基于多天线技术的无线网络跨层自适应传输方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来无线通信网络不仅要具有更大的系统容量,还要支持高速率的无线通信传输业务,同时满足不同业务的服务质量(QoS,Quality of Service)要求。然而,随着人们对业务多样性需求的不断增长,无线频谱资源日益匮乏,已经成为遏制无线通信网络发展的瓶颈。因此,如何提高频谱利用率成为了当前无线通信研究的热点问题。基于多天线技术的跨层自适应机制可以有效地解决这个问题。一方面,跨层自适应机制允许网络各层共享与其它层相关的信息,对无线网络进行整体设计,使得在无线信道具有明显的资源受限和时变衰落的特性下,提高频谱利用率,保证用户的服务质量(QoS)。另一方面,多天线技术可以在不增加系统带宽和天线发射功率的情况下,使频谱利用率成倍增加并能够保证可靠的传输。
     本论文围绕频谱利用率的提高、无线链路传输性能的改进,分别针对物理层MIMO自适应方案和单用户MIMO、多用户MIMO跨层自适应方案展开了深入地研究。本论文的研究成果可为下一代无线通信系统的标准化提供参考依据。具体来说,论文的主要创新之处在于:
     1.针对物理层自适应MIMO系统,提出了两种改善系统性能的自适应方案。第一,在深入研究空时编码正交矩阵设计的基础上,提出了基于格拉斯曼流形构造的高率正交空时码的自适应方案,该方案对收发天线的数目没有限制,而且译码简单。第二,在DSTTD(Double Space-Time Transmit Diversity)系统中,利用信道反转思想提出了一种次优的非对称调制自适应功率分配算法,该算法对系统的性能改善明显。
     2.针对单用户MIMO系统的相关信道环境,在数据链路层丢包率和时延两个QoS约束下,利用跨层信息分析了AMC_OSTBC_T-ARQ系统中天线衰落相关性对频谱利用率的影响,给出了相关Nakagami-m信道下AMC_OSTBC_T-ARQ系统的频谱利用率、误包率、中断概率的闭合表达式;研究表明,相比Nakagami-2分布,相关性对Rayleigh分布下的跨层系统频谱利用率影响更严重。
     3.针对单用户MIMO系统中多天线带来的射频成本的限制,提出了一种基于发送天线选择结合正交空时码(TAS/OSTBC)的单用户跨层自适应方案,推导出了任意发射天线数目的TAS/OSTBC接收信噪比的概率分布函数和跨层系统频谱利用率的闭合表达式。
     4.针对多用户MIMO系统中空间分集与多用户分集的矛盾,提出了综合考虑物理层信道状态变化,联合自适应调制、TAS/OSTBC技术及多用户分集技术,对用户进行跨层自适应调度。以目标BER(Bit Error Rate)为QoS约束,分别推导出最大化SNR调度和归一化最大SNR调度算法在用户信道衰落不同分布时的多用户跨层系统频谱利用率的表达式,并与OSTBC传输技术比较得出:基于TAS/OSTBC技术的多用户跨层自适应调度方案可以很好的弥补OSTBC引起的多用户分集性能下降,提升系统的频谱利用率。
Future wireless communication aims not only to provide larger system capacity and support higher data rates communication services, but also satisfy the quality of service (QoS) requirements of different services. However, with the continuous growth of diverse wireless service demands, radio resources such as frequency spectrum would be far from adequate and has become a bottleneck in restraining the development of wireless communication networks. Thus how to improve the spectral efficiency has become a hot research topic of the current wireless communications network. An attractive technique known as adaptive cross-layer mechanism based on multiple antennas has been identified as one of the most promising techniques to solve this problem. On one hand, adaptive cross-layer mechanism allows information sharing and information exchange among different layers and optimizes them under limited radio resources and harsh wireless channel conditions in order to achieve both higher system spectral efficiency and better QoS. On the other hand, multiple antennas technology can double spectral efficiency and guarantee the transmission reliability without increasing system bandwidth and antenna transmit power.
