review and prospective synthesis [J]. J. Exp. Zool.,2002,293:264-283.
    [38]Dang Z C, Balm P H M, Flik G, et al. Cortisol increases Na+-K+-ATPase density in plasma membranes of gill chloride cells in the freshwater tilapia Oreochromis mossambicus [J]. J. Exp. Biol.,2000,203:2349-2355.
    [39]Lee T H, Hwang P P, Shieh Y E, et al. The relationship between 'deep-hole' mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus [J]. Fish Physiol. Biochem.,2000,23:133-140.
    [40]Brauer P R, Sanmann J N, Petzel D H. Effects of warm acclimatization on Na+-K+-ATPase alpha-subunit expression in chloride cells of antarctic fish [J]. Anat. Rec.,2005,285A: 600-609.
    [41]Fiol D F, Kultz D. Osmotic stress sensing and signaling in fishes [J]. FEBS J.,2007,274: 5790-5798.
    [42]Hwang P P, Sun C M, Wu S M. Changes of plasma osmolality, chloride concentration and gill Na+-K+-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimatization [J]. Mar. Biol.,1989,100:295-299.
    [43]Lin C H. Lee T H. Sodium or potassium ions activate different kinetics of gill Na+-K+-ATPase in three seawater- and freshwater-acclimated euryhaline teleosts [J]. J. Exp. Zool.,2005.303A:57-65.
    [44]Lin Y M, Chen C N, Yoshinaga T, et al. Short-term effects of hyposmotic shock on Na+-K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos [J]. Comp. Biochem. Physiol.,2006,143A:406-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700