铝热法制备大尺寸Fe_3Al基纳米晶材料的温度场模拟和组织计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文综述了大尺寸块体纳米晶材料的制备方法、计算机数值模拟的研究概况及有限元分析软件ANSYS的应用,指出了国内外数值模拟方面的发展状况,论述了选择本课题进行研究的目的和意义。通过对铝热反应熔化制备大尺寸块体纳米晶Fe-Al-Cr材料的温度场模拟分析和在不同工艺参数下温度分布的变化情况,以及Fe-Al凝固过程中均质形核热力学参数和晶粒尺寸计算及合金元素对形核计算影响的研究,为制备具有不同平均晶粒尺寸的纳米结构Fe-Al-Cr材料的工艺参数选择与优化及微观组织大小的控制提供了理论依据。概括起来可归纳为:
     1. Fe-Al-Cr熔体主要通过模具进行传热。沿高度方向,距模具越近,Fe-Al-Cr熔体温度越低、冷却速度越大;距模具越远,Fe-Al-Cr熔体的过热时间越长,净化效果越好。沿径向,Fe-Al-Cr熔体的温度、冷却速度基本相同。测温点处模拟温度和实测温度的变化规律一致,数值基本吻合,证明了模拟结果的可靠性。
     2.不同工艺参数对大尺寸块体纳米晶Fe-Al-Cr熔体温度、冷却速度及过热时间的影响表明:选取点处,随模具厚度的增加,初始阶段Fe-Al-Cr熔体的冷却速度增大,但熔体净化的效果变差;随氩气压力和钢套个数的增加,Fe-Al-Cr熔体的冷却速度变化不显著;采用玻璃底材时,Fe-Al-Cr熔体冷却速度远远慢于45号钢及Cu底材,但熔体净化效果较好;随着Cr的加入,当Cr含量为10%时,冷却速度最大,当Cr含量为5%时,净化效果最好;随Fe3Al稀释剂含量的增大,初始阶段Fe3Al熔体的冷却速度降低,净化效果也变差;含Cr10%时Fe-Al熔体温度低于含Mo10%、含Ni10%、含Mn10%和含Cu10%时的熔体温度,且开始凝固时的冷却速度较其余四种大。
     3.随着过冷度的增加,大尺寸块体纳米晶Fe-Al-Cr的临界形核功及临界晶核半径逐渐变小,热力学驱动力和形核增大。随过冷度的增大,计算得到大尺寸块体Fe-Al-Cr纳米晶材料的平均晶粒尺寸逐渐减小,且当达到一定过冷度时,晶粒尺寸趋于一致,始终保持在纳米级,且计算结果与实验结果一致。
     4.经计算得出:在同一过冷度下,随着Cr含量的增加,平均晶粒尺寸减小;当Cr含量一定时,平均晶粒尺寸随过冷度的增大而减小。在同一过冷条件下,按照按照Fe-Al-Mn、Fe-Al-Cr、Fe-Al-Mo、Fe-Al-Ni和Fe-Al-Cu的顺序,大尺寸块体纳米晶材料的平均晶粒尺寸依次减小;在同一合金体系中,平均晶粒尺寸总是随着过冷度的增大而逐渐减小。
     5.模拟计算得出的平均晶粒尺寸值与实验测得的晶粒尺寸值大致吻合,说明计算的可行性,可以通过模拟计算预测制备出的材料的平均晶粒尺寸。
This thesis summerized the development of simulation,the fabrication methods oflarge bulk nanocrystalline materials, the research about computer simulation and theapplication of finite element analysis software ANSYS. The purpose and the meaningof selecting the subject have been discussed. It provides a theoretical basis forparameters selection and optimization of preparing nanostructured Fe-Al-Cr indifferent grain size and microstructure control by the temperature field analyses duringthe big bulk nanocrystallic Fe-Al-Cr and the changes of temperature distribution underthe different parameters. The study of thermodynamic parameters calculation ofhomogeneous nucleation during solidification and grain size and their effects onnucleation. The main conclusions were given in the following.
