板坯连铸凝固过程中温度与应力的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸过程中,铸坯的传热及受力状况与铸坯的最终质量密切相关。因此,应用数学方法分析铸坯的温度及应力场对连铸生产具有重要的现实意义。论文针对某钢厂直弧型板坯连铸机部分钢种生产过程中铸坯角部和内部裂纹缺陷问题,以该铸机的基本结构和工艺参数作为基础,根据该厂直弧型板坯连铸机的铸坯具体的凝固传热和受力的边界条件,构建二维温度与应力的有限元模型。
     论文中分别分析板坯连铸过程中二维横向和纵向的凝固传热,并应用非稳态热传导方程对铸坯的传热进行分析。在MSC.Marc中有限元传热分析求解采用加权残差的Galerkin方法。凝固传热模型中考虑了热物性参数的非线性变化,以及由于钢液引起的强制对流边界条件。
     在二维温度场的基础上,考虑了高温下的铸坯材料非线性力学行为、铸坯与夹辊的接触状态、钢水静压力的影响,运用由屈服应力和硬化模量决定的冯米塞斯屈服准则,分别建立了板坯的二维横向和纵向的热弹塑性应力模型。
     有限元模型采用单元边长比接近于1的高精度四边形单元划分网格。基于MSC.Marc?有限元商业软件的温度和弹塑性分析相结合的方式对模型求解,其中的非线性分析采用具有很好收敛性的牛顿瑞佛森法求解。
     凝固传热计算得到了二维横向特定夹辊位置下铸坯断面温度场,以及铸机整个纵断面的铸坯温度场。选取结晶器出口断面,凝固前期弯曲过渡段和中后期的矫直段在三个拉速下的温度场进行分析。结果表0明凝固前期结晶器和足辊段冷却水量不合理是造成连铸坯角部纵裂纹的主要原因。弯曲矫直段铸坯的温度场应结合铸坯的高温力学性能制定适宜的目标温度,避免铸坯微裂纹的生成或加剧扩展。
     在温度场的计算结果上,计算分析了连铸过程中铸坯坯壳内的等效应力伴随凝固过程的变化情况,内外弧等效应力变化规律,以及夹辊与坯壳间接触受力情况。结果表明弯曲过渡段外弧前部和矫直段内弧后部等效应力值在各自区域内最大。在低拉速下的二冷前期,弯曲过渡段的铸坯容易在内外弧的角部产生较大的应力集中区域,随着凝固的进行,应力集中区域会沿铸坯宽面向内推移。
     论文中对横向二维应力模型的固定约束的接触处理方式进行了评估。结果表明在横向二维应力模型中,固定约束和加载法向接触力两种方式的等效应力结果相当。同时将横向与纵向二维应力模型在铸坯宽度方向中心线位置的等效应力值进行对比,分析表明纵向应力模型分析连铸过程铸坯整体受力情况具有优势。
In the continuouse casting process,the Thermal-Mechanical behavior of casting slab has an important impact on the final product quality. Therefore, the application of mathematical analysis of the temperature and stress field of slab,which has important practical significance in continuous casting production. This paper direct internal and corner crack defects of some steel grades in the vertical-bending slab caster production process, base on the basic structure of the ccaster and process parameters, According to strand solidification heat transfer and force boundary conditions under the vertical-bending slab caster in the plant, construct two-dimensional temperature and stress finite element model.
     In the paper, analysis of solidification heat transfer in the slab continuous casting process of horizontal and vertical two-dimensional section respectively,and application of non-steady state heat conduction equation in slab heat transfer analysis, Finite element analysis of heat transfer in MSC.Marc used Galerkin method of weighted residuals. The influence of liquid steel caused forced convection boundary conditions and thermal properties of nonlinear changes,were taken into consideration in the solidification heat transfer model.
     Based on two-dimensional temperature field, consideration of the impact of nonlinear mechanical behaviour of slab at the high temperature , the contact state between slab and roller, the static pressure of liquid steel, used of the yield stress and hardening modulus determined Von Mises yield criteria, were established two-dimensional horizontal and vertical section thermal elastic-plastic stress model of slab.
     Finite element model mesh use the high-precision rectangular unit which aspect ratio close to 1. The solve combines temperature and elastic-plastic analysis based on the commercial Finite elements method system Msc.marc?, in which a very good use of nonlinear analysis of convergence of Newton-Rafson method was applied.
