激光烧蚀法制备碳纳米材料与金属氧化物纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能激光可以把物质瞬间蒸发并形成等离子体。等离子体在随后的冷却过程中发生凝聚从而生长为纳米材料。目前多数使用的纳秒激光虽然功率密度大,能制备多种纳米材料,但是由于其脉宽较短(纳秒),有效作用时间短,不利于创造稳定的纳米材料生长条件。相比较而言,长脉宽激光(毫秒),由于其脉宽是纳米激光的近百万倍,因而对于提供纳米材料稳定的生长条件以及提高制备效率具有重要的意义。
     本文介绍利用长脉宽(毫秒)激光器,通过改变激光器脉宽、炭材料状态、引入催化剂等工艺手段,利用传统炭材料(石墨、炭黑)制备出了多种新型炭材料(纳米金刚石、碳纳米管、碳纳米洋葱、石墨烯、发光碳纳米颗粒)。本文对比分析了纳秒和毫秒激光烧蚀制备纳米金刚石的条件以及金刚石生长的物理化学过程,利用热力学和动力学计算了金刚石的平衡尺寸以及生长尺寸。计算结果很好地解释了纳秒和毫秒激光制备的不同尺寸纳米金刚石的形成原因。根据超细纳米金刚石的热力学计算结果以及高分辨透射电镜照片推测了其多重孪晶生长过程,提出了纳米金刚石的生长理论。通过低能量激光束烧蚀炭黑制备出了亲水性碳纳米洋葱。实验结果分析表明碳纳米洋葱表面的亲水基团是造成其具有良好亲水特性的原因。利用石墨和纳米镍混合物,制备出了具有单层或多层膜结构的石墨烯。利用炭黑和微米镍粉混合物,制备出了碳纳米管。激光烧蚀炭黑或石墨的有机悬浮液制备出了具有生物相容性的发光碳纳米颗粒,通过变化有机溶剂的种类实现了发光碳纳米颗粒的发光峰位调控。利用分子动力学模拟证明激光将炭材料转变为碳原子,在冷却过程中能出现sp1、sp2、sp3杂化碳原子,当遇到适宜的沉积条件,可以分别形成纳米金刚石、碳纳米管、石墨烯等。
     激光烧蚀金属镍靶制备出了NiO纳米立方体,激光产生的极端非平衡条件是其形成的最重要因素。激光烧蚀金属钛靶制备出了金红石和锐钛矿混合的TiO2纳米球。光催化性能测试结果表明TiO2纳米球是一种具有高催化效率的纳米材料。激光烧蚀不同液体介质中的金属靶材有望用于制备形貌、成分、结构可控的纳米材料。
High energy laser could result in the vaporation of materials and the formation of plasma plume with high temperature and high pressure. When the temperature and pressure of the plasma plume start to drop down, the condensation of the plasma would result in the formation of nanomaterials. Although most of the widely used nanosecond pulsed lasers could output laser beam with high power density to facilitate the synthesis of nanomaterials, the short pulse width (nanosecond) also means the madly short effective acting time that is not conducive to productivity. The long-pulse-width laser (millisecond) has a pulse width million times longer than the nanosecond laser, which is much of meaningful for the growth and yield of nanomaterials.
     This paper focuses on the preparation of new carbon materials (nanodiamodns, carbon nanotubes, carbon onions, graphene, and fluorescent carbon nanoparticles) by the change of pulse width and starting materials (graphite and carbon black), introduction of catalyst using millisecond laser. Not only the physical and chemical conditions generated by laser with different pulse width and the growth process of nanodiamonds were comparative analyzed, but the equilibrium sizes and growth sizes of nanodiamonds were calculated by combing the thermodynamics and dynamics. Theortical calculations were in good agreement with experimental results and gave reasonable explanation on the formation of nanodiamonds with different sizes. According to the thermodynamics and high resolution transmission electron microscope results, we proposed the formation of multiply twining strtuture (MTS) of nanodiamonds and the corresponding growth theory. Carbon onions with hydrophilic characteristics were synthesized through irradiating carbon black suspension using millisecond pulsed laser at room temperature. Laser energy absorption resulted in the structure transformation of carbon black and the formation of hydrophilic groups on the surface of carbon onion. Carbon onions with hollow cores and the incomplete graphitic shells were produced from the starting materials under high and low laser power density, respectively. All the experimental results showed that the hydrophilic properties of carbon nanoonions orginated from surface hydrophilic ligands. Graphene with single or multiply layer structure were prepared using graphte/nanosized nickel powder as starting material by laser ablation. Carbon nanotubes were synthesized using carbon black/microsized nickel powder by laser ablation. Biocompatible fluorescent carbon nanoparticles (CNPs) were prepared by laser ablating carbon black or graphite suspended in the organic solvents, the tunable of peak in the PL spectrum was realized by adjusting the solvents. Carbon material molecular dynamics simulation results showed that the laser lead to the formation of carbon atoms immediately after laser ablation, the sp1、sp2、sp3 hybridized carbon atoms could exist during the cooling process, the nanodiamonds, carbon nanotubes, graphene could be formed under different environmental conditions.
     The NiO nanocubes were prepared by laser ablating a nickel target immered in water, the extreme nonequilibrium condition was responsible for the formation of NiO nanocubes generated by laser ablation. Mixed-phase (rutile and anatase) titania nanospheres (MTNs) were prepared by long-pulse-width laser ablation of a bulk titanium target in water. We proposed a mechanism of the formation of MTNs, where thermal dynamics and the long lifetime of plasma plume were responsible for the co-existence of rutile and anatase phases. The photocatalytic properties of MTNs exhibit significant improvement compared with the commercial titania powder. The ablation of metal target immersed in different liquid is promising for the synthsis of nanomaterials with controllable morphology, composition and structure.
引文
[1] Yang G W, Laser Ablation in Liquids: Applications in the Synthesis of Nanocrystals, Prog Mater Sci, 2007, 52(4): 648-98.
    [2] Jr Jc M, Jr R H, Editors, Laser Ablation-Mechanisms and Applications, Berlin: Springer-Verlag, 1991.
    [3] Fogarassy E L S, Laser Ablation of Electronic Materials-Basic Mechanisms and Applications,: Amsterdam:Elsevier, 1992.