     1. Mould is the main heat conductor in aluminothermic reaction to preparenanocrystalline Fe-Al-Cr. Along the height direction, the closer to the substrate, thelower was the temperature of Fe-Al-Cr melt and the cooling rate of Fe-Al-Cr melt waslarger; the farther from the substrate, the longer was the superheating time of Fe-Al-Crmelt,and the purification effect was better. Along the radial direction, the temperatureand cooling rate of Fe-Al-Cr melt were almost uniform. At the measuring point, thesimulation temperature was in accordance with the experiment temperature, whichproves the reliablity of simulation results
     2. The effects of different processing parameters on the temperature, cooling rateand superheating time of Fe-Al-Cr melt are at the selected point.With the increase ofsubstrate thickness, the cooling rate of Fe-Al-Cr melt at the initial cooling stagebecame larger, while the melt purification became worse. With increase of argonpressure and the number of1045steel, the cooling rate of Fe-Al-Cr melt varied a little.The cooling rate of Fe-Al-Cr melt cooled by glass substrate was much lower than themelt cooled by1045steel and Cu substrate, while the melt purification became better;The cooling rate of Fe-Al-10wt%Cr melt was largest than5wt%,15wt%and20wt%melts, while the purification of Fe-Al-5wt%Cr was the best. With the increase of Fe3Aldiluents content, the cooling rate at the initial cooling stage became lower, and themelt purification became worse. The temperature of Fe-Al-10wt%Cr was lower thanthe temperature of Fe-Al-10wt%Mo, Fe-Al-10wt%Ni, Fe-Al-10wt%Mn and Fe-Al-10wt%Cu, and the cooling rate at the initial cooling stage was larger than others.
     3. With the increase of undercooling extent, the critical nucleation work andcritical nucleus radius became lower, while thermodynamic energy and nucleation rate increased. With the increase of the undercooling extent, the calculated average grainsize of the Fe-Al-Cr nanocrystalline alloy decreased. When reaching a certainundercooling, the grain size kept in the nanometer level, which was in good coincidentwith the experimental results.
     4. The culculation indicates that, under the same undercooling, with the increaseof Cr content, the average grain size decreased. When reaching a certain Cr content,the average grain size decreased with the undercooling increase. At the sameundercooling, in the order of Fe-Al-Mn、Fe-Al-Cr、Fe-Al-Mo、Fe-Al-Ni and Fe-Al-Cu, the average grain size of the large nanocrystilline decreased. At the same alloysystem, with the increase of undercooling, the average grain size always decreased.
     5. The calculated average grain size of simulation was roughly the same toexperimental measured grain size, which indicated the computational feasibility,andthe average grain size of prepared materials can be forecasted by this simulation.
引文
[1]聂飞龙,魏世成,郑玉峰.三维块体纳米晶材料的制备及应用[J].材料导报,2008,22(11):1-7
    [2]蒲健,肖建中.大块纳米晶材料的制备、性能及应用前景[J].金属功能材料,2000,7(1):11-15
    [3]魏君,宋晓艳,韩清超,徐文武,李凌梅.金属纳米晶热稳定性和晶粒长大行为的研究[J].稀有金属材料与工程.2010,39(4)
