DMT1的高表达在MES23.5细胞铁聚积中的作用及人参皂苷Rg1的保护作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease,PD)是一种以黑质多巴胺(dopamine,DA)能神经元变性坏死为主要病理特征的中枢神经系统退行性疾病,病因尚未阐明。足够的证据证实铁在帕金森病中是一个关键因素。但铁在黑质的选择性聚积的原因至今还不是十分清楚。新的铁转运蛋白的发现是铁代谢领域的重大突破,为解释这一问题提供了理论依据。
     二价金属离子转运蛋白1(divalent metal transport 1,DMT1),也被称为具天然抗性的巨噬细胞蛋白2(nature resistance-associated macrophage protein 2,Nramp2),是哺乳类的第一个跨膜铁转运蛋白。研究发现DMT1参与脑铁代谢,并且发现在PD病人脑黑质DMT1表达异常增高,这与PD病人脑内铁的异常沉积恰巧是同一个部位。本室前期研究亦表明在1-甲基4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)制备的PD模型小鼠上,观察到黑质内铁选择性堆积和DMT1的表达增加,提示DMT1的高表达可能参与了铁聚积。本实验为了验证DMT1的表达增加可以导致铁聚积,选用MES23.5多巴胺能神经细胞系作为神经元的模型,应用分子生物学,免疫荧光,激光共聚焦显微镜,流式细胞仪,HPLC等方法研究了DMT1的高表达在细胞铁聚积中的作用。
     DMT1的高表达为PD的防治提供了新的药物作用靶点。人参皂苷Rg1是近年来研究较多的一种人参单体,药理研究表明它具有抗神经细胞凋亡、抗衰老、抗氧化、提高免疫力、类雌激素等作用。为探讨Rg1对6-羟基多巴胺(6-hydroxydopamine,6-OHDA)处理的MES23.5细胞铁代谢的影响,本实验应用荧光染料calcein结合激光共聚焦显微镜,逆转录聚合酶链式反应(reverse transcriptase polymerase chainreaction,RT-PCR),Western blots等方法检测了Rg1对细胞内铁水平和DMT1表达的影响,并进一步研究其可能机制。结果发现:
     一.DMT1的高表达在MES23.5细胞铁聚积中的作用
     1.免疫荧光检测结果显示DMT1+IRE和DMT1-IRE在体外培养的MES23.5细胞上均有表达。
     2.应用RT-PCR的方法从人胚近段小肠中获取人的全长DMT1 cDNA,包括+IRE型和-IRE型,测序结果正确。利用细菌内同源重组法成功构建了携带DMT1编码基因的重组腺病毒载体。经PacI酶切鉴定和PCR鉴定获到重组腺病毒载体pAdEasy1-DMT1+IRE和pAdEasy1-DMT1-IRE。重组腺病毒质粒转染293细胞成功制备了高滴度的重组腺病毒。
     3.重组腺病毒AdDMT1+IRE或AdDMT1-IRE分别感染MES23.5多巴胺能神经细胞系,24 h后可观察到绿色荧光蛋白(green fluorescent protein,GFP)的表达。Western blots检测到AdDMT1+IRE感染的细胞DMT1+IRE的蛋白水平较病毒对照组有明显的增加;AdDMT1-IRE感染的细胞DMT1-IRE的蛋白水平较病毒对照组有明显升高(P<0.01)。
     4.MTT测定结果显示AdDMT1+IRE或AdDMT1-IRE感染的MES23.5细胞在铁孵育(100μmol/L)24 h后,细胞存活率均明显降低,较对照组有统计学意义(P<0.05)。
     5.细胞铁含量检测结果显示AdDMT1+IRE或AdDMT1-IRE感染的MES23.5细胞铁孵育(100μmol/L FeSO_4)后细胞内铁含量均高于病毒对照组(P<0.01)。而细胞内羟自由基和MDA含量较病毒对照组有明显的增加,差别有统计学意义(P<0.01)。
     6.MES23.5细胞铁孵育后检测细胞凋亡包括caspase-3的活性,DNA ladder和Hoechst染色,结果显示AdDMT1+IRE或AdDMT1-IRE感染的MES23.5细胞铁孵育后caspase-3的活性明显增加(P<0.01),出现明显的凋亡梯度带和核固缩等凋亡的形态学变化(P<0.05)。
     7.HPLC结果显示AdDMT1+IRE或AdDMT1-IRE感染的MES23.5细胞铁孵育后细胞内多巴胺含量均较病毒对照组有明显的降低(P<0.05)。
     8.pcDNA3.1-DMT1+IRE和pcDNA3.1-DMT1-IRE表达载体构建成功,应用荧光染料calcein结合激光共聚焦显微镜技术检测了细胞的摄铁功能,结果表明pcDNA3.1-DMT1+IRE或pcDNA3.1-DMT1-IRE转染的MES23.5细胞摄铁功能较对照组明显增强(双因素方差分析,F=25.995,P<0.01,pcDNA3.1-DMT1+IRE转染组vs.对照组;P<0.01,pcDNA3.1-DMT1-IRE转染组vs.对照组)。
     9.pcDNA3.1-DMT1+IRE或pcDNA3.1-DMT1-IRE转染的MES23.5细胞铁孵育后可以引起铁介导的细胞氧化应激损伤,包括细胞内ROS含量的增加和线粒体膜电位的降低,差别有统计学意义(P<0.05)。
     二.人参皂苷Rg1对6-OHDA处理的MES23.5细胞铁聚积的影响。
     1.10μmol/L 6-OHDA处理MES23.5细胞24 h后,细胞DMT1+IRE的蛋白表达水平明显高于对照组(P<0.05),而Rg1或vitamin E预处理均可以显著抑制6-OHDA诱导的DMT1+IRE的蛋白表达的上调(P<0.05)。
     2.采用实时定量PCR的方法检测了不同处理组MES23.5细胞DMT1+IRE的mRNA表达变化,结果同蛋白表达变化,6-OHDA可以上调MES23.5细胞DMT1+IRE的mRNA表达水平(P<0.05),而Rg1或vitamin E预处理均可以抑制6-OHDA诱导DMT1+IRE的mRNA表达的上调(P<0.05)。
     3.10μmol/L 6-OHDA处理MES23.5细胞24 h后细胞的摄铁功能明显增强,而Rg1或vitamin E预处理均可以抑制6-OHDA诱导细胞内铁水平的增加(双因素方差分析,F=18.102,P<0.01,6-OHDA处理组vs.对照组;P<0.01,Rg1或vitamin E预处理组vs.6-OHDA处理组)。
     4.本实验应用Western blots的方法分别检测了铁调节蛋白1(iron regulatory protein 1,IRP1)和铁调节蛋白2(iron regulatory protein 2,IRP2)的蛋白表达水平。结果显示6-OHDA可以同时增加细胞的IRP1和IRP2的蛋白表达水平(P<0.05)。而Rg1或vitamin E预处理均可以抑制6-OHDA诱导的IRP1和IRP2的蛋白表达的上调(P<0.05)。
     5.本实验应用RT-PCR的方法检测了细胞IRP1和IRP2的mRNA表达水平。结果显示10μmol/L 6-OHDA处理MES23.5细胞24 h后细胞的IRP1和IRP2的mRNA表达均明显上调(P<0.05)。而Rg1或vitamin E预处理均可以抑制6-OHDA诱导的IRP1和IRP2的mRNA表达的上调(P<0.05)。差别有统计学意义。
     6.10μmol/L 6-OHDA处理MES23.5细胞24 h后给予100μmol/L的铁孵育,细胞线粒体跨膜电位明显降低,而Rg1预处理均可以抑制6-OHDA介导的线粒体跨膜电位的降低。
     综上所述,铁转入蛋白DMT1+IRE和DMT1-IRE在体外培养的MES23.5多巴胺能神经细胞系中均有表达;DMT1的表达增加可能是导致细胞内铁聚积的主要原因之一,这种细胞内铁含量的升高可能是由于细胞的摄铁功能的增加所致。细胞内增加的铁可以通过Fenton反应产生羟自由基,损伤细胞脂质,线粒体,从而导致细胞内羟自由基,脂质过氧化产物丙二醛含量的增加,细胞线粒体膜电位的降低,最终激活caspase-3途径引起细胞的凋亡。而Rg1可以通过IRP/IRE途径来调节6-OHDA诱导的DMT1+IRE的表达上调,降低细胞内铁聚积从而减轻铁聚积对细胞的损伤。
Parkinson's disease(PD) is a progressive neurodegenerative disorder characterized by selectively dopaminergic neurons loss in the substantia nigra pars compacta(SNpc) and the depletion of dopamine(DA) in the striatum.Recently many literatures have confirmed that iron plays a key role in Parkinson's disease.However,the underlying mechanisms of iron accumulation remain unclear.The identification of new iron transporters provides an approach to investigate cellular mechanism of iron accumulation.
     DMT1,also known as Nramp2(nature resistance associated macrophage protein 2), is newly identified iron transporter.DMT1 is involved in the brain iron metabolism and highly expressed in the neurons of the substantial nigra in PD,which correlates with the iron abnormally deposited in the same area.Our previous studies showed increased DMT1 expression and elevated iron levels in the SNpc of PD mouse model.This suggested the up-regulation of divalent metal transporter 1(DMT1) might be a contributing factor to iron accumulation.
