基于视觉特征提取和核判决分析方法的人脸识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脸识别技术是模式识别领域的重要研究课题,这是由于人脸表情丰富、随年龄增长而变化,人脸图像受成像的光照、角度和距离等影响,人脸的自动识别非常困难,特别是要求机器在学习之后要有足够的泛化识别能力;同时人脸识别还涉及到图像处理、模式识别、生理学等知识。人脸识别广泛应用于人机交互、监控系统、门禁系统和档案管理等方面。人脸是具有自然相似结构,却又有弹性的局部可变形的非刚体目标,因此人脸识别的研究还有对大量同类目标识别问题具有推动作用。
     人脸识别是一种特定内容的模式识别,从狭义上讲,就是将特定人脸上的特征提取和检测出来并与已知类别的标准样本的特征进行模式识别的操作,因此主要涉及特征提取和分类判决分析两方面。本文研究的工作主要是利用基于视觉特征提取方法,获得有效的人脸图像识别特征;并结合性能或速度改进了的核判决分析方法进行人脸图像识别。研究的内容主要包括:综合论述了人类视觉系统中与人脸识别有关的神经生理学和心理学研究成果;基于视觉皮层上皮细胞感受野的Gabor模型,提出了将递推Gabor滤波用于人脸图像特征的提取,并结合基于QR分解的核判决分析方法进行人脸识别的方法;基于视觉皮层上皮细胞感受野的高斯微分模型,提出了具有尺度和方向选择性的Hermite变换用于人脸图像特征的提取,并结合以类间分布最大化、总的分布最小化为准则的核判决分析方法进行人脸识别的方法;基于传输到人脑的视觉皮层的信号是压缩后具有傅立叶变换性质的信息,提出了在压缩域提取人脸图像的离散余弦特征描述,并结合零空间核判决分析方法进行人脸识别的方法;基于人类视觉系统被当作一个多通道模型进行描述,并且Marr理论指出信息处理的是分
Face recognition has a variety of potential applications in public security, surveillance, law enforcement, commerce, identity authentication, human-computer interfaces and e-services. During the past years, face recognition has received significant attention as a booming technology. In field settings, face images are subject to a wide range of variations. These include pose or view angle, illumination, occlusion, facial expression, time delay between image acquisition, and individual differences. The scalability of face recognition systems to such factors is not well understood. Face recognition in a perception system from human beings seems instinctive, but it is really a tough and complex task for a machine-based system. Recent face recognition surveys reveal that lighting changes, indoor-outdoor changes, pose variations and elapsed time databases are the critical parameters that greatly influence the performance of a face recognition system. But the effect from those parameters is significantly database dependent. Also, face recognition technology is related to the knowledge of image processing, pattern recognition, psychophysics and neuroscience. The human face is conformable in structure, and is elastic and deformable locally. The study of face recognition will improve the target recognition of the same kind.
    A general statement of the problem of machine recognition of faces can be formulated as follows: given still or video images of a scene, identify or verify one or more persons in the scene using a stored database of faces. The aim of this study is to
引文
1 Zhao W., Chellappa R., et al. Face recognition: a literature survey. ACM Computing Surveys, 2003, 35(4): 399~458.
    2 周激流,张晔.人脸识别理论研究进展.计算机辅助设计与图形学学报,1999,11(2):180~184.
    3 Turk M., Pentland A. Eigenfaces for recognition. J. Cogn. Neurosci., 1991, 3: 72~86.
    4 Bartlett M. S., Lades H. M., Sejnowski T. Independent component representation for face recognition. Proc. SPIE Sym. On Electronic Imagings: Science and Technology, 1998: 528~539.
    5 Belhumeur P. N., Hespanha J. P., Kriegam D. J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720.
    6 Zhao W., Chellappa R., P. J. Phillips. Subspace linear discdminant analysis for face recognition. Tech. Report, CAR-TR-914, 1999: 1~30.
    7 Chen L. F., Liao H. M. A new LDA-based recognition system which can solve the small sample size problem. Pattern Recognition, 2000, 33 (10): 1713~1726.
    8 Scholkopf B., Smola A. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computer, 1998, 10:1299~1319.
    9 Baudat G., Anouar F. Generalized discriminant analysis using a kemel approach. Neural Computation, 2000, 12(10): 2385~2404.
    10 Liuwei, Wang Yunhong. Null space-based kernel fisher discriminant analysis for face recognition. Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004: 369~374.
    11 高秀梅,杨静宇,金忠等.基于核的Foley-Sammon鉴别分析与人脸识别.计算机辅助设计与图形学学报,2004,16(7):962~967.