    [4] Chrisey D B, Hubler G K, Pulsed Laser Deposition of Thin Solid Films, New York: Wiley-Interscience; 1994.
    [5]梁勇,冯钟潮,激光制备纳米材料膜及应用,北京:化学工业出版社, 2006, 1-170.
    [6]刘吉平,孙洪强,碳纳米材料,北京:科学出版社, 2004, 1-30.
    [7]张立德,牟季美,纳米材料科学[M].沈阳:辽宁出版社,1994.8
    [8] Katsnelson M I, Graphene: Carbon in Two Dimensions, Materials Today, 2007, 10(1-2): 20-7.
    [9] Geim A K, Novoselov K S, The Rise of Graphene, Nature Materials, 2007, 6(3): 183-91.
    [10] Novoselov K S, Jiang D, Schedin Fet al., Two-Dimensional Atomic Crystals, P Natl Acad Sci Usa, 2005, 102 (30) : 10451-3.
    [11]牟瑛琳,金刚石及金刚石结构氮化硼的爆轰波合成方法研究,博士论文,北京理工大学, 1993
    [12]邹芹,王明智,王艳辉,纳米金刚石的性能与应用前景,金刚石与磨料磨具工程, 2003, 134(2): 54-8.
    [13]王光祖,张运生,等,纳米金刚石应用的潜在发展前景,工业金刚石, 2002, 6(6): 68-71.
    [14] Iijima S, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354(6348): 56-8.
    [15] Dresselhaus M S, Dresselhaus G, Eklund P C, Science of Fullerenes and Carbon Nanotubes, San Diego:Academic Press, 1996, 1-965
    [16] Ajayan P M, Nanotubes from Carbon, Chem. Rev, 1999, 99(7): 1787-99.
    [17] Dai H J, Carbon Nanotubes: Synthesis, Integration, and Properties, Accounts Chem Res, 2002, 35(12): 1035-44.
    [18] Dresselhaus M S, Avouris P, Introduction to Carbon Materials Research,Springer-Verlag Berlin Heidelberg, 2001, 1-9
    [19] Abanin D A, Levitov L S, Quantized Transport in Graphene P-N Junctions in a Magnetic Field, Science, 2007, 317 (5838) : 641-3.
    [20] Novoselov K S, Jiang D, Schedin F et al., Two-Dimensional Atomic Crystals, P Natl Acad Sci Usa, 2005, 102(30):10451-3.
    [21] Williams J R, Dicarlo L, Marcus C M, Quantum Hall Effect in a Gate-Controlled P-N Junction of Graphene, Science, 2007, 317 (5838) : 638-41.
    [22] Williams J R, Dicarlo L, Marcus C M, Quantum Hall Effect in a Gate-Controlled P-N Junction of Graphene, Science, 2007, 317(5838): 638-41.
    [23] Abanin D A, Levitov L S, Quantized Transport in Graphene P-N Junctions in a Magnetic Field, Science, 2007, 317(5838): 641-3.
    [24] Ozyilmaz B, Jarillo-Herrero P, Efetov D et al., Electronic Transport and Quantum Hall Effect in Bipolar Graphene P-N-P Junctions, Phys Rev Lett, 2007, 99 :166804-7.
    [25] Meyer J C, Geim A K, Katsnelson M I et al., The Structure of Suspended Graphene Sheets, Nature, 2007, 446(7131): 60-3.
    [26] Hass J, Feng R, Li T et al., Highly Ordered Graphene for Two Dimensional Electronics, Appl Phys Lett, 2006, 89(14):143106-8.
    [27] Berger C, Song Z M, Li X B et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, 2006, 312(5777): 1191-6.
    [28] Stankovich S, Dikin D A, Dommett G et al., Graphene-Based Composite Materials, Nature, 2006, 442(7100): 282-6.
    [29] Stankovich S, Dikin D A, Piner R D et al., Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 2007, 45(7): 1558-65.
    [30] Kudin K N, Ozbas B, Schniepp H C et al., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Lett, 2008, 8(1): 36-41.
    [31] Coraux J, N'Diaye A T, Busse C et al., Structural Coherency of Graphene On Ir(111), Nano Lett, 2008, 8(2) : 565-70.
    [32] Dato A, Radmilovic V, Lee Z H et al., Substrate-Free Gas-Phase Synthesis of Graphene Sheets, Nano Lett, 2008, 8(7): 2012-6.
    [33] Sano N, Wang H, Chhowalla M et al., Synthesis of Carbon Onions in Water, Nature,2001,414(6863):506-7.
    [34] Kraetschmer W, Lamb L D, Fostiropoulos K et al., Solid C60: A New Form ofCarbon, Nature, 1990, 347: 354-8.
    [35] Du A B, Liu X G, Fu D J et al., Onion-Like Fullerenes Synthesis From Coal, Fuel, 2007, 86(1-2): 294-8.
    [36]许并社,纳米洋葱状富勒烯的研究进展及动向,材料导报, 2001, 15(9): 45-49
    [37]杨晓伟,姚延立,郭俊杰等., Pt/洋葱状富勒烯复合纳米微粒的制备,电子显微学报, 2006,25: 64-64.
    [38]符冬菊,杜爱兵,刘旭光等.,由不同碳源合成洋葱状富勒烯,煤炭转化, 2005, 28(3): 87-92.
    [39] Qiao Z J, Li J J, Zhao N Q et al., Graphitization and Microstructure Transformation of Nanodiamond to Onion-Like Carbon, Scripta Mater, 2006, 54(2): 225-9.
    [40] He C N, Zhao N Q, Shi C S et al., A Practical Method for the Production of Hollow Carbon Onion Particles, J Alloy Compd, 2006, 425(1-2): 329-33.
    [41] X M, Bystrzejewski, Huczko A et al., Combustion Synthesis Route to Carbon-Encapsulated Iron Nanoparticles, Diam Relat Mater, 2006, 16:225-8.
    [42] Zhou J G, Booker C, Li R Y et al., An Electrochemical Avenue to Blue Luminescent Nanocrystals From Multiwalled Carbon Nanotubes (MWCNTs), J Am Chem Soc, 2007, 129(4): 744-5.