    [4] Gleiter H. V. Trans Japan Inst Metal Suppl,1996,27:43
    [5] Li D X, Ping D H, Ye H Q, etal. HREM study of the microstructure innanocrystalline materials. J Mater Lett,1993,18(1-2):29-34
    [6]陈国良.金属间化合物结构材料研究现状与发展[J].材料导报,2000,14(9):1-5
    [7]李爱民,董维芳,孙康宁.金属间化合物的研究现状及其最新发展趋势[J].现代技术陶瓷,2004,2:27-30,34
    [8] Reddy B V, Deevi S C.Thermophysical properties of FeAl (Fe-40at.%Al).Intermetallics,2000,8(12):1369
    [9] Gedevanishvili S, Deevi S C. Processing of iron aluminides by pressurelesssintering through Fe+Al elemental route.Mater Sci Eng,2002, A325(1-2):163
    [10] Haraguchi T, Yoshimi K, Kato H, et al. Determination of density and vacancyconcent ration in rapidly solidfied FeAl ribbons.Intermetallics,2003,11(7):707
    [11]孙扬善.Fe3Al基金属间化合物的性能和应用前景[J].新技术新工艺新材料,1997,26(4):33-36
    [12]吴建鹏,朱振峰,曹玉泉.金属间化合物的研究现状与发展热[J].加工工艺,2004(5):41-43
    [13]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[J].北京:国防工业出版社,2001
    [14] Mckamey C G, Devan J H, Tortorelli P F, et al. A review of recentdevelopments in Fe3Al-based alloys. J Mater Res,1991(6):1779-1805
    [15]王勇,王本庭,云志.金属间化合物的制备及其在化工中的应用[J].材料导报,2006,20(12):32-34
    [16]艾桃桃,王芬,陈平.金属间化合物的制备方法及应用[J].稀有金属快报,2006,25(1):5-11
    [17] H.Li,F.Ebrahimi. Ductile-to-Brittle Transition in Nanocrystalline Metals.Advanced Materials,2005,17(16):1969-1972
    [18] Z.A.Munir.Synthesis of high temperature materials by self-propagatingcombustion methods.Am.Ceram.Soc.Bull.1988,67(2):342-346
    [19]杨爱民,刘林.凝固组织计算机微观模拟技术的现状与发展[J].机械工程材料,2004,4(26,4)
    [20]袁文庆,陈晓.工件加热三维非稳态温度场的计算机模拟[J].金属热处理学报,1991,(2):35-41
    [21]匡琦,潘健生,叶健松.热处理炉温度场的三维数值模拟[J].工业加热,2001,(1)
    [22]王同珍.淬火过程温度场和组织场的模拟[J].重型机械,2008,(6)
    [23]杜亚伟,文光华,唐萍,张建春,汪宁.基于ANSYS的模铸高碳钢凝固过程温度场数值模拟[J].材料科学与工程学报,2010,28(4)
    [24]隋大山,崔振山.铸铝件凝固过程三维瞬态温度场的数值模拟[J].中国有色金属学报,2008,18(7)
    [25] J. Bast, M. Gorbatyuk, I. Yu. Kryukov. Study of the temperature fields in themold of a horizontal continuous caster. Metallurgist,2011,55(3-4):163-166
    [26]柳百成,荆涛,等.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社,2001.2
    [27]柳百成.铸件凝固过程的宏观及微观模拟仿真研究进展[J].中国工程科学,2000,2(9):29-37
    [28]董洁.锻造用钢锭凝固过程温度场、应力场的数值模拟及其应用[西安建筑科技大学硕士学位论文].西安,西安建筑科技大学,2005,2-8
    [29]杨远平.基于均衡凝固理论的锌锭模铸造工艺数值模拟[J].铸造技术,2011,32(7)
    [30]张红松.一般铸件凝固过程数值模拟研究:[昆明理工大学硕士学位论文].昆明,昆明理工大学,2003,3-8
    [31]郭庆.铸件凝固过程的温度场模拟及缩孔、变形和热裂缺陷预测:[河北工业大学硕士学位论文].河北,河北工业大学,2002,11-15
    [32]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998,25-77
    [33]于靖,许庆彦,崔锴,等.基于一种改进CA模型的微观组织模拟[J].金属学报,2007,43(7)
    [34]王同敏.金属凝固过程微观模拟研究.大连:大连理工大学博士学位论文,2001,1
    [35]张迪庆,张国伟,侯华,徐宏.凝固过程的微观组织数值模拟研究进展[J].华北工学院学报,2004,25(5):386-390
    [36] Rappaz M,Gandin C A, Thevoz Ph, et al.Predication of grain structure invarious solidification process[J]. Metall Trans,1996,27A(3):695-705
    [37]潘健生,张伟民,田东,顾剑锋,胡明娟.热处理数学模型与计算机模拟[J].中国工程科学,2003,5(5)
    [38]杨付双,倪锋,杨涤心,龙锐.金属凝固微观组织数值模拟的研究进展[J].铸造技术.2005.4
    [39]朱鸣芳,于金,洪俊杓.金属凝固显微组织的计算机模拟[J].中国工程科学.2004,6(5)
    [40]赵宇辉,程军,侯华,徐宏.凝固过程微观组织数值模拟研究进展[J].中北大学学报(自然科学版).2006,27(4)
    [41]陈军,王文海,孙国雄,潘冶.凝固显微组织数值模拟研究的进展[J].钢铁研究学报,2001,13(3)