     Calculations of Solidification heat transfer have been given two-dimensional horizontal section temperature field under particular roll position,and the longitudinal section temperature field of the overall slab caster., Analysis of the temperature fields at the cross section of mold, bending transition zone at the earlier stage of solidification and Straightening zone at the later stage of solidification three zones in the three different drawing speed. The results show that the longitudinal cornercracks is main caused by an unreasonable amount of cooling water at mold and the foot roller zone.The appropriate objectives temperature of strand at bending and straightening zone should be combined with high-temperature mechanical properties of strand , to avoid cracks formation or worsening cracks expand of slab.
     Base on the Temperature field calculation results, analysis of the equivalent stress changes inner strand shell associated with solidification , both inner and outer side of the slab variation of equivalent stress distribution, as well as the contact load state between slab and roller.The results show that outer side of the slab at bending transition zone and inner side of the slab at straightening zone have maximum equivalent stress. Prophase of secondary cooling zone under low drawing speed,Both inside and outside the slab in the corner have a greater stress concentration area at bending transition zone, the stress concentration area will be move inward along with the solidification progresses.
     Assessment of fixed constraint of contact approach in the horizontal two dimensional stress model, Results show that calculations are consistent with Normal contact force load approach.Contrast the equivalent stress value of slab centre line across the width between horizontal and vertical two dimensional stress model , Results show that application of the vertical two dimensional stress model analysis of the Force of the overall slab has more advantages.
引文
[1]中华人民共和国国工业和信息化部产业政策司.中国钢铁工业协会2009年第一次行业信息发布会信息[EB/OL] (2009-03-19)[2009-03-01].http://www.miit.gov.cn/n11293472/n11295-023/n11310870/12185980.html.
    [2]中华人民共和国国家统计局.中华人民共和国2009年国民经济和社会发展统计公报. [EB/OL](2009-02-25)[2010-03-1].http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20100225_402622945.htm.
    [3]干勇,唐红伟,仇圣桃.连续铸钢在钢铁生产流程中的作用及现代连铸技术简介[J],中国科学, 2008(09)1384~1390.
    [4]杨拉道,谢东钢.常规板坯连铸技术[M],北京:冶金工业出版社, 2002.
    [5]田乃媛.薄板坯连铸连轧[M].北京:冶金工业出版社, 2004.
    [6]蔡开科.浇注与凝固[M].北京:冶金工业出版社, 1992.
    [7]冶金部情报研究总所,《钢铁》杂志编辑部.国外连铸新技术(译文集)[M]. 1983.
    [8] Clyne T W. Numerical Modelling of Directional Solidification of Metallic Alloys [J]. Metal Science, 1982, 16:441-450.
    [9] E.A.Mizikar. Spray cooling investigation for continuous casting of billets and blooms [J], Iron and Steel Engineering, 1970,47(6):53-60.
    [10] J.K.Brimacombe. Design of continuous casting machines based on a heat-flow analysis: state of the art review [J]. Canadian Metallurgical Quarterly, 1976, 15(2):163-175.
    [11] Brian G.Thomas, I.V.Samarasekera, Brimacombe J.K. Compareson of numerical modeling techniques for complex two-dimensional transient heat conduction problems [J], Metallurgical Transaction B, 1984, 15(4):307-318.
    [12] Lait,J.E, Brimacombe,J.K., Weiberg,F. Mathematical modeling of heat flow in the continuous casting of steel [J]. Ironmaking and Steelmaking. 1974, (1):90-97.
    [13] E.A.Mizikar. Mathematical heat transfer model for solidification continuously cast steel slabs. Trans.TMS-AIME.1967.Vol.239:1747-1753.
    [14] A.W.D.Hills. A generalized integral-profile method for the analysis of unidirectional heat flow during solidification. Trans.TMS-AIME.1969,Vol.245:1471-1479
    [15] M.Salcudean, Z.Abdullah, Mackenbrock, et al. Generalized enthalpy method for multi-component phase change [J]. Metallurgical and Materials Transactions B, 1996, 27(5):871-882.
    [16] Louhenkilpi, Seppo. Study of heat transfer in a continuous billet casting machine [J],Scandinavian Journal of Metallurgy, 1994, 23(1):9-17.