    12 丁宾,高新波,姬红兵.基于离散余弦变换的人脸画像识别方法.计算机工程,2004,30(20):151~153.
    13 陈粟,倪林.一种特征脸分析和小波变换相结合的人脸识别方法.计算机应用,2004,24(10):75~78.
    14 廖红文,冯国灿,Jiang Jianmin.压缩域上人脸识别的研究.中山大学学报(自然科学 版),2004,43(5):16~19.
    15 陈才扣,杨静宇,杨健.一种融合PCA和KFDA的人脸识别方法.控制与决策,2004,19(10):1147~1151.
    16 才德,严瑛白,金国藩.多母小波自适应小波滤波器.光电子.激光.2005,16(11):1359~1362.
    17 杨洁,冯力刚,蒋加伏.基于小波包和支持向量机的人脸识别.计算机仿真,2004,21(9):131~133.
    18 高西奇,周洪祥,何振亚.基于小波变换的主元分析人脸图象识别.东南大学学报,1996,26(2):137~141.
    19 郑文明,赵力,邹采荣.高维发空间下求解MDA的扰动算法及其在人脸识别中的应用.电路与系统学报,2004,9(6):45~48.
    20 沈获帆,滕晓龙,刘重庆.基于Gabor小波和支持向量机的人脸识别方法.红外与激光工程,2004,33(6):600~602.
    21 彭进业,王大凯等.基于小波分解系数的贝叶斯人脸识别方法.光子学报,2001,30(10):1263~1269.
    22 杨洁,冯力刚,蒋加伏.基于小波变换的频谱特性及人工免疫的人脸识别.计算机仿真,2004,21(12):176~179.
    23 荆晓远,金忠,杨静宇.基于带通滤波和遗传算法的人脸图象预处理及识别.中国图象图形学报,1998,3(10):840~844.
    24 史泽林,李德强,黄莎白.基于模糊准则的小波特征选择在人脸识别中的应用.信息与控制,2005,34(1):50~54.
    25 Manjunath B. S., Chellappa R., Malsburg C. A feature based approach to face recognition. Proc. IEEE Conf. On Computer Vision and Pattern Recognition, 1992: 373~378.
    26 Samada F., Young S. HMM based architecture for face identification. Image Vis. Comput., 1994, 12: 537~583.
    27 Brunelli R., Poggio T. HyperBF networks for gender classification. Proc. DARP Image Understanding Workshop, 1992:311~314.
    28 Pentland A., Moghaddm B., Stamer T. View based and modular eigenspaces for face recognition. Proc. IEEE Conf. On Computer Vision and Pattern Recognition, 1994: 1~7.
    29 Huang J., Hersele B., Blanz V. Component based face recognition with 3D morphable models. International Conference on Audio- and Video-Based Person Authentication, 2003: 1~5.
    30 Lam K. M., Yan H. An analytic-to-holistic approach for face recognition based on a single frontal view. IEEE Trans. Patt. Anal. Mach. Intell, 1998, 20(7): 673~686.
    31 Moghaddam B., Jebara T., Pentland A. Bayesian face recognition. Pattern Recognition, 2000, 33:1171~1782.
    32 Zhong J., Yang J., and Hu Z. Face recognition based on the uncorrelated discriminant transformation. Pattern Recognition, 2001, 34: 1405~1416.
    33 Cheng Y., Liu K., et al. A robust algebraic method for human and face recognition. Proc. 11th Int. Conf. On Part. Recog., 1992: 221~224.
    34 Phillips P. J. Support vector machines applied to face recognition. Adv. Neural Inform. Process. Syst., 1998, 11: 803~809.
    35 Wiskott L. Fellous J. M. Face recognition by elastic bunch graph matching. IEEE Trans. Patt. Anal. Mach. Intell., 1997, 19: 775~779.
    36 Liu C., Wechsler H. Evolutionary pursuit and its application to face recognition. IEEE Trans. Patt. Anal. Math. Intell., 2000, 22: 570~582.
    37 Seong G. K., Jingu H. Recent advances in visual and infrared face recognition-a review. Computer Vision and Image Understanding, 2005, 97: 103~135.
    38 Muller K. R., Mika S., et al. An introduction to kernel based learning algorithms. IEEE Trans. On Neural Networks, 2001, 12(2): 181~201.
    39 Li Yongmin, Gong Shaogang. Recognising trajectories of facial identities using kernel discriminant analysis. Image and Vision Computing, 2003, 21:1077~1086.
    40 Liu C. J. Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans. On Part. Anal. and Mach. Intell., 2004, 26(5): 572~581.
    41 卡洛琳·M·布鲁墨著.张功铃译.视觉原理.北京:北京大学出版社,1987.
    42 李锋,马学海.神经生物学纲要.北京:科学出版社,1999.
    43 毛宏梅.现代基础眼科学.北京:人民军医出版社,2000.
    44 郑南宁.计算机视觉与模式识别.北京:国防工业出版社,1998.
    45 Isabel G., Nikos K. L. Is face recognition not so unique after all. Cognitive Neuropsychology, 2000, 17(1): 125~142.
    46 Diamond R., Carey S. Why faces are and are not special: an effect of expertise. Journal of Experimental Psychology: General, 1986, 115: 107-117.
    