    [43] Zhao Q L, Zhang Z L, Huang B H et al., Facile Preparation of Low Cytotoxicity Fluorescent Carbon Nanocrystals by Electrooxidation of Graphite, Chem Commun, 2008, 41: 5116-8.
    [44] Liu H P, Ye T, Mao C D, Fluorescent Carbon Nanoparticles Derived From Candle Soot, Angew Chem Int Edit, 2007, 46(34): 6473-5.
    [45] Sun Y P, Zhou B, Lin Y et al., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence, J Am Chem Soc, 2006, 128(24): 7756-7.
    [46] Chang I P, Hwang K C, Chiang C, Preparation of Fluorescent Magnetic Nanodiamonds, J Am Chem Soc, 2008, 130(46): 15476-81.
    [47]唐波,葛介超,王春先等.,金属氧化物纳米材料的制备新进展,化工进展, 2002,21(10): 707-717
    [48] Sato H, Minami T, Takata S et al., Transparent Conducting P-Type NiO Thin Films Prepared by Magnetron Sputtering, Thin Solid Films, 1993, 236(1-2) : 27-31.
    [49] Natile M M, Glisenti A, New NiO/Co3O4 and Fe2O3/Co3O4 NanocompositeCatalysts: Synthesis and Characterization, Chem Mater, 2003, 15(13): 2502-10
    [50] Kamal H, Elmaghraby E K, Ali S A et al., Characterization of Nickel Oxide Films Deposited at Different Substrate Temperatures Using Spray Pyrolysis, J. Crystal Growth, 2004, 262(1-4): 424-34
    [51] Seto T, Akinaga H, Talano F, et al., Magnetic Properties of Monodispersed Ni/NiO Core?Shell Nanoparticles, J PhysChem B, 2005 ,109(28): 13403-5
    [52] Chen X, Mao S S, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem Rev, 2007, 107(7): 2891-959.
    [53] Cozzoli P D, Comparelli R, Fanizza E et al., Photocatalytic Activity of Organic-Capped Anatase TiO2 Nanocrystals in Homogeneous Organic Solutions, Mat Sci Eng C-Bio S, 2003, 23(6-8): 707-13.
    [54] Joo J, Kwon S G, Yu T et al., Large-Scale Synthesis of TiO2 Nanorods Via Nonhydrolytic Sol-Gel Ester Elimination Reaction and their Application to Photocatalytic Inactivation of E. Coli, J Phys Chem B, 2005, 109(32): 15297-302.
    [55] Li F B, Li X Z, Hou M F, Photocatalytic Degradation of 2-Mercaptobenzothiazole in Aqueous La3+-TiO2 Suspension for Odor Control, Appl Catal B-Environ, 2004, 48(3): 185-94.
    [56] Yang J, Chen C C, Ji H W et al., Mechanism of TiO2-Assisted Photocatalytic Degradation of Dyes Under Visible Irradiation: Photoelectrocatalytic Study by TiO2-Film Electrodes, J Phys Chem B, 2005, 109(46): 21900-7.
    [57] Varghese O K, Gong D W, Paulose M et al., Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure, Adv Mater, 2003, 15 (7-8): 624-7.
    [58] Paulose M, Varghese O K, Mor G K et al., Unprecedented Ultra-High Hydrogen Gas Sensitivity in Undoped Titania Nanotubes, Nanotechnology, 2006, 17(2): 398-402.
    [59] Lim S H, Luo J Z, Zhong Z Y et al., Room-Temperature Hydrogen Uptake by TiO2 Nanotubes, Inorganic Chemistry, 2005, 44(12): 4124-6
    [60] Bavykin D V, Lapkin A A, Plucinski P K, Reversible Storage of Molecular Hydrogen by Sorption Into Multilayered TiO2 Nanotubes, J. Phys. Chem. B, 2005, 109(41):19422-7
    [61] Bach U, Corr D, Lupo D et al., Nanomaterials-Based Electrochromics for Paper-Quality Displays, Adv Mater, 2002, 14(11): 845-8.
    [62] Moller M T, Asaftei S, Corr D et al., Switchable Electrochromic Images Based an a Combined Top-Down Bottom-Up Approach, Adv Mater, 2004, 16(17): 1558.
    [63] Choi S Y, Mamak M, Coombs N et al., Electrochromic Performance of Viologen-Modified Periodic Mesoporous Nanocrystalline Anatase Electrodes, Nano Lett, 2004, 4(7): 1231-5.
    [64] Deskins N A, Kerisit S, Rosso K M et al., Molecular Dynamics Characterization of Rutile-Anatase Interfaces, Journal of Physical Chemistry C, 2007, 111(26): 9290-8.
    [65] Kawahara T, Konishi Y, Tada H et al., A Patterned TiO2(Anatase)/TiO2(Rutile) Bilayer-Type Photocatalyst: Effect of the Anatase/Rutile Junction On the Photocatalytic Activity, Angew Chem Int Edit, 2002, 41(15): 2811.
    [66] Kanna M, Wongnawa S, Mixed Amorphous and Nanocrystalline TiO2 Powders Prepared by Sol-Gel Method: Characterization and Photocatalytic Study, Mater Chem Phys, 2008, 110(1): 166-75.
    [67] Yan M C, Chen F, Zhang J L et al., Preparation of Controllable Crystalline Titania and Study On the Photocatalytic Properties, J Phys Chem B, 2005, 109 (18): 8673-8.
    [68] Di Paola A, Cufalo G, Addamo M et al., Photocatalytic Activity of Nanocrystalline TiO2 (Brookite, Rutile and Brookite-Based) Powders Prepared by Thermohydrolysis of TiCl4 in Aqueous Chloride Solutions, Colloid Surface A, 2008, 317(1-3): 366-76.
    [69] Kanna M, Wongnawa S, Mixed Amorphous and Nanocrystalline TiO2 Powders Prepared by Sol-Gel Method: Characterization and Photocatalytic Study, Mater Chem Phys, 2008, 110(1): 166-75.
    [70] Yan M C, Chen F, Zhang J L et al., Preparation of Controllable Crystalline Titania and Study On the Photocatalytic Properties, J Phys Chem B, 2005, 109(18): 8673-8.