     In this dissertation, adaptive MIMO schemes at physical layer and adaptivecross-layer schemes based on single-user MIMO system and multi-user MIMO systemare intensively studied, respectively, in order to improve the spectral efficiency and thetransmission performance of wireless link. The research results could potentially workas the standardization reference for the next generation wireless communicationnetworks. The main novelty contributions of my work are as follows:
     1. We proposed two novel adaptive schemes for the physical layer adaptive MIMOsystem to make the system performance better. Firstly, based on the extensiveinvestigation of orthogonal matrix design of space-time coding, an adaptivehigh-rate orthogonal space-time coding scheme from the Grassmann manifold wasproposed. This scheme has no limitation on the number of transmitter and receiverantennas, and has a simple decoding algorithm. Secondly, driven by the idea of channel inversion, we proposed a sub-optimal adaptive power allocation algorithm combined with asymmetric adaptive modulation in double space-time transmit diversity (DSTTD) system. It can enhance the system performance significantly.
     2. Considering the correlated channel conditions of single-user MIMO system, under the constraint of QoS of packet loss probability and time delay at data link layer, we analyzed the effect that antenna fading correlation has on the spectral efficiency in AMC_OSTBC_T-ARQ system, combining of adaptive modulation and coding (AMC) and truncated automatic repeat request (T-ARQ) in the presence of orthogonal space-time block coding (OSTBC) transmit diversity by using the cross-layer information analysis. We deduced the closed-form expressions for the spectral efficiency, packet error rate, and outage probability of this AMC_OSTBC_T-ARQ system under correlated Nakagami-m channels. Results showed that correlation reduced spectral efficiency of the cross-layer system under Rayleigh channel more than that under Nakagami-2 channel.
     3. Considering the problem that the multiple transmit antenna deployment with multiple RF-chains may result in increasing complexity, size, and cost, we proposed that transmit antenna selection / orthogonal space-time block coding(TAS/OSTBC) scheme was extended to be in adaptive single-user cross-layer scheme that combines AMC with hybrid ARQ techniques. We derived the analytical closed-form expression for probability density function (PDF) of the receiver signal-to-noise ration (SNR) and the overall average spectral efficiency under adaptive cross-layer TAS/OSTBC transmission scheme with the arbitrary number of transmitter antennas.
     4. In order to resolve the problem between the spatial diversity and the multi-user diversity in multi-user MIMO system, we proposed an adaptive multi-user cross-layer scheduling strategy that incorporated the AM, TAS/OSTBC technologies of physical layer into the multi-user selection diversity. Based on the constraint of QoS of target bits error rate, we derived the closed-form analytical expressions for the overall spectral efficiency based on maximum SNR scheduling and maximum normalized SNR scheduling when users have non-identical channel conditions. Results showed that the adaptive multi-user cross-layer scheduling strategy based on TAS/OSTBC can dramatically enhance the spectral efficiency of the system and offset the multi-user diversity performance degradation caused by OSTBC.