    47 Farah M. J. Is face recognition special? Evidence from neuropsychology. Behavioural Brain Research, 1996,76: 181-189.
    
    48 Bruce V., Hancock P. J., Burton A. M. Human face recognition and identification. Face Recognition: From Theory to Applications, Springer-Verlag, Germany Berlin, 1998: 51-72.
    
    49 Collishaw S. M., Hole G J. Featural and configurational processes in the recognition of faces of different familiarity. Perciption, 2000,29: 893-909.
    
    50 Rossion B., Gauthier I., et al. The N170 occcipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of face-specific processes in the human brain. Neuroreport, 2000, 11:69-74.
    
    51 Tootell RB, Silverman MS, DeValois RL. Spatial frequency columns in primary visual cortex. Science, 1981,214:813-815.
    
    52 Everson RM, Prashanth AK, Gabbay M et al. Representation of spatial frequency and orientation in the visual cortex. Proc Natl Acad Sci USA, 1998, 8334~8338.
    
    53 Jane A. K., Petersik J. T. Effects on face recognition of spatial-frequency information contained in inspection and test stimuli. Journal of General Psychology, 2003,130(3): 229-244.
    
    54 Baron R. Mechanisms of human facial recognition. Inter. J. of Man Mach. Studies, 1981: 137-178.
    
    55 Weng J. Swets D. L. Face recognition. Biometrics: Personal Identification in Networked Society, Boston, MA: Kluwer Academic, 1999: 67-86.
    
    56 De Valois, De Valois K. K. Spatial Vision. Oxford University Press. New York, 1988.
    
    57 Banks M. S., Stephens B. R. The development of basic mechanisms of pattern vision: spatial frequency channels. J. of Experimental Child Psychology, 1985,40: 501-527.
    