     In the present study,we aim to verify the hypothesis that increased DMT1 expression caused the iron accumulation.We chose MES23.5 cells as the experimental neuronal model.Using molecular biology,immunofluorescence,laser confocal scanning microscopy,flow cytometry,HPLC and other methods,we investigated the role of over expressed DMT1 in iron accumulation in MES23.5 cells.
     The upregulation of DMT1 provided new pharmacologic target to treat the disease. Ginsenoside Rg1 is one of the main components of ginseng,which has a variety of biological functions including but not limited to anti-oxidative,estrogen-like activity. The present study was carried out to elucidate the effect of the antioxidant drug ginsenoside Rg1 on levels of expression of the non-heme iron transporter,divalent metal transporter-1(DMT1),and iron levels in MES23.5 dopaminergic cells after 6-hydroxydopamine(6-OHDA) treatment.The main findings are as follows:
     Ⅰ.The role of over expressed DMT1 in iron accumulation in MES23.5 cells.
     1.DMT1+IRE and DMT1-IRE were expressed on MES23.5 cells.
     2.Human DMT1+IRE and DMT1-IRE genes were amplified by RT-PCR.Recombinant adenovirus AdDMT1+IRE and AdDMT1-IRE were obtained after packaging and amplification in HEK293 cells.
     3.Increased DMT1 expression was confirmed by western blots.Data showed that DMT1+IRE protein levels increased significantly in AdDMT1+IRE infected cells compared to AdGFP infected cells(P<0.01).DMT1-IRE protein levels increased significantly in AdDMT1-IRE infected cells compared to AdGFP infected cells (P<0.01).
     4.Cell viability reduced when treated with 100μmol/L ferrous iron in AdDMT 1 +IRE or AdDMT1-IRE infected MES23.5 cells(P<0.05).However,no significant change was observed in AdGFP infected cells.
     5.Intracellular iron levels,hydroxyl free radicals and lipid peroxidation increased in AdDMT1+IRE or AdDMT1-IRE infected MES23.5 cells after iron incubation compared to cells infected with AdGFP(P<0.01).
     6.When cells were treated with ferrous iron,AdDMT1+IRE or AdDMT1-IRE infected cells showed more activated-caspase-3(P<0.01),apparent ladder patterns, fragmentation of chromatin and hypercondensed(brightly stained) nuclei(P<0.05).
     7.Dopamine contens in AdDMT1+IRE or AdDMT1-IRE infected cells were both decreased after iron treatment compared to cells infected with AdGFP(P<0.05).
     8.pcDNA3.1-DMT1+IRE and pcDNA3.1-DMT1-IRE expression vectors were successfully constructed.There was a significant decrease in the fluorescence intensity in pcDNA3.1-DMT1+IRE or pcDNA3.1-DMT1-IRE transfected cells compared to the contról when perfused with 1 mmol/L ferrous iron(Two-way ANOVA,F=25.995,P<0.01,pcDNA3.1-DMT1+IRE vs.control;P<0.01, pcDNA3.1 -DMT1-IRE vs.control).
     9.The production of ROS and changes of mitochondrial transmembrane potential (△Ψm) were detected by Flow Cytometer.Overexpression of DMT1(DMTI+IRE or DMTI-IRE) increased ROS production and decreased mitochondrial transmembrane potential(△Ψm) compared to the control after iron treatment (P<0.05).
     Ⅱ.The role of ginsenoside Rg1 in 6-OHDA-induced iron accumulation in MES23.5 cells
     1.We examined DMT1+IRE expression levels by western blots in MES23.5 cells. DMT1+IRE protein in 6-OHDA treated MES23.5 cells was up-regulated compared to the control,while pretreated with Rg1 or vitamin E could attenuated this upregulation of DMT1 +IRE(P<0.05).
     2.Quantitative PCR was conducted to measure DMTI+IRE mRNA levels.There was an increase of DMT1+IRE mRNA in 6-OHDA treated cells and a decrease of DMT1+IRE mRNA in Rg1 or vitamin E pretreated cells(P<0.05).
     3.There was a significant decrease in the fluorescence intensity in 6-OHDA treated cells compared to the control when perfused with 1 mmol/L ferrous iron.The fluorescence intensity restored to the control levels when pretreated with Rg1 or vitamin E(Two-way ANOVA,F=18.102,P<0.01,cells treated with 6-OHDA vs. control,P<0.01,cells pretreated with Rg1 or vitamin E vs.cells treated with 6-OHDA).
     4.IRP1 and IRP2 were upregulated in protein levels after 6-OHDA treatment,when pretreated with Rg1 or vitamin E,the two protein levels restored to the levels of the control(P<0.05).
     5.Both IRP1 and IRP2 were upregulated in mRNA levels after 6-OHDA treatment, while when pretreated with Rg1 or vitamin E,the mRNA levels of both IRP1 and IRP2 restored to the levels of control(P<0.05).
     6.Increased iron influx by 6-OHDA(10μmol/L) treatment resulted in a reduction of the mitochondrial transmembrane potential after iron treatment.While Rg1 could
     attenuate the reduction of mitochondrial transmembrane potential.