    [17] E.Laitinen, P.Neitaanm"aki. On Numerical Simulation of the Continuous Casting Process [J], Joumal of Engineering Mathematics, 1988, 22(5).335-354.
    [18] I.V.Samarasekera. Application of Mathematical Models for the Improvement of Billet quality [A], Steelmaking Conference Proceedings [C]. Warrendale, Iron and Steel Society, 1991: 91-103.
    [19] R.Alberny et al. la lingotiere de coulee continue de brames et son bilan thermique.Revue de Metallurgie.July,1976:545-557.
    [20] J.K.Brimacombe.I.V.Samarasekera, R.B.Mahapatra. Basic knowledge and the achievement of quanlity in continous casting. Proceedings 6th Internat. Iron and Steel Congress, Nagoya, Japan, 1990, 3,246-255.
    [21] B.G.Thomas. Continuous Casting of Steel [M], O.Yu, editor, Marcel Dekker,New York, 2001: 499-540.
    [22]蔡开科,吴元增.连续铸锭板坯凝固传热数学模型[J].金属学报, 1983, 19(1):33-40.
    [23]武文斐.用数值模拟方法研究反向凝固主要工艺参数对母带厚度的影响[J].铸造, 2003, 52(2): 105-108.
    [24]王宏明.连铸工艺因素对铸坯凝固过程影响的模型研究[J].铸造技术, 2003, 24(5): 385-386.
    [25] S. K. Choudhary. Mathematical modeling of heat transfer phenomena in continuous casting of steel [J], ISIJ International, 1993, 33 (7):764-774.
    [26]恩刚.关于连铸坯凝固传热有限元数值模拟的研究[J].钢铁研究, 1996, 8: 30-35.
    [27]张建.反向凝固08A/15F复合钢带凝固传热过程的有限元分析[A].连铸技术论文集[C], 2002: 319-325.
    [28] Vanaparthy N M. Simulation of Solidification in Continuous Cast Steel Using Finite Element Method [J]. ASME, 1994, (289):131-138.
    [29]陶文铨.数值传热学[M].西安:西安交通大学出版社, 1995.
    [30]冯科.方坯连铸宏观传输现象复合数值模拟的研究[D].博士学位论文,重庆:重庆大学2004.
    [31]郭殿锋,关丽坤.大方坯连铸凝固传热数学模型的研究[J].包钢科技, 1999, 1:36-39.
    [32]大中逸雄.计算机传热凝固解析入门[M].北京:机械工业出版社, 1988.
    [33] F R Camisani-Calzolari, I K Craig, P C Pistorius, Specification Framework for Control of the Secondary Cooling Zone in Continuous Casting [J], ISIJ International, 1998, 38(5):447-453.
    [34] B. Lally ,L . Biegler and H. Henein . Finite difference heat transfer modeling for continuous casting . Metallurgical Transactions B. 1990, 21B(8): 761-770.
    [35] S_Chandra, J.K.Brimacombe and I.V. Samarasekera . Mould-strand in teraction incontinuous casting of steel billets , part 3: mould heat transfer and taper[J], Ironmaking and Steelmaking, 1993, 20(2): 104-112.
    [36] E. Laitinen and P.Neittaanmaki. On numerical simulation of the continuous casting process[J]. J. Eng. Mathematics. 1988. 22: 335-354.
    [37]干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟[M],北京:冶金工业出版社, 2001.
    [38] J.H.Weiner and B.A.Boley. Elasto-plastic thermal stresses in a solidifying body[J], J.Mech. Phys. Solids, 1963, 11:145-154.
    [39] A.Grill, J.K.Brimacombe and F.Weinberg. Mathematical analysis of stresses in continuous casting of steel[J], Ironmaking and Steelmaking. 1976, 3(l):38-47.
    [40] K.Sorimachi, J.K.Brimacombe. Improvements in mathematical modelling of stresses in continuous casting of steel[J], Ironmaking and Steelmaking, 1977,(4):240-245.