引文
[1] ITU-R Circular Letter 5/LCCE/2 on IMT-Advanced
    
    [2] 3GPP TR25.913. Requirements for evolved UTRA (E-UTRA) and evolved UTRAN (E-UTRAN)
    [3] 3GPP TR36.913. Requirements for further advancements for E-UTRA (LTE-Advanced)
    [4] Shakkottai S., Rappaport T.S., Karlsson P.C., "Cross-layer Design for Wireless Networks", Communications Magazine, IEEE, 2003, 41(10): 74-80
    [5] Lu S., Bharghavan V., Srikant R., "Fair scheduling in wireless packet networks", IEEE/ACM Transactions on Networking, 1999, (4): 473-489
    [6] Bhagwat P., Krishna A., Tripathi S., "Enhancing throughput over wireless LAN using channel state dependent packet scheduling", Proceedings of INFOCOM 96, San Francisco, March 1996
    [7] Ng T.S.E., Stoics I., Zhang Hui., "Packet fair queuing algorithms for wireless networks with location-dependent errors", Proceedings of INFOCOM98, Boston, March 1998
    [8] Liu Xin, "Opportunistic scheduling in wireless communication networks", Ph.D Thesis, Purdue University, 2002
    [9] Liu Xin, Chong E. K. P., Shroff N. B., "A framework for opportunistic scheduling in wireless networks", Computer Networks, 2003,41(4): 451-474
    [10] R. hee J.H., Kim T.H., Kim D.K., "A wireless fair scheduling algorithm for 1xEV-DO system", Proceedings of IEEE VTC2001, New Jersey, 2001
    [11] Liu Xin, Chong E.K.P, Shroff N.B., "Opportunistic transmission scheduling with resource sharing constraints in wireless networks", IEEE Journal on Selected Areas in Communications, 2001,19 (10) :2053-2064
    [12] Andrews M., Kumaran K., Ramanan K., et al., "Providing quality of service over a shared wireless link", IEEE Communications Magazine, 2001, 39(2):150-154
    [13] Shakkottai S., Stolyar A., "Scheduling algorithms for a mixture of real-time and non-real-time data in HDR", Proceedings of ITC 2001, Brazil, September 2001
    [14] E. Teletar, "Capacity of multi-antenna Gaussian channels," AT&T Bell Labs, Tech. Rep., June 1995
    [15] G.J. Foschini and M.J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas", Wireless Personal Communications, 1998,6:311-335
    [16] A.Abdi and M.Kaveh, "A space-time correlation model for multielement antenna systems in mobile fading channels", IEEE J. Selected Areas in Commun., 2002, 20(3):550-560.
    [17] M.Toeltseh, J.Laurila, K.Kalliola, A.F.Moliseh, P.Vainikainen, and E.Bonek "Statistical characterization of urban spatial radio channels", IEEE J. Selected Aeras in Commun., 2002, 20(3):539-549.
    [18] C.Oestges, V.Ereeg, and A.J.Pauiraj, "A Physical scattering model for MIMO macrocellular broadband wireless channels", IEEE J. Selceted Areas in Commun., 2003, 21(5):721-729.
    [19] D.S.Shiu, G.J.Fosehini, M.J.Gans, and J.M.Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems", IEEE Trans. Commun., 2000, 48(3):502-513.
    [20] O.Oyman, R.U.Nabar, et al., "Characterizing the statistical properties of mutual information in MIMO channels", IEEE Trans. Signal Processing, 2003, 51(11):2784-2795
    [21] M.R.McKay and I.B.Collings, "General capacity bounds for spatially correlated Rician MIMO channels", IEEE Trans. Inform Theory, 2005, 51(9): 3121-3145
    [22] C.Xiao, J.Wu, S.Y.Leong, et al., "A discrete-time model for triply selective MIMO Rayleigh fading channels", IEEE Trans. Wireless Commun., 2004, 3(5): 1678-1688
    [23] C.Borja, A.Algans, M.Royo, J.Anguera, and C.Puente, "Impact of the antenna technology and the antenna parameters on the performance of MIMO systems", Proc. IEEE Antennas and Propagation Society Inte. Symp., 2003, 3:507-510.