     In conclusion,these results suggested that DMT1+IRE and DMT1-IRE were expressed on MES23.5 cells.Increased two forms of DMT1 expression in MES23.5 cells caused the increased intracellular iron accumulation.Elevated cellular iron induced oxidative stress,increased caspase-3 activity and ultimately apoptosis.This supports the function of increased DMT1 expression in iron accumulation and the notion that increased DMT1 results in oxidative stress and apoptosis,processes known to occur in PD.We also reported that Rg1 could attenuate the upregulation of DMT1+IRE and decrease the cellular iron accumulation.And this effect may contribute to the capacity of Rg1 to attenuate the expression of IRP1 and IRP2.
引文
1.Gruenheid S,Cellier M,Vidal S,et al.Identification and characterization of a second mouse Nramp gene.Genomics,1995,25(2):514-525.
    2.Gunshin H,Mackenzie B,Berger UV,et al.Cloning and characterization of a mammalian proton-coupled metal-ion transporter.Nature,1997,388(6641):482-488.
    3.Fleming MD,Trenor 3rd CC,Su MA.Microcytic anaemia mice have a mutation in Nramp2,a candidate iron transporter gene.Nat Genet.1997,16:383-6.
    4.Lee PL,Gelbart T,West C.The human Nramp2 gene:characterization of the gene structure,alternative splicing,promoter region and polymorphisms.Blood Cells Mol Dis.1998,24:199-215.
    5.Pospisilova D,Mires MP,Nemeth E,Ganz T,Prchal JT.DMT1 mutation:response of anemia to darbepoetin administration and implications for iron homeostasis.Blood.2006,108:404-5.
    6.Martha P,Mires,Josef T Prchal.Divalent metal transporter 1.Hematology.2005,10:339-45.
    7.Garrick MD,Dolan KG,Horbinski C.DMT1:a mammalian transporter for multiple metals.Biometals.2003,16:41-54.
    8.钱忠明。脑铁代谢和神经变性疾病。生理科学进展。2002,33:197-203。
    9.姜宏,谢俊霞,钱忠明。MPTP诱导小鼠黑质区铁摄取和DMT1表达增加。生理学报。2003,55:571-6。
    10.Atasoy HT,Nuyan O,Tunc T,Yorubulut M,Unal AE,Inan LE.T2-weighted MRI in Parkinson's disease;substantia nigra pars compacta hypointensity correlates with the clinical scores.Neurology India.2004,52:332-337.
    11.Gerlach M,Double KL,Youdim MB,Riederer P.Potential sources of increased iron in the substantia nigra of parkinsonian patients.Journal of Neural Transmission.Supplementum 2006,70:133-142.
    12.Gotz ME,Double K,Gerlach M,Youdim,MB,Riederer P..The relevance of iron in the pathogenesis of Parkinson's disease.Annals of New York Academy Sciences 2004,1012,193-208.
    13.Wang J,Jiang H,Xie JX.Time dependent effects of 6-OHDA lesions on iron level and neuronal loss in rat nigrostriatal system.Neurochemical Research 2004,29:2239-2243.
    14.Youdim MB,Stephenson G,Ben Shachar D.Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators:A lesson from 6-hydroxydopamine and iron chelators,desferal and VK-28.Annals of New York Academy Sciences 2004,1012:306-325.
    15.Berg D,Hochstrasser H.Iron metabolism in Parkinsonian syndromes.Movement Disorders 2006,9:1299-1310.
    16.Jiang H,Luan Z,Wang J,Xie JX.Neuroprotective effects of iron chelator desferal on dopaminergic neurons in the substantia nigra of rats with iron overload.Neurochemistry International 2006,49:605-609.
    17.Jiang H,Song N,Wang J,Ren LY,Xie JX.Peripheral iron dextran induced degeneration of dopaminergic neurons in rat substantia nigra.Neurochemistry International 2007,51:32-36.
    18.Wang J,Jiang H,Xie JX.Ferroportinl and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats.European Journal of Neuroscience 2007,25:2766-2772.
    19.Gollalpudi L,Oblinger MM.Estrogen and NGF synergistically protect terminally differentiated,ERalpha-transfectd PC-12 cells from apoptosis.Neurosci Res 1999,56(5):471-481.
    20.Brusadelli A,Sialino H,Piepoli T,et al.Expression of the estrogen-regulated gene Nip2 during rat brain maturaion.Int J Dev Neurosci 2000,18(2-3):317-320.
    21.Zhang J T.Retrospect and prospect of ginseng research.Acta Pharm Sin 1995,30(5):321-325.
    22.李君庆,张香阁,张均田。人参皂苷Rg1抗神经细胞凋亡作用机制的研究。药学学报1997,32(6):406-410。
    23.Chen XC,Chen Y,Zhu YG et al.Protective effect of ginsenoside Rg1 agains MPTP-induced apoptosis in mouse substantia nigra neurons.Acta Pharmacol Sin 2002,23(9):829-834.
    24.Beard JL,Dawson HD.Iron:In:Dell BL and Sunde RA(eds.).Marcel Dekker Inc.New York 1997,278-280.
    25.Kaplan J.Mechanisms of cellular iron acquisition:another iron in the fire.Cell 2002,111(5):603-606.
    26.Le NT,Richardson DR.Ferroportinl:a new iron export molecule? Int J Biochem Cell Biol 2002,34(2):103-108.
    27.Moos T,Morgan EH.Kinetics and distribution of[59Fe-125I]transferrin injection into the ventricular system of the rat. Brain Res, 1998, 790: 115-128.
    