    58 Yip A., Sinha P. Role of color in face recognition. Perception, 2002, 31: 995-1003.
    
    59 Burton A. M., Wilson S. Face recognition in poor quality video. Psychological Science, 1999, 10: 243-248.
    
    60 Sadr J., Jarudi I. The role of eyebrows in face recognition. Perception, 2003, 32: 285-293.
    
    61 Carey S., Diamond R. From piecemeal to configurational representation of faces. Science, 1977, 195(21): 312-313.
    
    62 Bruce V., Langton S. The use of pigmentation and shading information in recognizing the sex and identities of faces. Perception, 1994, 23: 803~822.
    63 Young A. W., McWeeny K. H., et al. Matching familiar and unfamiliar faces on identity and expression. Psychol. Res., 1986, 48: 63~68.
    64 马颂德,张正友.计算机视觉——计算理论与算法基础.北京:科学出版社,2003.
    65 Bruce V., Young A. Understanding face recognition. British J. of Psychology, 1986, 77: 305~327.
    66 Whitehead S. D., Ballard D. H. Active perception and reinforcement learning. Neural Computation, 1990, 2: 409~419.
    67 Daugman J. G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Opt. Soc. Amer., 1985, 2:1160-1169.
    68 G. Donato, M. S. Bartlett, J. C. Hager, etc. Classifying facial actions. IEEE Trans. PAMI, 1999, 21: 974~989.
    69 Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 1978, 66(1):51~83.
    70 Kirchauer H., Hlawatsch F. Time-frequency formulation and design of nonstationary Wiener filters. Proc. ICASSP, 1995: 1529-1552.
    71 Qian S., Chen D. Discrete gabor transform. IEEE Trans. On Signal Processing, 1993; 41(7): 2429~2438.
    72 成礼智.小波与离散变换理论及工程实践.北京:清华大学出版社,2004.
    73 彭玉华.小波变换与工程应用.北京:科学出版社,2003.
    74 钱世锷.时频变换与小波变换导论.北京:机械工业出版社.
    75 Cristobal G., Navarro R. Space and frequency variant image enhancement based on a Gabor representation. Patt. Recog. Lett., 1994, 15: 273~277.
    76 Porat M., Zeevi Y. Y. The generalized Gabor scheme for image representation in biological and machine vision. IEEE Trans. On Patt. Anal. And Mach. Intell., 1988, 10: 452~468.
    77 Young I. T., Van Vliet L. J. Recursive implementation of the Gaussian filter. Signal Processing, 1995, 44:139~151.
    78 Bernhard S., Alexander S. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computaion, 10: 1299~1319.
    79 Qiu S. G., Zhou F., Crandall P. E. Discrete Gabor transforms with complexity O(NlogN). Signal Processing, 1999, 77: 163-169.
    
    80 Ian T. Y, Lucas J. V., Michael V. G. Recursive Gabor filtering. IEEE Trans. On Signal Proces. 2002, 50(11): 2798-2807.
    
    81 Jones J., Palmer L. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal Neurophysiology, 1987: 1233-1258.
    
    82 Liu C, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Processing, 2002,11(4): 270-275.
    
    83 G. Baudat, F. Anouar. Feature vector selection and projection using kernels. Neurocomputing, 2003, 55: 21-38.
    
    84 G H.戈卢布,C.F.范洛恩.矩阵计算.北京:科学出版社,2001.
    
    85 Ye J., Li Q. LDA/QR: an efficient and effective dimension reduction algorithm and its theoretical foundation. Pattern Recognition, 2004, 37(4): 851-854.
    
    86 Ye J., Li Q. A two stage linear discrimiant analysis via QR decomposition. IEEE Trans. On Patt. Anal. Mach. Intell., 2005, 27(6): 929-941.
    
    87 Xiong T., Ye J., Li Q. Efficient kernel discriminant analysis via QR decomposition. Advances in Neural Information Processing Systems, 2005,17:1529-1536.
    
    88 Park H., Jeon M., Rosen J. B. Lower dimensional representation of text data based on centroids and least squares. BIT, 2003, 43(2): 1-22.
    