    [24] V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communication: Performance criterion and code construction," IEEE Trans. Inform. Theory, 1998, 44:774-765
    [25] S.M.Alamouti, "A simple transmit diversity technique for wireless communications", IEEE Journal Select. Areas Commun., 1998, 16(8): 1451-1458
    [26] G. J. Fosehini, "Layered space-time architecture for wireless commutation in a fading environment when using multi-element antennas", Bell Labs Tech. Jounral, 1996,12:41-59
    [27] S.Sanayei and A.Nosratinia, "Antenna selection in MIMO systems", IEEE Commun.Mag., 2004, 42: 68-73
    [28] A.F.Moliseh and M.Z.Win, "MIMO systems with antenna selection", IEEE Microwave Magazine, 2004, 5(1):46-54
    [29] M.Z.Win and J.H.Winters, "Analysis of hybrid selection / maximal-ratio combing in Rayleigh fading", IEEE Trans. Commun., 1999, 47(12): 1773-1776
    [30] F. Kharrat-Kammoun and S. Fontenelle, "Accurate approximate of error Probability on MIMO channels and its application to adaptive modulation and antenna selection", ICASSP, 2006, 4: 809-812
    [31] y. Ko and C. TePedelenlioglu, "Rate control using antenna selection for closed loop spatial multiplexing", IEEE GLOBECOM, 2005, 3608-3612
    [32] X.N.Zeng and A.Ghrayeb, "Performance bounds for combined channel coding and space-time block coding with receive antenna selection", IEEE Trans. Vehicular Technology, 2006, 55(4): 1441-1446
    [33] X.Zeng, "Concatenated channel coding and on orthogonal space time bloke coding for MIMO systems antenna selection and performance bounds", Master dissertation, Applied Science, Concordia University, August, 2004
    [34] Q.Zhou and H.Dai, "Joint antenna selection and link adaptation for MIMO systems", IEEE Trans. Vehicular Technology, 2006, 55(1):243-255
    [35] M. Costa, "Writing on dirty paper", IEEE Trans. Inform. Theory, 1983, 439-441
    [36] Q. Liu, S. Zhou, and G.B. Giannakis, "Queuing with adaptive modulation and coding over wireless links: Cross-layer analysis and design", IEEE Transactions on Wireless Communications, 2005, 4(3): 1142-1153
    [37] Liu Q., Zhou S., Giannakis, "Cross-layer scheduling with prescribed QoS guarantees in adaptive wireless networks", IEEE Journal on Selected Areas in Communications, 2005, 23(5): 1056-1066
    [38] Haleem M.A., Chandramouli R., "Adaptive downlink scheduling and rate selection: a cross-layer design", IEEE Journal on Selected Areas in Communications, 2005, 23(6):1287-1297
    [39] A. Maaref, and S. Aissa, "Cross-layer design for MIMO nakagami fading channels in the presence of Gaussian estimation errors", in Proc. IEEE CCECE, 2005.
    [40] Jose' Lo'pez Vicario, Miguel A'ngel Lagunas, and Carles Ant'on-Haro, "A cross-layer approach to transmit antenna selection", IEEE Transactions on Wireless Communications, 2006, 5(8): 1993-1997
    [41] Xing Zhang, Feng Chen, Wenbo wang, "Outage probability study of multiuser diversity in MIMO transmit antenna selection systems", IEEE Signal Processing Letters, 2007, 14(3): 161-164
    [42] Myeongsook Seo, Sang Wu, Kim, "Power adaptation in space-time block code", IEEE GLOBECOM, 2001,5: 3188-3193
    [43] Shengli Zhou, Giannakis G..B., "How accurate channel prediction needs to be for transmit-beamforming with adaptive modulation over Rayleigh MIMO channels" IEEE Transactions on Wireless Communications, 2004,3: 1285-1294
    [44] S.T.Chung, A.Lozano, and H.C.Huang, "Approaching eigenmode blast channel capacity using V-BLAST with rate and power feedback", IEEE VTC, 2001, 2: 915-919
    [45] Catreux, S., Erceg, V., Gesbert, D., et.al, "Adaptive modulation and MIMO coding for broadband wireless data networks", IEEE Communications Magazine, 2002, 40:108-115
    [46] V. Tarokh, H. Jafarkhani and A. R. Calderbank, "Space-time block coding for wireless communications: performance results", IEEE Journal Select. Areas Commun.,1999,17(3):451-460
    [47]Xue-Bin Liang,"A complex orthogonal space-time block code for 8 transmit antennas",IEEE Commun.Lett.,2005,9:115-117,Feb.2005
    [48]Liang Xian and Huaping Liu,"Space-time block codes from cyclic design," IEEE Commun.Lett.,2005,9(3):231-233
    [49]Texas Instruments,"Space-time block coded transmit antenna diversity for WCDMA",Tdoc 662/98,ETSI SMG2 L1,Espoo,Finland,Dec.1998.