    28. Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr, 2003, 23: 41-58.
    
    29. Brissot P, Troadec MB, Loreal O. The clinical relevance of new insights in iron t ransport and metabolism. Curr Hematol Rep, 2004, 3(2): 107-115.
    
    30. Tabuchi M, Yoshimori T, Yamaguchi K, Yoshidai T, and Kishi F. Human NRAMP2/DMT1, Which Mediates Iron Transport across Endosomal Membranes, Is Localized to Late Endosomes and Lysosomes in HEp-2 Cells. The journal of biological shemistry. 2000, 275, (29): 22220-22228.
    
    31. Hubert N, Hentze MW. Previously uncharacterized isforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proc Natl Acad Sci USA, 2002, 99:12345-12350.
    
    32. Wang L, Qi X, Sun Y, et al. Adenovirus-mediated combined P16 gene and GM-C- SF gene therapy for the treatment of established tumor and induction of antitumor immunity. Cancer Gene Ther. 2002, 9: 819-24.
    
    33. 施明,王福生,高兰英。腺病毒载体的研究进展。 世界华人消化杂志。 2000, 8: 1282—6。
    
    34. Zhou Z, Zhang DF, Ren H. Humoral immunization and cell-mediated immunization evoked by HBsAg and B7-2 Ag co-expression recombinant adenovirus vector. Zhonghua Ganzangbing Zazhi. 2001, 9:111-3.
    
    35. Krougliak V, Graham FL. Development of cell lines capable of complementing E1, E4 and protein IX defective adenovirus type 5 mutants. Human Gene Therapy. 1995,6: 1575-86.
    
    36. He T.C. A simplified system for generation recombinant adenoviruses. Proc Natl Acad Sci USA. 1998, 95:2509-14.
    
    37. Davis AR , Wivel NA, Palladino JL. Construction of adenoviral vectors. Mol Biotechnol. 2001, 18: 63-70.
    
    38. Matthews DA, Cumming D, Evelegh C. Development and use of a 293 cell line expressing lac repressor for the rescue of recombinant adenovirus expressing high levels of rabies virus. J Gen Virol. 1999, 80: 345-53.
    
    39. Langer SJ, Schaack J. 293 cell lines that inducibly express high levels of adenovir- s types 5 precursor terminal protein. Virology. 1996, 221:172-79.
    
    40. Brough DE, Lizonova A, Hsu C. A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions El and E4. J Virol.1996,70:6497-501.
    41.Moos T,Morgan EH.Kinetics and distribution of[59Fe-125I]transferrin injection into the ventricular system of the rat.Brain Res,1998,790:115-128.
    42.Morris CM,Candy JM,Oakley AE,Bloxham CA,Edwardson JA.Histochemical distribution of non-haem iron in the human brain.Acta Anat(Basel).1992,144:235-257.
    43.Galazka-Friedman J,Bauminger ER,Koziorowski D,Friedman A.Mossbauer spectroscopy and ELISA studies reveal differences between Parkinson's disease and control substantia nigra.Biochim Biophys Acta,2004,1688:130-136.
    44.Berg,D.In vivo detection of iron and neuromelanin by transcranial sonography-a new approach for early detection of substantia nigra damage.J Neural Transm,2006,113:775-780.
    45.Oakley AE,Collingwood JF,Dobson J,Love G,Perrott HR,Edwardson JA,Elstner M,Morris CM.Individual dopaminergic neurons show raised iron levels in Parkinson disease.Neurology,2007,68:1820-1825.
    46.Bartzokis G,Cummings JL,Markham CH,Marmarelis PZ,Treciokas LJ,Tishler TA,Marder SR,Mintz J.MRI evaluation of brain iron in earlier-and later-onset Parkinson's disease and normal subjects.Magn Reson Imaging,1999,17:213-222.
    47.陈杭亭,曹淑琴,曾宪律。电感偶合等离子体-质谱方法在生物样品分析中的应用。分析化学2001,29:592。
    48.李金真,郭东发,姚继军。电感偶合等离子体-质谱(ICP-MS)新进展。质谱学报。2002.23:164。
    49.Youdim MB,Ben-Shachar D.The neurotoxic component in Parkinson's disease may involve iron-melanin interaction and lipid peroxidation of substantia nigra,in:P Dostert,P Riederer,M Strolin-Benedetti,R Roncucci Eds,Early Markers in Parkinson's and Alzheimer's Diseases,Springer-Verlag,Vienna,1990 pp.111-122.
    50.Kidd PM.Parkinson's disease as multifactorial oxidative neurodegeneration:implications for integrative management.Alternative Medicine Review 2000,5:502-529.
    51.Jenner P.Oxidative stress in Parkinson's disease.Annals of Neurology 2003,53:26-36.
    52.Andersen JK.Iron dysregulation and Parkinson's disease.Journal of Alzheimer's Disease 2004,6:47-52.
    53.Sohal RS and Weindruch R.Oxidative stress,caloric restriction and aging.Science 1996,273:59-63.
    