    [71] Di Paola A, Cufalo G, Addamo M et al., Photocatalytic Activity of Nanocrystalline TiO2 (Brookite, Rutile and Brookite-Based) Powders Prepared by Thermohydrolysis of TiCl4 in Aqueous Chloride Solutions, Colloid Surface A, 2008, 317(1-3): 366-76.
    [72] Fedoseev D V, Bukhovets V L, Varshavskaya I G et al., Transition of Graphite Into Diamond in a Solid Phase Under the Atmospheric Pressure, Carbon, 1983,21: 237-41.
    [73] Fedoseev D V, Varshavskaya I G, Lavrent'ev A V, Phase Transformations in Highly Disperse Powders During their Rapid Heating and Cooling, Powder Technology, 1985, 2: 125-9.
    [74] Alam M, Debroy T, Roy R et al., Diamond Formation in Air by the Fedoseev-Derjaguin Laser Process, Carbon, 1989,27(2): 289-94.
    [75] Kroto H W, Heath J R, O'Brien S C et al., C60: Buckminsterfullerene, Nature, 1985, 318(6042): 162-3.
    [76] Guo T, Nikolaev P, Thess A et al., Catalytic Growth of Single-Walled Manotubes by Laser Vaporization, Chemical Physics Letter, 1995, 243(1-2): 49-54.
    [77] Ferretti M, Parisini A, Manfredini M et al., Laser-Induced Graphitization of Fullerite, Chemical Physics Letter, 1996, 259(3-4): 432-7.
    [78] Wei B, Zhang J, Liang J et al., The Mechanism of Phase Transformation from Carbon Nanotube to Diamond, Carbon, 1998, 36(7-8): 997-1001.
    [79] Ogalea S B, Malshea A P, Kanetkara S M et al., Formation of Diamond Particulates by Pulsed Ruby Laser Irradiation of Graphite Immersed in Benzene, Solid State Commun, 1992, 84(4): 371-3.
    [80] Wang J B, Zhang C Y, Zhong X L et al., Cubic and Hexagonal Structures of Diamond Nanocrystals Formed upon Pulsed Laser Induced Liquid-Solid Interfacial Reaction, Chem Phys Lett, 2002, 361(1-2): 86-90.
    [81] Yang G W, Wang J B, Carbon Nitride Nanocrystals Having Cubic Structure Using Pulsed Laser Induced Liquid-Solid Interfacial Reaction, Appl Phys A-Mater Sci Process, 2000, 71(3): 343-4.
    [82] Yang G W, Wang J B, Liu Q X, Preparation of Nano-Crystalline Diamonds Using Pulsed Laser Induced Reactive Quenching, J Phys-Condens Mat, 1998, 10 (35): 7923-7.
    [83] Pearce S R J, Henley S J, Claeyssens F et al., Production of Nanocrystalline Diamond by Laser Ablation at the Solid/Liquid Interface, Diam Relat Mater, 2004, 13(4-8): 661-5.
    [84] Ashfold M, Claeyssens F, Fuge G M et al., Pulsed Laser Ablation and Deposition of Thin Films, Chem Soc Rev, 2004, 33(1): 23-31.
    [85] Pola J, Urbanov M, Bastl Z et al., Laser Photolysis of Liquid Benzene and Toluene: Graphitic and Polymeric Carbon Formation at Ambient Temperature,Carbon, 1997, 35(5): 605-11.
    [86] Wood R F, Leboeuf J N, Chen K R et al., Dynamics of Plume Propagation, Splitting, and Nanoparticle Formation During Pulsed-Laser Ablation, Appl Surf Sci, 1998, 127: 151-8.
    [87] Romero A H, Jeschke H O, Garcia M E, Laser Manipulation of Nanodiamonds, Comp Mater Sci, 2006, 35(3): 179-82.
    [88] Gnedovets A G, Gusarov A V, Smurov I, Submicron Particles Synthesis by Laser Evaporation at Low Power Density: A Numerical Analysis, Appl Surf Sci, 2000, 154: 508-13.
    [89] Saito K, Takatani K, Sakka T et al., Observation of the Light Emitting Region Produced by Pulsed Laser Irradiation to a Solid-Liquid Interface, Appl Surf Sci, 2002, 197: 56-60.
    [90] Saito K, Sakka T, Ogata Y H, Rotational Spectra and Temperature Evaluation of C2 Molecules Produced by Pulsed Laser Irradiation to a Graphite-Water Interface, J Appl Phys, 2003, 94(9): 5530-6.
    [91] Furusawa H, Sakka T, Ogata Y H, Characterization of Ablated Species in Laser-Induced Plasma Plume, J Appl Phys, 2004, 96(2): 975-82.
    [92] Henley S J, Carey J D, Silva S et al., Dynamics of Confined Plumes During Short and Ultrashort Pulsed Laser Ablation of Graphite, Phys Rev B, 2005, 72: 205413.
    [93] Sakka T, Saito K, Ogata Y H, Laser Ablation Processing of Solid Surfaces Immersed in Water, J Appl Phys, 2005, 89(4): 2400-4.
    [94] Sakka T, Saito K, Ogata Y H, Emission Spectra of the Species Ablated From a Solid Target Submerged in Liquid: Vibrational Temperature of C2 Molecules in Water-Confined Geometry, Appl Surf Sci, 2002, 197-198: 246-50.
    [95] Oguchi H, Sakka T, Ogata Y H, Effects of Pulse Duration upon the Plume Formation by the Laser Ablation of Cu in Water, J Appl Phys, 2007, 102(2): 023306
    [96] Peyre P, Berthe L, Scherpereel X et al., Laser-Shock Processing of Aluminium-Coated 55C1 Steel in Water-Confinement Regime, Characterization and Application to High-Cycle Fatigue Behaviour, J Mater Sci, 1998, 33(6): 1421-9.
    [97] Berthe L, Fabbro R, Peyre P et al., Wavelength Dependent of Laser Shock-Wave Generation in the Water-Confinement Regime, J Appl Phys, 1999, 85(11):7552-5.
    [98] Berthe L, Sollier A, Peyre P et al., The Generation of Laser Shock Waves in a Water-Confinement Regime with 50 ns and 150 ns XeCl Excimer Laser Pulses, J Phys D Appl Phys, 2000, 33(17): 2142-5.