    89 Young R. The Gaussian derivative theory of spatial vision: analysis of cortical cell receptive field line-weighting profiles. General Motors Res. Labs., Rep. 4920.
    
    90 Young R. A., Ronald M. L. The Gaussian derivative model for spatial-temporal vision: I. cortical model. Spatial Vision, 2001, 14(3): 261-319.
    
    91 Driscoll J. R., Healy D. M. Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput., 1997,26(4): 1066-1099.
    
    92 Andrews G E., Askey R. Hermite polynomials. Cambridge, England: Cambridge University Press, 1999.
    
    93 Spanier J., Oldham K. B. An atlas of functions. Washington DC: Hemisphere, 1987.
    
    94 Arfken G. Mathematical methods for physicists, 3rd ed. Orlando, FL: Academic Press, 1985.
    
    95 Antoine J. P., Murenzi R., Piette B. Image analysis with 2D continuous wavelet transform: detection of position, orientation and visual contrast of simple objects. In: Proc. Int. Conf. Wavelets and Applications, 1989,5: 144-159.
    
    96 Martens J. B. The Hermite transform - theory. IEEE Trans. Acoust. Speech, Signal Processing, 1990, 38(9): 1595-1606.
    
    97 Martens J. B. The Hermite transform - application. IEEE Trans. On Acoustics. Speech. And Signal Processing, 1990,38(9): 1607-1606.
    
    98 Camarillo S. P., Varela L. A., Escalante R. B. Adaptive multiplicative noise reduction in SAR image with polynomial transforms. Proc. Of IEEE Geoscience and Remote Sensing Society, 1998: 1171-1173.
    
    99 Silvan C. J. L., Angeles M. M. P. Direct representation and detecting of multi-scale, multi-orientation fields using local differentiation filters. Proc. Of the IEEE International Symposium on Industrial Electronics, 1999: 508-514.
    
    100 Escalante R. B., Silvan C. J. L. Motion analysis and classification with directional Gaussian derivatives in image sequences. Advanced Signal Processing Algorithms, Architectures, and Implementations, Proc. SPIE, 2000, 4116: 447-453.
    
    101 Daniel P., Gabriele S., Manfred T. Fast algorithms for discrete polynomial transforms. Mathematics of Computation, 1998, 67(224): 1577-1590.
    
    102 Freeman W. T., Adelson E. H. The design and use of steerable filters. IEEE Trans. Pattern Anal. Machine Intell, 1991, 13(9): 891-906.
    
    103 van Dijk, Martens J. B. Image representation and compression with steered Hermite transforms. Signal Processing, 1997, 56: 1-16.
    
    104 Manjunath B. S., Ma W. Y. Texture features for browsing and retrieval of image data. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842.
    
    105 Carlos J. R. M. Texture analysis and indexing using Gabor-like hermite filters. 17th International Conference on Pattern Recognition, 2004, 1: 684-687.
    
    106 Rivero-Moreno C. J., Bres S. Conditions of similarity between Hermite and Gabor filters as models of the human visual system. Computer Analysis of Images and Patterns, Letures Notes in Computer Science, 2003, 2756: 762-769.
    