    54. Zhang ZH, Wei TT, Hou JW, Li GS, Yu SZ, Xin Wj. Iron-induced oxidative damage and apoptosis in cerebellar granule cells:attenuation by tetramethylpyrazine and ferulic acid. European Journal of Pharmacology 2003, 467: 41- 47.
    
    55. Sveinbjomsdottir S, Hicks AA, Jonsson T, et al. Familial aggregation of Parkinson's disease in Iceland. N Engl J Med. 2000, 343: 1765-1770.
    
    56. Gasser T. Genetics of Parkinson's disease. Ann Neurol. 1998,44: S53-57
    
    57. Beal MF. Experimental models of Parkinson's disease. Nat Rev Neurosci. 2001, 2: 325-332.
    
    58. Tanner CM, Ottman R, Goldman SM, et al. Parkinson disease in twins: an etiologic study. JAMA. 1999; 281: 341-346.
    
    59. Piccini P, Burn DJ, Ceravolo R, et al. The role of inheritance in sporadic Parkinson's disease: evidence from a longitudinal study of dopaminergic function in twins. Ann Neurol. 1999,45:577-582.
    
    60. Yasuhara T, Shigo T, Muraoka K, et al. Early transplantation of an encapsulated glial cell line-derived neurotrophic factor-producing cell demonstrating strong neuroprotective effects in a rat model of Parkinson Disease. J Neurosurg. 2005, 102: 80-89.
    
    61. Miller GW, Gainetdinov RR, Levey AI, et al. Dopamine transporters and neuronal injury. Trends Pharmacol Sci. 1999, 20: 424-429.
    
    62. Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov. Disord. 1998, 13 Suppl 1:35-38.
    
    63. Kuhar MJ. Recent biochemical studies of the dopamine transporter-a CNS drug target. Life Sci. 1998, 62: 1573-1575.
    
    64. Gelinas S, Martinoli MG. Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. J Neurosci Res. 2002, 70: 90-96.
    
    65. Lyons KE, Pahwa R. Efficacy and tolerability of levetiracetam in Parkinson disease patients with levodopa-induced dyskinesia. Clin Neuropharmacol. 2006, 29: 148-153.
    
    66. Stocchi F, Fabbri L, Vecsei L, et al. Clinical efficacy of a single afternoon dose of effervescent levodopa-carbidopa preparation (CHF 1512) in fluctuating Parkinson disease. Clin Neuropharmacol. 2007, 30: 18-24.
    
    67. Liao BS, Newmark H, and Zhou RP. Neuroprotective Effects of Ginseng Total Saponin and GinsenosidesRbl and Rgl on Spinal Cord Neurons in Vitro. Experimental Neurology. 2002,173: 224-234.
    
    68. Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM,Fang F, Zhou YC, Zhao CH. Ginsenoside Rgl attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. European Journal of Pharmacology. 2003, 473: 1- 7.
    
    69. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX , Wang JH, Wang JMi, Zhang RW, Li X. Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. International Immunopharmacology. 2007, 7(3): 313-320.
    
    70. Leung KW, Yung KKL, Mak NK, Chan YS, Fan TP, Wong RNS. Neuroprotective effects of ginsenoside-Rgl in primary nigral neurons against rotenone toxicity. Neuropharmacology. 2007, 52: 827-835.
    
    71. Jellinger K. Pathology of Parkinson's syndrome. In: Calne DB, ed. Handbook of Experimental Pharmacology, 88, Berlin: Springer-Verlag. 1989: 47-112.
    
    72. Addess KJ, Basilion JP, Klausner RD, Rouault TA, Pardi A. Structure and dynamics of the iron responsive element RNA: implications for binding of the RNA by iron regulatory binding proteins. J. Mol. Biol. 1997, 274:72-83.
    
    73. Butt J, Kim HY, Basilion JP, Cohen S, Iwai K, et al. Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc. Natl. Acad. Sci. USA 1996, 93:4345-49.
    
    74. Gdaniec Z, Sierzputowska-Gracz H, Theil EC. Iron regulatory element and internal loop/bulge structure for ferritin mRNA studied by cobalt(III) hexamine binding, molecular modeling, and NMR spectroscopy. Biochemistry 1998, 37:1505-12.
    
    75. Henderson BR, Menotti E, Bonnard C, Kuhn LC. Optimal sequence and structure of iron-responsive elements. J. Biol. Chem. 1994, 269:17481-89.
    
    76. Henderson BR, Menotti E, Kuhn LC. Iron regulatory proteins 1 and 2 bind distinct sets of RNA target sequences. J. Biol. Chem. 1996, 271:4900-8.
    
    77. Gambling L,Danzeisen R,Gair S et al. Effect of iron deficiency on placental transfer of iron and expression of iron transport proteins in vivo and in vitro. Biochem J. 2001,356:883-889.
    
    78. Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA. Iron-dependent regulation of the divalent metal ion transporter . FEBS Letters. 2001, 509: 309-316.
    