    [99] Peyre P, Berthe L, Fabbro R et al., Experimental Determination by PVDF and EMV Techniques of Shock Amplitudes Induced by 0.6-3 ns Laser Pulses in a Confined Regime with Water, J Phys D Appl Phys, 2000, 33 (5) : 498-503.
    [100] Sollier A, Berthe L, Fabbro R, Numerical Modeling of the Transmission of Breakdown Plasma Generated in Water During Laser Shock Processing, Eur Phys J-Appl Phys, 2001, 16(2): 131-9.
    [101] Lu Y F, Huang S M, Wang X B et al., Laser-Assisted Growth of Diamond Particulates On a Silicon Surface From a Cyclohexane Liquid, Appl Phys A-Mater, 1998, 66(5): 543-7.
    [102] Simakin A V, Shafeev G A, Loubnin E N, Laser Deposition of Diamond-Like Films From Liquid Aromatic Hydrocarbons, Appl Surf Sci, 2000, 154: 405-10.
    [103] Simakin A V, Obraztsova E D, Shafeev G A, Laser-Induced Carbon Deposition From Supercritical Benzene, Chem Phys Lett, 2000, 332(3-4): 231-5.
    [104] Inoue W, Okoshi M, Inoue N, Fabrication of Diamond-Like Carbon Thin Films by Femtosecond Laser Ablation of Frozen Acetone, Appl Phys A:Mater Sci Processing, 2004, 79(4-6): 1457-60.
    [105] Yeh M S, Yang Y S, Lee Y P et al., Formation and Characteristics of Cu Colloids from CuO Powder by Laser Irradiation in 2-Propanol, J Phys Chem B, 1999, 103(33): 6851-7.
    [106] Poondi D, Singh J, Synthesis of Metastable Silver-Nickel Alloys by a Novel Laser-Liquid-Solid Interaction Technique, J Mater Sci, 2000, 35(10): 2467-76.
    [107] Simakin A V, Voronov V V, Shafeev G A et al., Nanodisks of Au and Ag Produced by Laser Ablation in Liquid Environment, Chem Phys Lett, 2001, 348 (3-4): 182-6.
    [108] Compagnini G, Scalisi A A, Puglisi O, Ablation of Noble Metals in Liquids: A Method to Obtain Nanoparticles in a Thin Polymeric Film, Phys Chem Chem Phys, 2002, 4(12): 2787-91.
    [109] Liang C H, Shimizu Y, Sasaki T et al., Synthesis of Ultrafine SnO2-X Nanocrystals by Pulsed Laser-Induced Reactive Quenching in Liquid Medium, J Phys Chem B, 2003, 107(35): 9220-5.
    [110] Liu Q X, Wang C X, Zhang W et al., Immiscible Silver-Nickel Alloying Nanorods Growth upon Pulsed-Laser Induced Liquid/Solid Interfacial Reaction, Chem Phys Lett, 2003, 382(1-2): 1-5.
    [111] Wang J B, Yang G W, Phase Transformation Between Diamond and Graphite in Preparation of Diamonds by Pulsed-Laser Induced Liquid-Solid Interface Reaction, J Phys-Condens Mat, 1999, 11(37): 7089-94.
    [112] Wang C X, Liu P, Cui H et al., Nucleation and Growth Kinetics of Nanocrystals Formed upon Pulsed-Laser Ablation in Liquid, Appl Phys Lett, 2005, 87: 201913.
    [113] Wang C X, Yang Y H, Yang G W, Thermodynamical Predictions of Nanodiamonds Synthesized by Pulsed-Laser Ablation in Liquid, J Appl Phys, 2005, 97: 066104.
    [114]孙景,翟琪,杜海燕等.,碳原料结构对激光法合成纳米金刚石的影响,纳米技术与精密工程, 2006, 4(3): 217-220.
    [115]孙景,翟琪,江雷等.,激光照射石墨悬浮液制备纳米金刚石的研究,金刚石与磨料磨具工程, 2006, 5: 24-27.
    [116] Sun J., Lei Y., Zhai Q et al, Preparation of nanodiamonds by laser irradiation of graphite, Chinese Optics Letters, 2005, 3(5): 287~288.
    [117]孙景,杨星,雷贻文等.,激光诱导固态转变合成金刚石研究进展,金刚石与磨料磨具工程, 2005,2: 7-9.
    [118] Heimann R B, Evsyukov S E, Koga Y, Carbon Allotropes: A Suggested Classification Scheme Based On Valence Orbital Hybridization, Carbon, 1997, 35(10-11): 1654-8.
    [119] Simakin A V, Voronov V V, Shafeev G A et al., Nanodisks of Au and Ag Produced by Laser Ablation in Liquid Environment, 2001, 348(3-4): 182-6.
    [120] Compagnini G, Scalisi A A, Puglisi O, Ablation of Noble Metals in Liquids: A Method to Obtain Nanoparticles in a Thin Polymeric Film, Phys Chem Chem Phys, 2002, 4(12): 2787-91.
    [121] Compagnini G, Scalisi A A, Puglisi O, Production of Gold Nanoparticles by Laser Ablation in Liquid Alkanes, J Appl Phys, 2003, 94(12): 7874-7.
    [122] Dolgaev S I, Simakin A V, Voronov V V et al., Nanoparticles Produced by Laser Ablation of Solids in Liquid Environment, 2002, 186(1-4): 546-51.
    [123] Compagnini G, Noble M et al., Particles for Polymer-Based Nanostructured Thin Films, Appl Surf Sci, 2004, 226(1-3): 216-25.
    [124] Sylvestre J P, Poulin S, Kabashin A V et al., Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media, J Phys Chem B, 2004, 108(43): 16864-9.
    [125] Sylvestre J P, Kabashin A V, Sacher E et al., Stabilization and Size Control of Gold Nanoparticles During Laser Ablation in Aqueous Cyclodextrins, J Am Chem Soc, 2004, 126(23): 7176-7.
    [126] Kabashin A V, Meunier M, Kingston C et al., Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins, J Phys Chem B, 2003, 107(19): 4527-31.
    [127] Mafune F, Kohno J, Takeda Y et al., Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant, J Phys Chem B, 2001, 105(22): 5114-20.