    [50]From the 3Gpp website:http://www.3Gpp.org
    [51]V.Tarokh,H.Jafarkhani and A.R.Calderbank,"Space-time block codes from orthogonal designs",IEEE Trans.Inform.Theory,1999,45(5):1456-1467
    [52]X.B.Liang,"Orthogonal designs with maximal rates",IEEE Trans.Inform.Theory,2003,49:2468-2503
    [53]蒋存量,“MIMO系统中空时编码技术的研究”,山东大学硕士学位论文,2008.4
    [54]S.Zhou and G.B.Giannakis,"Adaptive modulation for multi-antenna transmissions with channel mean feedback," Proc.IEEE Int.Conf.Commun.(ICC'03),2003,2281-2285
    [55]Andrea J.Goldsmith,Soon-Ghee Chua,"Variable-rate variable-power MQAM for fading channels",IEEE Transactions on Communications,1997,45(10):1218-1230
    [56]Zhu Han,Xin Liu,Z.Jane Wang,and K.J.Ray Liu,"Delay sensitive scheduling schemes with short-term fairness for heterogeneous QoS over wireless network",IEEE Transactions on Wireless Communication,2007,6(2):423-428
    [57]A.Maaref,S.Aissa,"A cross-layer design for MIMO Rayleigh fading channels",IEEE CCECE,2004,4:2247-2250
    [58]Texas Instruments,"Improved double-STTD scheme using asymmetric modulation and antenna shuffling," TSGR1_20(01)0459,21st-24th May,2001,Busan,Korea.
    [59]E.N.Onggosanusi,A.G.Dabak,and T.M.Schmidl,"High rate space time block coded scheme:performance and improvement in correlated fading channels," Proc.IEEE Wireless Communications and Networking Conference,2002,1:194-199
    [60] S. Shim, K. Kim, and C. Lee, "An efficient antenna shuffling scheme for DSTTD systems," IEEE Commun. Lett., 2005, 9: 124-126
    
    [61] J. Ham, S. Shim, K. Kim, and C. Lee, "A simplified adaptive moulation scheme for DSTTD system with linear receivers", IEEE Communication Letters, 2005, 9(12):1049-1051
    
    [62] Hojin Kim, Jonghyuk Lee, Eungsun Kim and Ye Hoon Lee, "Efficient feedback signaling for adaptive space-time transmit diversity in mobile fading channels", IEEE VTC'04, 2004, 2: 637-641
    
    [63] T.Yoo, R.Lavery, A.Goldsmith, and D.Goodman, "Throughput optimization using adaptive techniques", available for download at http://wsl.stanford.edu/Andrea publications.html, 2006.
    
    [64] Q. Liu, S. Zhou, and G. Giannakis, "Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links", IEEE Trans. on Wireless Communications, 2004, 3(5):1746-1755
    
    [65] C. Gonzalez, L. Szczecinski, and S. Aissa, "Throughput maximization of ARQ transmission protocol employing adaptive modulation and coding", in Proc. IEEE/IEE ICT, 2004.
    
    [66] Chuan J and Sollenberger N., "Beyond 3G: wideband wireless data access based on OFDM and dynamic packet assignment", IEEE Communications Magazine, 2000, 38(7): 78-87
    [67] X. Lu, G. Zhu, G. Liu, and L. Li, "A cross-layer design over MIMO Rayleigh fading channels", in Proc. IEEE WCNMC, 2005.
    [68] M.Chiani, M.Z.Win, and A.Zanella, "On the capacity of spatially correlated MIMO Rayleigh-fading channels", IEEE Trans. Inform. Theory, 2003, 49(10): 2363-2371
    [69] O.Oyman, R.U.Nabar, H.Blcskei, et. al., "Characterizing the statistical properties of mutual information in MIMO channels", IEEE Trans. Signal Processing, 2003, 51(11): 2784-2795
    [70] P.Almers, E.Bonek, et.al, "Survey of channel and radio propagation models for wireless MIMO systems", EURASIP Journal on Wireless Communication and Networking, 2007:1-10.
    [71] J.W.Wallaee and M.A.Jensen, "Modeling the indoor MIMO wireless channel", IEEE Trans.Antennas and Propagation, 2002, 50(5):591-599.