    79. Huang E, Ong WY, Go ML, Connor JR. Upregulation of iron regulatory proteins and divalent metal transporter-1 isoforms in the rat hippocampus after kainate induced neuronal injury. Exp Brain Res. 2006,170(3): 376-86.
    
    80. Beinert H, Kennedy MC, Stout CD. Aconitase as iron-sulfur protein, enzyme,and iron regulatory protein. Chem. Rev. 1996, 96: 2335-73.
    
    81. Guo B, Brown FM, Phillips JD, Yu Y, Leibold EA. Characterization and expression of iron regulatory protein 2 (IRP2). J. Biol. Chem. 1995, 270:16529-35.
    
    82. Samaniego F, Chin J, Uwai K, Rouault TA, Klausner RD. Molecular characterization of a second iron responsive element binding protein, iron regulatory protein 2. J. Biol. Chem. 1994, 269:30904-10.
    
    83. Iwai K, Klausner RD, Rouault TA. Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J. 1995, 21:5350-57.
    
    84. Iwai K, Drake SK, Wehr NB, Weissman AM, LaVaute T, et al. Irondependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc. Natl. Acad. Sci. USA 1998, 95:4924-28.
    
    85. Ku KJ, Polack A, Della-Favera R. Coordinated regulation of ironcontrolling genes, H-ferritin and IRP2, by c-myc. Science. 1999, 283:676-79.
    
    86. Galy B, Ferring-Appel D, Kaden S, Grone HJ, Hentze MW. Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab. 2008 Jan;7(1):79-85.
    
    87. Cairo G, Recalcati S. Iron-regulatory proteins: molecular biology and pathophysiological implications. Expert Rev Mol Med. 2007 Dec 5;9(33): 1-13.
    
    88. Kato J, Kobune M, Ohkubo S, Fujikawa K, Tanaka M, Takimoto R, Takada K, Takahari D, Kawano Y, Kohgo Y, Niitsu Y. Iron/IRP-1-dependent regulation of mRNA expression for transferring receptor, DMT1 and ferritin during human erythroid differentiation Experimental Hematology. 2007, 35: 879-887.
    
    89. Pantopoulos K, Hentze MW. Activation of iron regulatory protein-1 by oxidative stress in vitro. Proc Natl Acad Sci U S A. 1998 Sep 1, 95(18): 10559-63.
    
    90. Weiss G, Goossen B, Doppler W, Fuchs D, Pantopoulos K, Werner- Felmayer G, Wachter H, and Hentze MW. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J. 1993, 12: 3651-3657.
    
    91. Pantopoulos K, Weiss G, Hentze MW. Nitric oxide and oxidative stress (H2O2) control mammalian iron metabolism by different pathways. Mol Cell Biol. 1996 Jul; 16(7): 3781-8.
    
    92. Pantopoulos K, Mueller S, Atzberger A, Ansorge W, Stremmel W, Hentze MW. Differences in the regulation of iron regulatory protein-1(IRP-1) by extra-and intracellular oxidative stress.J Biol Chem.1997 Apr 11;272(15):9802-8.
    1.Gruenheid S,Cellier M,Vidal S,et al.Identification and characterization of a second mouse Nramp gene.Genomics,1995,25(2):514-525.
    2.Gunshin H,Mackenzie B,Berger UV,et al.Cloning and characterization of a mammalian proton-coupled metal-ion transporter.Nature,1997,388(6641):482-488.
    3.Fleming MD,Treno 3rd,CC,Su MA,Foernzler D,Beier DR,Dietrich WF,Andrews NC.Microcytic anaemia mice have a mutation in Nramp2,a candidate iron transporter gene.Nat Genet 1997,16(4):383-386.
    4.钱忠明,脑铁代谢和神经变性疾病。生理科学进展,2002,33:197-203。
    5.姜宏,谢俊霞,钱忠明。MPTP诱导小鼠黑质区铁摄取和DMT1表达增加。生理学报,2003,55(5):571-576。
    6.Le NT,Richardson DR.The role of iron in cell cycle progression and the proliferation of neoplastic cells.B iochim Biophys Acta.2002,1603(1):31-46.
    7.Kaplan J.Mechanisms of cellular iron acquisition:another iron in the fire.Cell.2002,111(5):603-6.
    8.Moos T,Morgan EH.The metabolism of neuronal iron and its pathogenic role in neurological disease.Ann NYAcad Sci.2004,1012:14-26.
    9.Beard JL,Connor JR.Iron status and neural functioning.Annu Rev Nutr.2003,23:41-58.
    10.Kishi F,Tabuchi M.Complete nucleotide sequence of human NRAMP2 cDNA.Mol Immunol.1997,34(12-13):839-842.
    11.Lee P,Gelbart T,West C,Halloran C,Beutler E.The human Nramp2 gene:Characterization of the gene structure,alternative splicing,promoter region and polymorphisms.Blood Cells Mol Dis 1998,24:199-215.
    12.Fleming MD,Andrews NC.Mammalian iron transport:an unexpected link between metal homeostasis and host defense.J Lab Clin Med.1998,132(6):464-468.
    13.Picard V,Govoni G,Jabado N,Gros P.Nramp 2(DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool.J Biol Chem 2000,275:35738-35745.
    14.Tchernitchko D,Bourgeois M,Martin M,Beaumont C.Expression of the two mRNA isoforms of the iron transporter Nramp2/DMT1 in mice and function of the iron responsive element.Biochem J 2002,363:449-455.
    15. Andrews NC. The iron transporter DMT1. Int J Biochem Cell Biol, 1999, 31(10): 991-994.
    
    16. Hubert N, Hentze MW. Previously uncharacterized isforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proc Natl Acad Sci USA, 2002, 99: 12345-12350.
    
    17. Tabuchi M, Yoshimori T, Yamaguchi K, Yoshidai T, and Kishi F. Human NRAMP2/DMT1, Which Mediates Iron Transport across Endosomal Membranes, Is Localized to Late Endosomes and Lysosomes in HEp-2 Cells. The journal of biological shemistry. 2000, 275(29): 22220-22228.
    