    [128] Mafune F, Kohno J Y, Takeda Y et al., Full Physical Preparation of Size-Selected Gold Nanoparticles in Solution: Laser Ablation and Laser-Induced Size Control, J Phys Chem B, 2002, 106(31): 7575-7.
    [129] Mafune F, Kohno J, Takeda Y et al., Formation of Gold Nanonetworks and Small Gold Nanoparticles by Irradiation of Intense Pulsed Laser Onto Gold Nanoparticles, J Phys Chem B, 2003, 107(46): 12589-96.
    [130] Bozon-Verduraz F, Brayner R, Voronov V V et al., Production of Nanoparticles by Laser-Induced Ablation of Metals in Liquids, Quantum Electron, 2003, 33 (8): 714-20.
    [131] Poondi D, Singh J, Synthesis of Metastable Silver-Nickel Alloys by a Novel Laser-Liquid-Solid Interaction Technique, J Mater Sci, 2000, 35(10): 2467-76.
    [132] Poondi D, Dobbins T, Singh J, A Novel Laser-Liquid-Solid Interaction Technique for Synthesis of Silver, Nickel and Immiscible Silver-Nickel Alloys From Liquid Precursors, J Mater Sci, 2000, 35(24): 6237-43.
    [133] Izgaliev A T, Simakin A V, Shafeev G A, Formation of the Alloy of Au and Ag Nanoparticles upon Laser Irradiation of the Mixture of their Colloidal Solutions, Quantum Electron, 2004, 34(1): 47-50.
    [134] Zhang J, Worley J, Denommee S et al., Synthesis of Metal Alloy Nanoparticles in Solution by Laser Irradiation of a Metal Powder Suspension, J Phys Chem B, 2003, 107(29): 6920-3.
    [135] Anikin K V, Melnik N N, Simakin A V et al., Formation of ZnSe and CdS Quantum Dots Via Laser Ablation in Liquids, Chem Phys Lett, 2002, 366(3-4):357-60.
    [136] Liang C H, Shimizu Y, Sasaki T et al., Synthesis of Ultrafine SnO2-x Nanocrystals by Pulsed Laser-Induced Reactive Quenching in Liquid Medium, J Phys Chem B, 2003, 107(35): 9220-5.
    [137] Zeng H B, Cai W P, Li Y et al., Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media, J Phys Chem B, 2005, 109(39): 18260-6.
    [138] Usui H, Sasaki T, Koshizaki N, Ultraviolet Emission From Layered Nanocomposites of Zn(OH)2 and Sodium Dodecyl Sulfate Prepared by Laser Ablation in Liquid, Appl Phys Lett, 2005, 87(6): 063150
    [139] Liang C H, Shimizu Y, Masuda M et al., Preparation of Layered Zinc Hydroxide/Surfactant Nanocomposite by Pulsed-Laser Ablation in a Liquid Medium, Chem Mater, 2004, 16(6): 963-5.
    [140] Liang C H, Sasaki T, Shimizu Y et al., Pulsed-Laser Ablation of Mg in Liquids: Surfactant-Directing Nanoparticle Assembly for Magnesium Hydroxide Nanostructures, Chem Phys Lett, 2004, 389(1-3): 58-63.
    [141] Chen J W, Dong Q Z, Yang J et al., The Irradiation Effect of a Nd-YAG Pulsed Laser On the CeO2 Target in the Liquid, Mater Lett, 2004, 58(3-4): 337-41.
    [142] Iwabuchi A, Choo C K, Tanaka K, Titania Nanoparticles Prepared with Pulsed Laser Ablation of Rutile Single Crystals in Water, J Phys Chem B, 2004, 108 (30): 10863-71.
    [143] Jawhari T, Roid A, Casado J, Raman Spectroscopic Characterization of Some Commercially Available Carbon Black Materials, Carbon, 1995, 33(11): 1561-5.
    [144] Tuinstra F, Koenig J L, Raman Spectrum of Graphite, J Chem Phys, 2003, 53: 1126.
    [145]孙景,胡胜亮,杜希文,激光法制备碳质纳米材料,新型炭材料, 2008, 23 (1): 86-94.
    [146] Huang S M, Sun Z, Lu Y F et al., Ultraviolet and Visible Raman Spectroscopy Characterization of Chemical Vapor Deposition Diamond Films, Surface and Coatings Technology, 2002, 151-152: 263-7.
    [147] Prawer S, Nugent K W, Jamieson D N et al., The Raman Spectrum of Nanocrystalline Diamond, Chem Phys Lett, 2000, 332(1-2): 93-7.
    [148] Luque J, Juchmann W, Jeffries J B, Spatial Density Distributions of C, C, andCH Radicals by Laser-Induced Fluorescence in a Diamond Depositing Dc-Arcjet, J Appl Phys, 1997, 82: 2072.
    [149] Sakka T, Emission Spectra of the Species Ablated From a Solid Target Submerged in Liquid Vibrational Temperature of C2 Molecules in Water-Confined Geometry,Appl Surf Sci, 2002,197-198: 246-50.
    [150] Wang C X, Yang G W, Thermodynamics of Metastable Phase Nucleation at the Nanoscale, Mat Sci Eng R, 2005, 49(6): 157-202.
    [151] Sun J, Hu S L, Du X W et al., Ultrafine Diamond Synthesized by Long-Pulse-Width Laser, Appl Phys Lett, 2006, 89: 183115.
    [152] Barnard A S, Theory and Modeling of Nanocarbon Phase Stability, Diam Relat Mater, 2006, 15(2-3): 285-91.
    [153] Barnard A S, Stability of Nanodiamond, Ultrananocrystalline Diamond, 2006, 117-54
    [154] Zhao D S, Zhao M, Jiang Q, Size and Temperature Dependence of Nanodiamond-Nanographite Transition Related with Surface Stress, Diam Relat Mater, 2002, 11(2): 234-6.
    [155] Jiang Q, Li J C, Wilde G, The Size Dependence of the Diamond-Graphite Transition, J Phys-Condens Mat, 2000, 12(26): 5623-7.
    [156] Wang C X, Yang Y H, Xu N S et al., Thermodynamics of Diamond Nucleation On the Nanoscale, J Am Chem Soc, 2004, 126(36): 11303-6.