    [72] T.Zwick, C.Fischer, and W.Wiesbeck, "A stochastic multipath channel model including path direction for indoor environments", IEEE Journal on Selection Areas in Communications, 2002, 20(6): 1178-1192
    [73] G. Foschini and M. Gans, "On Limits of Wireless Communications in Fading Environments when Using Multiple Antennas," Wireless Personal Communications, 1998, 6(3): 311-335
    [74] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, "A stochastic MIMO radio channel model with experimental validation", IEEE J. Selected Areas in Communications, 2002, 20(6): 1211-1226
    [75] W. Weichselberger, "Spatial structure of multiple antenna radio channels," Ph.D. dissertation, Vienna University of Technology, Vienna, Austria, Dec. 2003, downloadable from http://www.nt.tuwien.ac.at/mobile.
    [76] W. Li, H. Zhang, and T.A. Gulliver, "Capacity and error probability analysis of orthogonal space-time block codes over correlated nakagami fading channels", IEEE Trans. on Wireless Communications, 2006, 5(9): 2408 -2412
    [77] P. Lombardo, G. Fedele, and M.M. Rao, "MRC performance for binary signals in nakagami fading with general branch correlation", IEEE Trans. on Communications, 1999, 47(1): 44 - 52
    [78] T.L. Staley, J. Luo, W.H. Ku, and J.R. Zeidler, "Error probability performance prediction for multichannel reception of linearly modulated coherent systems on fading channels", IEEE Trans. on Communications, 2002, 50: 1423-1428
    [79] A.F.Molisch, M.Z.Win, and J.H.Winters, "Capacity of MIMO systems with antenna selection", in Proc. IEEE Int.Conf.Commun., 2001, 570-574
    
    [80] D. A. Gore and A. Paulraj, "MIMO antenna subset selection with space time coding," IEEE Trans. Signal Processing, 2002, 50: 2580-2588
    [81] Z. Chen, J. Yuan, B. Vucetic, and Z. Zhou, "Performance of the Alamouti scheme with transmit antenna selection," IEEE Electron. Lett., 2003, 39(23): 1666-1668
    [82] L. Yang and J. Y. Qin, "Performance of Alamouti Scheme with Transmit Antenna Selection for M-ray Signals," IEEE Trans Wireless Communication, 2006, 5(12): 3365 -3369
    
    [83] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2000.
    [84] H.A.David, Order Statistics, New York: Wiley, 1970.
    [85] R. Knopp and P. Humblet, "Information capacity and power control in single-cell multiuser communications," in Proc. IEEE ICC, Seattle, WA,1995, 1: 331-335
    [86] D. N. C. Tse, "Optimal power allocation over parallel Gaussian channels," in Proc. ISIT, Ulm, Germany, 1997, 27
    [87] Bender P., Black P., Grob M , et al., "CDMA-HDR: A bandwidth efficient high speed wireless data service for nomadic users", IEEE Communication Magazine, 2000, 38 (7): 70 - 77
    [88] P. Viswanath, D. Tse, and R. Laroia, "Opportunistic beamforming using dumb antennas," IEEE Trans. Inf. Theory, 2002, 48(6): 1277-1294
    [89] J. Jiang, R.M. Buehrer, and W.H. Tranter, "Antenna diversity in multiuser data networks", IEEE Trans. on Communications, 2004, 52(3): 490- 497
    [90] B.M. Hochwald, T.L. Marzetta, and V. Tarokh, "Multi-antenna channel-hardening and its implications for rate feedback and scheduling", IEEE Trans. on Information Theory, 2004, 50(9): 1893-1909
    [91] E. G. Larsson, "On the combination of spatial diversity and multiuser diversity", IEEE Commun. Letters, 2004, 8(8): 517-519
    [92] Chiung-Jang Chen, and Li-Chun Wang, "A unified capacity analysis for wireless systems with multiuser scheduling and antenna diversity in nakagami fading channels", IEEE Trans. on Communications, 2006, 54(3): 469- 478
    [93] F. Berggren and R. Jantti, "Asymptotically fair transmission scheduling over fading channels," IEEE Trans. Wireless Commun., 2004, 3(1):326-336
    
    [94] M.-S. Alouini and A. J. Goldsmith, "Adaptive modulation over Nakagami fading channels," Kluwer J.Wireless Commun.,2000,13(1-2):119-143
    [95]IEEE P802.16-REVd/D5-2004:"Air Interface For fixed Broadband Wireless Access Systems"
    [96]IEEE Standard 802.16 Working Group,IEEE standard for local and metropolitan area networks part 16:air interface for.fixed broadband wireless access systems (revision of IEEE standard 802.16-2001),2004.