    18. Lis A, Barone TA, Paradkar PN, Plunkett RJ, Roth JA. Expression and localization of different forms of DMT1 in normal and tumor astroglial cells Molecular Brain Research 2004, 122:62-70.
    
    19. Canonne-Hergaux S, Gruenheid S, Ponka P, Gros P. Cellular and subcellular localizaton of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 1999, 93: 4406-4417.
    
    20. Gruenheid S, Canonne-Hergaux F, Gauthier S, Hackam DJ, Grinstein S, Gros P. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferring in recycling endosomes. J Exp Med 1999, 189: 831-841.
    
    21. Canonne-Hergaux S, Zhang AS, Ponka P, Gros P. Characterization of the iron transporter DMT1(NRMAP2/DCT1) in red blood cells of normal and anemic mk/mk mice. Blood 2001, 98: 3823-3830.
    
    22. Canonne-Hergaux F, Gros P. Expression of the iron transporter DMT1 in kidney from normal and anemic mk mice. Kidney Int 2002, 62: 147-156.
    
    23. Ferguson CJ, Wareing M, Ward DT, Green R, Smith CP, Riccardi D. Cellular localization of divalent metal transporter DMT-1 in rat kidney. Am J Physiol Renal Physiol 2001, 280: F803-F814.
    
    24. Moos T, Morgan EH. The significance of the mutated divalent metal transporter (DMT1) on iron transport into the Belgrade rat brain. J Neurochem 2004, 88: 233-245.
    
    25. Wang XS, Ong WY, Connor JR. A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. J Neurocytol 2001, 30: 353-360.
    
    26. Jerome A. Roth, Craig Horbinski, Li Feng,Kevin G. Dolan,2Dennis Higgins, and Michael D. Garrick. Differential Localization of Divalent Metal Transporter 1 with and without Iron Response Element in Rat PC12 and Sympathetic Neuronal Cells. Journal of Neuroscience, 2000, 20(20): 7595-7601.
    
    27. Lam-Yuk-Tseung S, Gros P.Distinct targeting and recycling properties of two isoforms of the iron transporter DMT1 (NRAMP2, SlcllA2). Biochemistry. 2006, 45(7): 2294-301.
    
    28. Garrick MD, Kuo HC, Vargas F, Singleton S, Zhao L, Smith JJ, Paradkar P, Roth JA, Garrick LM. Comparison of mammalian cell lines expressing distinct isoforms of divalent metal transporter 1 in a tetracycline-regulated fashion. Biochem J. 2006, 398(3): 539-46.
    
    29. Zhang L, Lee T, Wang Y, Soong TW. Heterologous expression, functional characterization and localization of two isoforms of the monkey iron transporter Nramp2. Biochem. J. Biochem. J. 2000, 349: 289-297.
    
    30. Mackenzie B, Takanaga H, Hubert N, Rolfs A, Hediger MA. Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). Biochem J. 2007, 403(1): 59-69.
    
    31. Qian ZM, Tang PL. Mechanisms of iron uptake by mammalian cells. Biochim Biophys Acta. 1995, 1269(3): 205-14.
    
    32. Su M, Trenor CC, Fleming JC, Fleming MD, Andrews NC. The G185R mutation disrupts function of the iron transporter Nramp2. Blood 1998, 92: 2157-2163.
    
    33. Garrick M, Scott D, Walpole S, Finkelstein E, Whitbred J, Chopra S, Trivikram L, Mayes D, Rhodes D, Cabbagestalk K, Oklu R, Sadiq A, Mascia B, Hoke J, Garrick L. Iron supplementation moderates but does not cure the Belgrade anemia. Biometals 1997, 10: 65-76.
    
    34. Conrad ME, Umbreit JN, Moore EG, Hainsworth LN, Porubcin M, Simovich MJ, Nakada MT, Dolan K, Garrick MD. Separate pathways for cellular uptake of ferric and ferrous iron. Am J Physiol Gastrointest Liver Physiol 2000, 279: G767-G774.
    
    35. Related Articles, Tallkvist J, Bowlus CL, Lonnerdal B. Effect of iron treatment on nickel absorption and gene expression of the divalent metal transporter (DMT1) by human intestinal Caco-2 cells. Pharmacol Toxicol. 2003, 92(3): 121-4.
    
    36. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999, 21(2): 195-9.
    
    37. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI. Positional cloning of zebrafish ferroportinl identifies a conserved vertebrate iron exporter. Nature 2000, 403(6771): 776-81.
    
    38. Hernandez B, Gortmaker SL, Colditz GA, Peterson KE, Laird NM, Parra-Cabrera S Association of obesity with physical activity, television programs and other forms of video viewing among children in Mexico city. Int J Obes Relat Metab Disord. 1999, 23(8): 845-54.
    
    39. Garrick MD, Gniecko L, Liu Y, Eckert B, Grasso JA, Garrick LM. Elevated endosomal pH in Belgrade rat reticulocytes. J Cell Biol 1990, 111:82a.
    
    40. Lam-Yuk-Tseung S, Govoni G, Forbes J, Gros P. Iron transport by Nramp2/DMT1: pH regulation of transport by 2 histidines in transmembrane domain 6. Blood 2003, 101: 3699-3707.
    41. Qian ZM, Tang PL, Wang Q. Iron crosses the endosomal membrane by a carrier-mediated process. Prog Biophys Mol Biol. 1997, 67(1): 1-15.
    
    42. Abouhamed M, Gburek J, Liu W, Torchalski B, Wilhelm A, Wolff NA, Christensen EI, Thevenod F, Smith CP. Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein-metal complexes. Am J Physiol Renal Physiol. 2006, 290(6): F1525-33.
    
    43. Bannon DI, Portnoy ME, Olivi L, Lees PSJ, Culotta VC, Bressler JP. Uptake of lead and iron by divalent metal trasporter 1 in yeast and mammalian cells. Biochem Biophys Res Comm 2002, 295: 978-984.
    