    [157] Zhang C Y, Wang C X, Wang J B et al., Homogeneous Nucleation of Diamond in the Gas Phase: A Nano-Scale Thermodynamic Approach, Carbon, 2004, 42 (3): 585-90.
    [158] Barnard A S, Russo S P, Snook I K, Structural Relaxation and Relative Stability of Nanodiamond Morphologies, Diam Relat Mater, 2003, 12(10-11): 1867-72.
    [159] Barnard A S, Russo S P, Snook I K, Size Dependent Phase Stability of Carbon Nanoparticles: Nanodiamond Versus Fullerenes, J Chem Phys, 2003, 118(11): 5094-7.
    [160] Gogotsi Y, Welz S, Ersoy D A et al., Conversion of Silicon Carbide to Crystalline Diamond-Structured Carbon at Ambient Pressure, Nature, 2001, 411 (6835): 283-7.
    [161] Mehandru S P, Anderson A B, Adsorption and Bonding of C1Hx and C2Hy On Unreconstructed Diamond (111): Dependence On Coverage and Coadsorbed Hydrogen, J. Mater. Res, 1990, 28(6): 797.
    [162] Savvatimskiy A I, Measurements of the Melting Point of Graphite and the Properties of Liquid Carbon (a Review for 1963-2003), Carbon, 2005, 43(6): 1115-42.
    [163] Bundy F P, Pressure-Temperature Phase Diagram of Elemental Carbon, Physica A, 1989, 156(1): 169-78.
    [164] Liu C Y, Lin J N, Thermal Processes of a Powder Particle in Coaxial Laser Cladding, Opt Laser Technol, 2003, 35(2): 81-6.
    [165]孙景,胡胜亮,杜希文,毫秒脉冲激光合成超细纳米金刚石,物理化学学报, 2007, 23(7): 1105-8.
    [166] Hofmeister H, Habit and Internal Structure of Multiply Twinned Gold Particles On Silver Bromide Films, Thin Solid Films, 1984, 116(1-3): 151-62.
    [167] Yagi K, Takayanagi K, Kobayashi K et al., In-Situ Observations of Growth Processes of Multiply Twinned Particles, J. Crystal Growth, 1975, 28(1): 117-24.
    [168] Hofmeister H, Forty Years Study of Fivefold Twinned Structures in Small Particles and Thin Films, Cryst Res Technol, 1998, 33(1): 3-25.
    [169] Buhler J, Prior Y, Study of Morphological Behavior of Single Diamond Crystals, J Cryst Growth, 2000, 209(4): 779-88.
    [170] Mani R C, Sunkara M K, Kinetic Faceting of Multiply Twinned Diamond Crystals During Vapor Phase Synthesis, Diam Relat Mater, 2003, 12(3-7): 324-9.
    [171] Delclos S, Dorignac D, Phillipp F et al., Ultra-High Resolution Electron Microscopy Investigation of Growth Defects in CVD Diamond Films: Twin Interactions and Fivefold Twin Centres, Diam Relat Mater, 2000, 9(3-6): 346-50.
    [172] Badzian A, Badzian T, An Intermediate Hybridization in Diamond: Edge-Shared Tetrahedra, Thin Solid Films, 2004, 447: 163-8.
    [173] Lu J P, Elastic Properties of Carbon Nanotubes and Nanoropes, Phys Rev Letts, 1997, 79(7): 1297-300.
    [174] Ago H, Kugler T, Cacialli F et al., Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes, J Phys Chem B, 1999, 103(38): 8116-21.
    [175] Li B Q, Zuo J M, Structure and Shape Transformation from Multiply Twinned Particles to Epitaxial Nanocrystals: Importance of Interface on the Structure ofAg Nanoparticles, Phys Rev B, 2005, 72(8): 085434
    [176] Liu Y, Vander Wal R L, Khabashesku V N, Functionalization of Carbon Nano-Onions by Direct Fluorination, Chem Mater, 2007, 19(4): 778-86.
    [177] Rettenbacher A S, Elliott B, Hudson J S et al., Preparation and Functionalization of Multilayer Fullerenes (Carbon Nano-Onions), Chem-Eur J, 2006, 12(2): 376-87.
    [178] Georgakilas V, Guldi D M, Signorini R et al., Organic Functionalization and Optical Properties of Carbon Onions, J Am Chem Soc, 2003, 125(47): 14268-9.
    [179] Sano N, Wang H, Chhowalla M et al., Nanotechnology - Synthesis of Carbon 'Onions' in Water, Nature, 2001, 414(6863): 506-7.
    [180] Sano N, Wang H, Alexandrou I et al., Properties of Carbon Onions Produced by an Arc Discharge in Water, J Appl Phys, 2002, 92(5): 2783-8.
    [181] Stankovich S, Piner R D, Chen X Q et al., Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(Sodium 4-Styrenesulfonate), J Mater Chem, 2006, 16(2): 155-8.
    [182] Pinault M, Mayne-L'Hermite M, Reynaud C et al., Growth of Multiwalled Carbon Nanotubes During the Initial Stages of Aerosol-Assisted CCVD, Carbon, 2005, 43(14): 2968-76.
    [183] Hueso J L, Espin J P, Caballero A et al., XPS Investigation of the Reaction of Carbon with NO, O2, N2 and H2O Plasmas, Carbon, 2007, 45 (1): 89-96.
    [184] Nagano Y, Gouali M, Monjushiro H et al., Air Oxidation of Carbon Soot Generated by Laser Ablation, Carbon, 1999, 37(10): 1509-15.
    [185] Shibagaki K, Motojima S, Surface Properties of Carbon Micro-Coils Oxidized by a Low Concentration of Oxygen Gas, Carbon, 2000, 38(15): 2087-93.
    [186] Vander Wal R L, Choi M Y, Pulsed Laser Heating of Soot: Morphological Changes, Carbon, 1999, 37(2): 231-9.
    [187] Dato A, Radmilovic V, Lee Z H et al., Substrate-Free Gas-Phase Synthesis of Graphene Sheets, Nano Lett, 2008, 8(7): 2012-6.
    [188] Ferrari A C, Meyer J C, Scardaci V et al., Raman Spectrum of Graphene and Graphene Layers, Phys Rev Lett, 2006, 97:187401-1-4.