    [42]龙文元,蔡启舟,魏伯康.微观组织数值模拟发展概述[J].铸造.2003,3
    [43] Gandin C A, Desbiolles J L, Rappaz M, et al. Grain texture evolution duringcolumnar growth of dendritic alloys[J].Metall Trans,1999,30A(12):3153-3162
    [44] Rappaz M, Thevoz P H. Solute diffusion model for equiaxed dendriticgrowth[J].Acta Metal,1987,35(7):1487-1497
    [45] Oldfield W.A quatitative approach to casting solidification[J]. ASMTrans,1966,59(2):945-960
    [46] Zhu P, Smith R W. Dynamic simulation of crystal growth by monte-carlomethod[J].Acta Metall,1992,40(12):3369-3379
    [47]张继祥,关小军,孙胜.一种改进的晶粒长大Monte Carlo模拟方法[J].金属学报,2004,40(5):457
    [48] Tong Mingming,Ni Jun,Zhang Yutuo,et a1.Monte Ca rlomethod simulation ofthe deformation-induced ferrite transformation in the FeC system.Metall Mater Trans A,2004,35A:1565
    [49]方斌,黄传真,许崇海,刘增文,王景海.材料微观组织演变的蒙特卡洛仿真原理及应用[J].材料导报,2007,21(2)
    [50]赵军.基于CA法的熔池凝固过程模拟初探.哈尔滨工业大学工业硕士论文
    [51]陈国良.金属间化合物的物理金属学性能[M].北京:冶金工业出版社,2000
    [52]李新中,郭景杰,苏彦庆.金属熔体凝固微观组织模拟的相场法研究[J].特种铸造及有色合金,2005,25(4):222-226
    [53] Karma A,et al. Phase field method for computationally efficient modeling ofsolidification with arbitrary interface kinetics[J].Physical Renew,1996,53(4):3917-3020
    [54] Gandin C A, Rappaz M, Trivedi R. Three-dimensional simulation of the grainformation in investment casting[J]. Metall Trans,1994,25A(2):629-637
    [55]闫欣,方飞,邹清.高温合金铸件凝固过程模拟的CA-FE法[J].西华大学学报(自然科学版),2008,11(27,6)
    [56]于靖,许庆彦,崔锴,柳百成.基于一种改进CA模型的微观组织模拟[J].金属学报,2007,43(7)
    [57]潘冬,许庆彦,柳百成.镍基高温合金熔模铸件凝固过程宏微观多尺度模拟[J].中国有色金属学报,2010,20(2):329-338
    [58]舒小林,肖汉宁,胡忘宇,等.金属间化合物的计算机模拟研究[J].材料导报,2000,14(5):24-26
    [59]胡壮麒,王鲁红,刘铁.电子和原子层次材料行为的计算机模拟[J].材料研究学报,1998,12:1
    [60]王宝义,顾强,王天民.计算机模拟在晶体点缺陷计算中的应用[J].材料导报,1997,11:1
    [61]罗璇,费维栋,李超,等.材料科学中的分子动力学模拟研究进展[J].材料科学与工艺,1996,4:124
    [62]胡望宇,张邦维,黄伯云.分析型EAM模型的发展现状与展望[J].稀有金属材料与工程,1999,28:1
    [63]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2001
    [64]肖亚航,雷改丽,傅敏士.材料成形计算机模拟的研究现状及展望[J].材料导报.2005,19(6):13-16
    [65]张国智,胡仁喜,陈继刚,等.ANSYS10.0热力学有限元分析实例指导教程
    [M].北京:机械工业出版社,2007
    [66]龚署光,谢桂兰. ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004
    [67]李黎明. ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005:325-367
    [68]李红云,赵社戌,孙雁.ANSYS10.0基础及工程应用[M].北京:机械工业出版社,2008
    [69]马庆芳,方荣生,项立成,等.实用热物理性质手册[M].北京:中国农业机械出版社
    [70]刘志东,陈勇,黄因慧,等.45钢喷射电镀Ni层激光重熔温度场数值模拟及参数优化[J].南京航空航天大学学报,2008,40(3):385-389
    [71] J.P. HIRTH.Nucleation, Undercooling and Homogeneous Structures inRapidly Solidified Powders.METALLURGICAL TRANSACTIONS A,1978,9A:401-404
    [72] P.Q.La, J. Yang,J.H. David, Cockayne, Adv. Mater.18,2006.733-737
    [73] P.Q. La, Y. P Wei, R.J. Lv, Y. Zhao, Y. Yang, Mater. Sci. Eng. A527(2010).2313–2319
    [74]曾晓春,孙国雄,张树格.Al-Cr2O3体系燃烧合成反应的热力学分析与实验[J].东南大学学报.1999,29(1):124-127
    [75]陈燕群,蒋明学.自蔓延高温合成TiB2微粉的热力学计算[J].西安建筑科技大学学报(自然科学版).2006,38(5):378-383
    [76]赵宇宏著.材料相变过程微观组织模拟[M].北京:国防工业出版社.2010.3
    [77]陈忠伟,介万奇.合金凝固过程的形核模型[J].金属学报,2004,40(10):1027-1030
    [78]刘雪梅.大尺寸Fe3Al基块体纳米晶合金的铝热法制备及其组织形成演化机理:[兰州理工大学硕士学位论文].兰州,兰州理工大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700