    44. Forbes JR, Gros P. Iron, manganese, and cobalt transport by Nrampl (Slcllal) and Nramp2 (Slcl1a2) expressed at the plasma membrane. Blood 2003, 102: 1884-1892.
    
    45. Suzuki T, Momoi K, Hosoyamada M, Kimura M, Shibasaki T. Normal cadmium uptake in microcytic anemia mk/mk mice suggests that DMT1 is not the only cadmium transporter in vivo. Toxicol Appl Pharmacol. 2008,227(3):462-7. Epub 2007 Nov 17.
    
    46. Wareing M, Ferguson CJ, Delannoy M, Cox AG, McMahon RF, Green R, Riccardi D, Smith CP. Altered dietary iron intake is a strong modulator of renal DMT1 expression. Am J Physiol Renal Physiol. 2003, Dec;285(6): F1050-9. Epub 2003 Jul 22.
    
    47. Goswami T, Bhattacharjee A, Babal P, Searle S, Moore E, Li M, Blackwell JM. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J. 2001, Mar 15; 354(Pt 3):511-9.
    48. Gambling L, Danzeisen R, Gair S, Lea RG, Charania Z, Solanky N, Joory KD, Srai SK, McArdle HJ. Effect of iron deficiency on placental transfer of iron and expression of iron transport proteins in vivo and in vitro. Biochem J. 2001, 356(Pt 3): 883-9.
    
    49. Addess KJ, Basilion JP, Klausner RD, Rouault TA, Pardi A. Structure and dynamics of the iron responsive element RNA: implications for binding of the RNA by iron regulatory binding proteins. J Mol Biol. 1997, 274(1): 72-83.
    
    50. Butt J, Kim HY, Basilion JP, Cohen S, Iwai K, Philpott CC, Altschul S, Klausner RD, Rouault TA. Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc Natl Acad Sci U S A. 1996, 93(9): 4345-9.
    
    51. Gdaniec Z, Sierzputowska-Gracz H, Theil EC. Iron regulatory element and internal loop/bulge structure for ferritin mRNA studied by cobalt(III) hexammine binding, molecular modeling, and NMR spectroscopy. Biochemistry. 1998, 37(6): 1505-12.
    
    52. Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett. 2001, 509(2): 309-16.
    
    53. Trinder D, Oates PS, Thomas C, Sadleir J, Morgan EH. Localisation of divalent metal transporter 1 (DMTl) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut. 2000, 46(2): 270-6.
    
    54. Yeh KY, Yeh M, Watkins JA, Rodriguez-Paris J, Glass J. Dietary iron induces rapid changes in rat intestinal divalent metal transporter expression. Am J Physiol Gastrointest Liver Physiol 2000, 279(5): G1070-9.
    
    55. Johnson DM, Yamaji S, Tennant J, Srai SK, Sharp PA. Regulation of divalent metal transporter expression in human intestinal epithelial cells following exposure to non-haem iron. FEBS Letters 2005,579(9): 1923-9.
    
    56. Lis A, Paradkar PN, Singleton S, Kuo HC, Garrick MD, Roth JA. Hypoxia induces changes in expression of isoforms of the divalent metal transporter (DMTl) in rat pheochromocytoma (PC12) cells. Biochemical Pharmacology 2005, 69:1647-55.
    
    57. Huang E, Ong WY, Go ML, Connor JR. Upregulation of iron regulatory proteins and divalent metal transporter-1 isoforms in the rat hippocampus after kainate induced neuronal injury. Exp Brain Res. 2006, 170(3): 376-86.
    
    58. Paradkar PN, Roth JA. Nitric oxide transcriptionally down-regulates specific isoforms of divalent metal transporter (DMT1) via NF-kappaB. J Neurochem. 2006, 96(6): 1768-77.
    59. Paradkar PN and Jerome A. Post-translational and transcriptional regulation of DMT1 during P19 embryonic carcinoma cell differentiation by retinoic acid Biochem. J. 2006,394:173-183.
    
    60. Paradkar PN, Roth JA. Expression of the 1B isoforms of divalent metal transporter (DMT1) is regulated by interaction of NF-Y with a CCAAT-box element near the transcription start site. J Cell Physiol. 2007, 211(1): 183-8.
    
    61. Wang X, Garrick MD, Yang F, Dailey LA, Piantadosi CA, Ghio AJ. TNF, IFN-gamma, and endotoxin increase expression of DMT1 in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2005, 289(1): L24-33.
    
    62. Nanami M, Ookawara T, Otaki Y, Ito K, Moriguchi R, Miyagawa K, Hasuike Y, Izumi M, Eguchi H, Suzuki K, Nakanishi T.Tumor necrosis factor-alpha-induced iron sequestration and oxidative stress in human endothelial cells. Arterioscler Thromb Vasc Biol. 2005, 25(12): 2495-501.
    
    63. Li Z, Lai Z, Ya K, Fang D, Ho YW, Lei Y, Ming QZ. Correlation between the expression of divalent metal transporter 1 and the content of hypoxia-inducible factor-1 in hypoxic HepG2 cells. J Cell Mol Med. 2008,12(2):569-579.
    
    64. Edwards JA, Garrick LM, Hoke JE. Defective iron uptake and globin synthesis by erythroid cells in the anemia of the Belgrade laboratory rat. Blood 1978, 51: 347-357.
    
    65. Donovan A, Brownlie A, Dorschner MO, Zhou Y, Pratt SJ, Paw BH, Phillips RB, Thisse C, Thisse B, Zon LI. The zebrafish mutant gene chardonnay (cdy) encodes divalent metal transporter 1 (DMT1). Blood 2002, 100: 4655-4659.
    
    66. Mims MP, Guan Y, Pospisilova D, Priwitzerova M, Indrak K, Ponka P, Divoky V, Prchal JT. Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload. Blood 2005, 105: 1337-1342.
    
    67. Gunshin H, Fujiwara Y, Custodio AO, DiRenzo C, Robine S, Andrews NC. Iron metabolism in the mice with targeted mutations of the DMT1 gene. Blood 2004, 104, Abstract 50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700