    [189]张密林,安丽娟,景晓燕等.,纳米发光材料的研究进展,化学工程师, 2004, 1: 30-2.
    [190]周永慧,林君等,纳米发光材料研究的若干进展,化学研究与应用, 2001,13(2): 117-22.
    [191] Bruchez M, Moronne M, Gin P et al., Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, 1998, 281(5385): 2013-6.
    [192] Chan W, Nie S M, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, 1998, 281(5385): 2016-8.
    [193] Derfus A M, Chan W, Bhatia S N, Probing the Cytotoxicity of Semiconductor Quantum Dots, Nano Lett, 2004, 4(1): 11-8.
    [194] Kirchner C, Liedl T, Kudera S et al., Cytotoxicity of Colloidal Cdse and CdSe/ZnS Nanoparticles, Nano Lett, 2005, 5(2): 331-8.
    [195] Bharali D J, Lucey D W, Jayakumar H et al., Folate-Receptor-Mediated Delivery of Inp Quantum Dots for Bioimaging Using Confocal and Two-Photon Microscopy, J Am Chem Soc, 2005, 127(32): 11364-71.
    [196] Li Z F, Ruckenstein E, Water-Soluble Poly(Acrylic Acid) Grafted Luminescent Silicon Nanoparticles and their Use as Fluorescent Biological Staining Labels, Nano Lett, 2004, 4(8): 1463-7.
    [197] Chen J, Hamon M A, Hu H et al., Solution Properties of Single-Walled Carbon Nanotubes, Science, 1998, 282(5386): 95-8.
    [198] Musella M, Ronchi C, Brykin M et al., The Molten State of Graphite: An Experimental Study, J Appl Phys, 1998, 84(5): 2530-7.
    [199]林奎,激光辐照石墨悬浮液的温度压力计算,天津大学硕士论文, 2007.
    [200]翟琪,激光冲击炭材料合成纳米金刚石的相变机理研究,天津大学博士论文, 2006.
    [201] Li P, Guan J G, Zhang Q J et al., Preparation and Characterization of Monodisperse Nickel Nanoparticles by Polyol Process, J Wuhan Univ Technol, 2005, 20(4): 35-7.
    [202] Sun Y G, Xia Y N, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 2002, 298(5601): 2176-9.
    [203] Sun S H, Murray C B, Weller D et al., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science, 2000, 287(5460): 1989-92.
    [204] Sun Y G, Mayers B, Xia Y N, Transformation of Silver Nanospheres Into Nanobelts and Triangular Nanoplates through a Thermal Process, Nano Lett, 2003, 3(5): 675-9.
    [205] Puntes V F, Zanchet D, Erdonmez C K et al., Synthesis of hcp-Co Nanodisks, JAm Chem Soc, 2002, 124(43): 12874-80.
    [206] Ahmadi T S, Wang Z L, Green T C et al., Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles, Science, 1996, 272(5270): 1924.
    [207] Liu P, Cao Y L, Cui H et al., Micro- And Nanocubes of Silicon with Zinc-Blende Structure, Chem Mater, 2008, 20(2): 494-502.
    [208] Liu P, Cao C X, Wang X Y et al., Micro- And Nanocubes of Carbon with C8-Like and Blue Luminescence, Nanoletters, 2008, 8(8): 2570-5.
    [209] Wang X, Song J M, Gao L S et al., Optical and Electrochemical Properties of Nanosized NiO Via Thermal Decomposition of Nickel Oxalate Nanofibres, Nanotechnology, 2005, 16(1): 37-9.
    [210] Nakaoka K, Ueyama J, Ogura K, Semiconductor and Electrochromic Properties of Electrochemically Deposited Nickel Oxide Films, J. Electroanalytical Chemistry, 2004, 571(1): 93-9.
    [211] Park Y R, Kim K J, Sol-Gel Preparation and Optical Characterization of NiO and Ni1-XZnXO Thin Films, J. Cryst. Growth, 2003, 258(3-4) : 380-4.
    [212] Lu Y M, Hwang W S, Yang J S et al., Properties of Nickel Oxide Thin Films Deposited by RF Reactive Magnetron Sputtering, Thin Solid Films, 2002, 420-421: 54-61.
    [213] Du X W, Qin W J, Lu Y W et al., Face-Centered-Cubic Si Nanocrystals Prepared by Microsecond Pulsed Laser Ablation, J Appl Phys, 2007, 102: 013518.
    [214] Wang Z L, Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies, J Phys Chem B, 2000, 104: 1153-1175
    [215] Qi J Q, Wang Y, Chen W P et al., Room Temperature Synthesis of Titania Microspheres by Hydrolysis of Titanium Alkoxide Using Water Vapor, J Alloy Compd, 2006, 413(1-2): 307-11.
    [216] Zhang H Z, Banfield J F, Understanding Polymorphic Phase Transformation Behavior During Growth of Nanocrystalline Aggregates: Insights From TiO2, J Phys Chem B, 2000, 104(15): 3481-7.
    [217] Wu M M, Lin G, Chen D H et al., Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide, Chem Mater, 2002, 14(5): 1974-80.
    [218] Li G H, Ciston S, Saponjic Z V et al., Synthesizing Mixed-Phase TiO2 Nanocomposites Using a Hydrothermal Method for Photo-Oxidation andPhotoreduction Applications, J Catal, 2008, 253(1): 105-10.
    [219] Li S, Jiang Z H, Jiang Q, Thermodynamic Phase Stability of Three Nano-Oxides, Mater Res Bull, 2008, 43(11): 3149-54.
    [220] Liu X H, Liang C X, Wang H Z et al., Usage of Ultrafine Anatase/TiO2·nH2O Powder: Photocatalysis and Microstructure Control for Nanocrystalline TiO2, Mat Sci Eng A, 2002, 326(2): 235-9.
    [221] Golightly J S, Castleman A W, Analysis of Titanium Nanoparticles Created by Laser Irradiation Under Liquid Environments, J Phys Chem B, 2006, 110(40): 19979-84.
    [222] Monticone S, Tufeu R, Kanaev A V, Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles, J Phys Chem B, 1998, 102(16): 2854-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700