    [41] J.R.Williams, R.W.Lewis, K.Morga. An elasto-viscoplastic thermal stress model with applications to the continuous casting of metals[J], International Journal for Numerical Methods in Engineering, 1979, 14: 1-9
    [42] Ohnaka, Y.Yashima. Stress analysis of steel shell solidifying in continuous casting mold[C], Modelling of Casting and Welding Process IV, A.F.Giamei and G.J.Abbaschian, eds. Warrendale,PA,TMS-ATME,1988,Vol.4: 385-394
    [43] J.E. Kelly, K.P.Michalek,T.G.0'Connor, et al. Initial development Of thermal and stress fields in continuously cast steel billets[J], Metallurgical Transaction A, 1988, 9A(10):2589-2602.
    [44] KH Kim, KH Oh, DN Lee. Mechanical behavior of carbon steels during continuous casting[J], Scripta Materialia. 1996, 34(2):301-307.
    [45] Young Mok WON. Tae-jung YEO. Kyu Hwan OH. et al. Analysis of Mold Wear during Continuous Casting of Slab[J]. ISIJ International, 1998, 38(1): 53-62.
    [46] A.E.Huespe, A.Cardona, N.Nigro, et al. Visco-plastic constitutive models of steel at high temperature[J]. Journal of Materials Processing Technology. 2000,102:143-152.
    [47] Brian G. THOMAS. ISSUES IN THERMAL-MECHANICAL MODELING OF CASTING PROCESSES[J]. Iron and Steel Institute of Japan International, 1995, 35(6):737-743.
    [48] Chunsheng Li , Brian G. Thomas .THERMO-MECHANICAL FINITE ELEMENT MODEL OF SHELL BEHAVIOR IN CONTINUOUS CASTING OF STEEL[J].TMS, 2003(5).385-392.
    [49] Seid Koric, Brian G. Thomas. Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws[J]. Journal of materials processing technology. 2008. 197 408–418.
    [50] P.F.Kozlowski, B.G.Thomas, J.A.Azzi,et al. Simple constitutive equations for steel at hightemperature[J], Metall.Trans. A. 1992, 23A: 903–918.
    [51] H.Zhu, Coupled thermal–mechanical finite-element model with application to initial solidification[D], PhD thesis, University of Illinois,1993.
    [52] S.Koric, B.G.Thomas. Efficient thermo-mechanical model for solidification processes, Int. J. Num. Meth. Eng. 2006, (66):1955–1989.
    [53] L.Anand, Constitutive equations for the rate dependant deformation of metals at elevated temperatures[J], ASMEJ.Eng.Mater.Technol. 1982, 104: 12–17.
    [54] S.B.Brown, K.H.Kim, L.Anand, An internal variable constitutive model for hot working of metals[J], Int.J.Plasticity. 1989 (6), 95–130.
    [55] P.J.Wray, Plastic deformation of delta-ferriticiron at intermediate strain rates[J], Metall.Trans. A. 1976, 7A:1621-1627.
    [56] P.J.Wray. Effect of carbon contenton the plastic ?ow of plain carbon steel at elevated temperatures[J], Metall.Trans. A. 1982, 13:125–134.
    [57] A.E.Huespe,A.Cardona,N.Nigro,V.Fachinotti,Visco-plastic constitutive models of steel at high temperature[J], J.Mater.Process.Technol.102(2000).143–152.
    [58] M.Janik, H.Dyja, S.Berski, et al. Two-dimensional thermomechanic alanalysis of continuous casting process[J].Journal of Materials Processing Technology. 2004, (4):578–582.
    [59] F.Pascon, A.M.Habraken. Finite element study of the effect of some local defects on the risk of transverse cracking in continuous casting of steel slabs[J]. Comput. Methods Appl. Mech. Engrg. 2007, 196:2285–2299.
    [60]陈登福.薄板连铸坯的温度与应力状态的研究[D].博士学位论文.重庆:重庆大学.1997.
    [61]黄丽.板坯连铸的高温性能研究及应力分析[D].硕士学位论文.重庆:重庆大学.2007.
    [62]王青峡.板坯连铸凝固壳厚度的研究及应力分析[D].硕士学位论文.重庆:重庆大学.2008
    [63]赵岩.薄板坯二冷应力分析及仿真软件开发[D].硕士学位论文.重庆:重庆大学.2009
    [64]刘立文,有限元法在连铸工艺中的应用[D].博士后士学位论文.北京.钢铁研究总院. 2000.
    [65]陈素琼,连铸轻压下热—力耦合分析和质量研究[D].博士学位论文.北京:钢铁研究总院, 2004.