    [97]IEEE.802.16e:Air Interface for Fixed and Mobile Broadband Wireless Access System.USA.2006.2
    [98]Antonio F.,et al,"Adaptive MIMO transmission for exploiting the capacity of spatially correlated channels",IEEE Transactions on Vehicular Technology,2007,56(2):619-630
    [99]Q.Liu,X.Wang,and G.B.Giannakis,"A cross-layer scheduling algorithm with QoS support in wireless networks",IEEE Trans.On Veh.Technol.,2006,55(3):839-847
    [100]IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Corl-2005(Amendment and Corrigendum to IEEE Std 802.16-2004):Part 16:"Air interface for fixed and mobile broadband wireless access systems"
    [101]Harvind Samra,Zhi Ding,"New MIMO ARQ protocols and joint detection via sphere decoding",IEEE Transactions on Signal Processing,2006,54(2):473-482
    [102]D.Wu and R.Negi,"Effective capacity:a wireless link model for support of quality of service",IEEE Trans.Wireless Commun.,2003,2(4):630-643
    [103]Jia Tang and Xi Zhang,"Cross-layer modeling for quality of service guarantees over wireless links",IEEE Trans.WirelessCommun.,2007,6(12):4504-4512
    [104]陈哲,张正江等,B3G技术演进与发展趋势[J],电信工程技术与标化,2008(12):66-70
    [105]Q.H.Spencer,C.B.Peel,A.L.Swindlehurst,et al."An introduction to the multi-user MIMO downlink",IEEE Communication Magazine,2004,42(10):60-67
    [106]Letaief,K.B.,Ying Jun Zhang,"Dynamic multiuser resource allocation and adaptation for wireless systems",IEEE Wireless Communication,2006,13(4):38-47
    [107]Woo Cheol Chung,August N.J.,Dong Sam Ha,"Signaling and multiple access techniques for ultra wideband 4G wireless communication systems",IEEE Wireless Communication,2005,12(2):46-55
    [108]M.Moustafa,I.Habib,and M.N.Naghshineh,"Efficient radio resource control in wireless networks," IEEE Trans.Wireless Commun.,2004,3(6):2385-2395
    [109]Xi Zhang,Jia Tang,Hsiao-Hwa Chen,Song Ci,Guizani M.,"Cross-layer-based modeling for quality of service guarantees in mobile wireless networks",IEEE Communication Magazine,2006,44(1):100-106
    [110]苏彦兵,谈振辉,“基于天线选择的低秩信道MIMO系统容量研究”,电子学报,2004,32(3):395-398
    [111]D.Gesbert,M.Shafi,D.Shiu,R Smith,and A.Naguib,"From theory to practice:an overview of MIMO space-time coded wireless systems," IEEE J.Sel.Areas Commun.,2003,21(3):281-302
    [112]W.Ajib and D.Haccoun,"An overview of scheduling algorithms in MIMO based fourth generation wireless systems," IEEE Network,2005,19(5):43-48,
    [113]Sadek M.,Tarighat A.,Sayed A.H.,"Active antenna selection in multiuser MIMO communications",IEEE Transactions on Signal Processing,2007,55(4):1498-1510
    [114]I.Berenguer,X.Wang,and V.Krishnamurthy,"Adaptive MIMO antenna selection via discrete stochastic optimization," IEEE Trans.Signal Process.,2005,53:4315-4329
    [115]杨鸿文等译,无线通信,人民邮电出版社,2007年6月
    [116]王晓海等译,空时编码技术,机械工业出版社,2004年7月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700