    107 Liu K., Cheng Y. Q. An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method. International Journal of Pattern Recognition and Artificial Intelligence, 1982, 6(5): 817-829.
    108 Raudy S., Duin R. P. W. On expected classification error of the fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recognition Letters, 1998, 19(5): 385~392.
    109 Yongmin Li, Shaogang Gong, Heather Liddell. Recognising trajectories of facial identities using kernel discriminant analysis. Image and Vision Computing, 2003, 21: 1077~1086.
    110 Gavin C., Nicola L. C. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognition, 2003, 36: 2585~2592.
    111 Park C. H., Park H. Nonlinear discriminant analysis using kernel functions and the generalized singular value decomposition. Journal on Matrix Analysis and Applications, 2005, 27(1): 87~102.
    112 刘艳,李宏东.DCT域图象处理和特征提取技术.中国图象图形学报,2003,8A(2):121~128.
    113 Shen B., Sethi I. K. Direct feature extraction from compressed image. Proc. SPIE Storage and Retrieval for Image and Video Database Ⅳ. San Jose, Ca., USA, 1996, 2670: 404~414.
    114 Smith B., Rowe L. Algorithms for manipulating compressed images. IEEE Computer Graphics and Applications, 1993, 13(5): 34~42.
    115 赵蔚,郭树旭.DCT压缩域图像数据处理.吉林大学自然科学学报,2001,4:64~68.
    116 Chitprasert B., Rao K. R. Discrete cosine transform filtering. Signal Processing, 1990, 19(3): 233~245.
    117 Ned A., Russo G., Talong P. Inter-block filtering and downsampling in DCT domain. Signal Processing: Image Communication, 1994, 6(4): 303~317.
    118 Won C. S., Park D. K., Yoo S. J. Extracting image features from MPEG-2 compressed stream. Storage and Retrieval for Image and Video Data Base Ⅵ. San Jose, Cal., USA, 1998, 3312: 426~436.
    119 Sim D. G., Kim H. K., Park R. H. Fast texture description and retrieval of DCT-based compressed images. IEEE Electronics Letters, 2001, 37(1): 18~19.
    120 Tsapatsoulis N., Doulamis N. Face extraction from non-uniform background and recognition in compressed domain. Proc. Of the IEEE International Conference on Acoustics, Speech and Signal Processing, Seatle, WA, USA, 1998, 5: 2701~2704.
    121 卞国春,张曦皇.基于DCT压缩域的JPEG图像的快速检索.计算机应用,2005,25(7):1623~1625.
    122 田巍,黄祥林,沈兰荪.一种用于DCT压缩域的人脸检测算法.测试技术,2004,23(5):41~43.
    123 卢健,王晖.SVD和DCT提取特征向量的方法在人脸识别中的比较.武汉大学学报(信息科学版),2005,30(2):118~122.
    124 Kirby M., Sirvoich L. Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. On Part. Anal. And Math. Intell., 1990, 12: 103~108.
    125 Pentland A., Moghaddam B., et al. View-based and modular eigenspaces for recognition. Proc. IEEE Computer Soc. Conf. On Computer Vision and Part. Recog., 1994:84~91.
    126 Swets D., Weng J. Using discriminant eigenfeatures for image retrieval. IEEE Trans. On Part. Anal. And Mach. Intell., 1996, 18(8): 831~836.
    127 L. Wiskott, J. M. Fellous. N. Kruger. Face recognition by elstic bunch graph matching. IEEE Trans. On Part. Anal. Math. Intell., 1997, 19(7): 775~779.
    128 Sanderson C., Paliwal K. K. Polynomial features for robust face authentication. Proc. Int. Conf. On Image Processing, N. Y., 2002:997~1000.
    129 Zhong D., Defee I. Location detection of face features by DCT coefficients. Proe. Of the Fifth IASTED Inter. Conf. Visualization, Imaging, and Image Processing, Benidorm, Spain, 2005: 99~103.
    130 Zhong D., Defee I. Pattern recognition in compressed DCT domain. Inter. Conf. On Image Processing, 2004, 3:2031~2034.
    131 David Samolon.吴乐南,等译.数据压缩原理与应用.北京:电子工业出版社,2003.
    132 吕凤军.数字图象处理编程入门.北京:清华大学出版社,1999.
    133 Jiang J., Feng G. C. The spatial relationship of DCT coefficients between a block and its sub-blocks. IEEE Trans. On Signal Processing, 2002, 50(5): 1160~1169.
    134 Hafed Z. M., Levine M. D. Face recognition using the discrete cosine transform. International Journal of Computer Vision, 2001, 43(3): 167~188.
    135 杨辉,张涛,胡栋.压缩域DCT系数对图像视频检索影响的研究.南京邮电学院学报,2004,24(1):31~39.
    136 Soong F. K., Rosenberg A. E. On the use of instantaneous and transitional spectral information in speaker recognition. IEEE Trans. On Acoustics, Speech, and Signal Processing, 1988, 36(6): 871~879.
    137 Furui S. Cepstrum analysis technique for automatic speaker verification. IEEE Trans. On Acoust., Speech, Signal Processing, 1981, 29(4): 254-272.
    