    [66]王建伟,连铸板坯带液芯轻压下过程数值模拟研究[D].硕士学位论文.北京:北京科技大学.2000.
    [67]宁振宇,板坯连铸鼓肚问题与辊列布置三维仿真研究[D].硕士学位论文.北京科技大学. 2007.
    [68]林启勇.板坯连铸动态轻压下压下量模型研究[D].硕士学位论文.沈阳:东北大学.2004.
    [69]韩志伟,冯科.连铸板坯矫直过程的有限元仿真[J].钢铁技术. 2008, (1) .16-18.
    [70]冯科,韩志伟.连铸板坯应力应变场的二维/三维有限元分析[J].钢铁技术. 2009, (1) .10-13.
    [71] Ttiupathi R. Chandrupatla, Ashok D.Belegundu(美)著,曾攀(译),工程中的有限元方法(第三版),北京:清华大学出版社. 2006.
    [72]郭戈,乔俊飞.连铸过程控制理论与技术[M],北京:冶金工业出版社. 2003.
    [73] Hideo MIZUKAMI, Akihiro YAMANAKA, Tadao WATANABE. Prediction of Density of Carbon Steels[J]. ISIJ International, 2002, 42 (4): 375–384.
    [74] Msc Software .MSC.MARC温度场及其耦合场分析培训教程. 2002.
    [75]杨桂通.弹塑性力学引论[M],北京:清华大学出版社, 2004.
    [76] Kristiansson J O. Thermal stresses in the early stage solidification of steel[J]. Journal of Thermal Stresses, 1982, 315– 330.
    [77] F. Kenneth, Iverson ect. Surface stresses in coated steel surfaces-influences of a bond layer on surface fracture [J]. 1991, (1), 40-51.
    [78]宁振宇,吴迪平,秦勤等.板坯连铸三维鼓肚变形仿真研究[J].冶金设备, 2007,162:5-8.
    [79]史宸兴.实用连铸冶金技术[M].北京:冶金工业出版社, 1998.
    [80]闫小林.连铸过程原理及数值模拟[M].石家庄:河北科学技术出版社,2001.
    [81]蔡开科,程士富.连续铸钢原理及工艺[M].北京:冶金工业出版社, 1994.
    [82]蔡开科.连铸坯裂纹与钢的高温力学行为[J].连铸, 1990, (6): 2-6.
    [83] Young Mock Won, Kyung-hyun Kim, Tae-jung Yeo. Effect of cooling rate on ZST, LIT and ZDT of carbon steel near melting point [J]. ISIJ International, 1998, 38(10): 1093-1099.
    [84] Y. Ohmori, Y. Maehara. Precipitation of NbC and hot ductility of austenite stainless Steels [J]. Transactions of Japan of Metals, 1984, 25(3): 160.
    [85] Z Jonsta, A Hernas, K Mazanec. Contribution to mechanical metallurgy behaviour of steel during continuous casting[J]. Journal of Materials Processing Technology, 1998, 78 (1). 90-94.
    [86] TSZENG T. C., KOBAYASHI S. Stress analysis in solidification processes: application to continuous casting[J]. International journal of machine tools & manufacture. 1988, 29(1):121-140.
    [87] E.Friedman. Thermo mechanical analysis of the welding process using the finite element method. Transaction of the ASME, Journal of Pressure Vessel Technology, August, 1975: 206-213.
    [88]付建勋,李京社,汪春雷. Q235钢杨氏弹性模量的研究[J].材料导报.2009, 23(18).68-70.
    [89]贾凌云,转炉-连铸工艺设计与程序[M].北京:冶金工业出版社,2005.
    [90]阚前华,常志宇. MSC.Marc工程应用实例分析与二次开发[M].北京:中国水利水电出版社, 2006.
    [91]陈火红.尹伟奇,薛小香, MSC.Marc二次开发指南[M].北京:科学出版社, 2004.
    [92]陈火红.于军泉,席源山. MSC.Marc/Mentat 2003基础与应用实例[M].科学出版社, 2004..
    [93]陈火红. Marc有限元实例分析教程[M].北京:机械工业出版社,2002.
    [94]刘伟忠.攀钢板坯连铸机“拉不动”剖析及措施[J].连铸, 2000(5), 25-27,47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700