    138 Ziad M. H., Martin D. L. Face recognition using the discrete cosine transform. Inter. J. of Computer Vision, 2001, 43(3): 167-188.
    
    139 Liu Q. S., Lu H. Q., Ma S. D. Improving kernel fisher discriminant analysis for face recognition. IEEE Trans. Circuits and Systems for Video Technology, 2004, 14(1): 42-49.
    
    140 Huang R., Liu Q. S., Lu H. Q. and Ma S. D. Solving the small sample size problem of LDA. Proc. Of Int. Conf. Pattern Recognition, Quebec, Canada, August, 2002:29-32.
    
    141 Yu H., Yang J. A direct LDA algorithm for highdimensional data with application to face recognition. Pattern Recognition, 2001, 34(10): 2067-2070.
    
    142 Lu J. W., Plataniotis K. N., Venetsamopoulos A. N. Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans. On Neural Networks, 2003, 14(1): 117-126.
    
    143 Princen J., Bradley A.. Analysis/synthesis filter bank design based on time domain aliasing cancellation, IEEE Transactions, ASSP, 1986,34(5): 1153-1161.
    
    144 Princen J., Johnson A., Bradley A. Subband/transform coding using filter bank designs based on time domain aliasing cancellation, Proc. Of the ICASSP, 1987:2161-2164.
    
    145 Kumar N., Andreou A. G Heteroscedastic discriminant analysis and reduced rank HMMS for improved speech recognition. Speech Communication, 1998, 26: 283-297.
    
    146 Loog M. Approximate pairwise accuracy criteria for multiclass linear dimension reduction: generalizations of the Fisher criterion. Number 44 in WBBM Report Series. Delft, The Netherlands: Delft Univ. Press, 1999.
    
    147 Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. And Mach. Intell., 1989,11(7): 674-692.
    
    148 Vetterli M. Wavelet and filter bank, theory and design. IEEE Trans. On Signal Processing, 1992, 40(9): 2207-2231.
    
    149 Wang Y, Yaroslavsky L., Vilermo M., Vaananen M. Some peculiar properties of the MDCT. 16~(th) IFIP World Computer Congress/5~(th) International Conference on Signal Processing, Beijing, China, 2000.
    
    150 Nikolajevic V, Fettweis G New recursive algorithms for the forward and inverse MDCT. Proc. IEEE Workshop on Signal Processing Systems, Antwerp, Belgium, 2001: 26-28.
    151 Jung S. H., Mitra S. K., Mukherjee D. Subband DCT: definition, analysis and applications. IEEE Trans, on Circuits and System for Video Technology, 1996,6(3): 273-286.
    
    152 Amir S., William A. P. An image multiresolution representation for lossless and lossy compression. IEEE Trans. On Image Processing, 1996, 5: 1303-1310.
    
    153 Chung J. K., Kannappan P. L., Sahoo P. K. Measures of distance between probability distributions. J. Math. Analysis and Applications, 1989,138: 280-292.
    
    154 Loog M., Duin R. P. W. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion. IEEE Trans. On Pattern Anal. And Mach. Intel., 2004, 26(6): 732-739.
    
    155 The Yale Database (http://cvc.yale.edu/).
    
    156 The AT&T Database (http://www.uk.research.att.com/facedatabase.html).
    
    157 The BioID Database (http://www.humanscan.de/support/downloads/).
    
    158 The PICS (http://pics.psych.stir.ac.uk).
    
    159 The Faces (http://cswww.essex.ac.uk).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700