北方农村传统采暖方式与室内热环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国北方农村建筑采暖技术转换与更新的关键是对既有传统采暖形式的改进与创新。论文在大量的现有理论整理、现场调研与热物理环境测试的基础上,对我国北方农村传统民居的各种采暖方式进行了介绍与热过程的描述,并系统地研究了最典型的火炕采暖民居建筑在冬季采暖期的热过程。
     根据动态热平衡理论,通过对火炕采暖民居室内空气与内外表面动态热平衡的分析,建立了其室内热环境动态热过程的通用数学模型。
     运用反应系数法对火炕采暖民居动态热过程数学模型进行离散求解。在只计算火炕表面与室内其他各表面的辐射换热,而忽略室内其他各表面之间的辐射换热的情况下,给出了此房间的简化分析模型;在忽略火炕内部各表面辐射换热的情况下,给出了火炕的简化分析模型。将两种模型联接,在火炕不同的运行模式下,给出了火炕采暖民居室内空气温度与炕面温度的逐时数值解析解。
     给出了火炕采暖民居太阳辐射得热与长波辐射得热的计算方式,并对其内外各表面换热系数的取值方法进行了研究。根据满足人体舒适时的室内空气温度与MRT的关系,在炕面温度取舒适值并且室外计算温度按标准取值的条件下,确定了其室内空气温度的舒适值范围。在此基础上,根据火炕采暖民居内有一面高温辐射源的特殊性质,在室外计算温度波动的情况下,对其室内表面逐一给出总换热系数的取值范围,并根据辐射换热系数与对流换热系数的比例得到火炕表面辐射换热量占70%左右的结论。
     采用MATLAB编写了火炕采暖民居的室内热环境数值计算主程序与求解反应系数的子程序。通过计算结果与现场测试结果的对比验证,证实了上述数学模型能较准确地反应火炕采暖民居在冬季采暖期的实际运行情况。最后通过改变模型输入参数得到的数据与实际测试数据进行对比,提出了改善火炕采暖民居冬季室内热环境应采取的措施。
The improvements or innovations of the traditional Chinese kang are crucial for converting or renewing heating technologies in the future for the rural houses in north China. Various kinds of heating methods and their thermal processes of the traditional rural houses in north China are described in this paper, based on amount of existing theories, field investigations and thermal environment tests. The thermal process of the most typical house with the traditional kang in the heating period is systematically studied in this paper.
     According to the thermodynamics equilibrium theory, a common mathematical model of dynamic thermal process, which stands for the indoor thermal environment of the room with the kang, is founded through the analysis of dynamic thermal equilibrium of indoor air temperatures and temperatures of inside and outside surfaces.
     This model is dispersed and solved by using reaction coefficient. A simplified mathematical model of the room is put forward, only taking into account the radiation heat transfer between the surfaces of the kang and the other interior surfaces, while ignoring the reciprocal radiation heat transfer between all other interior surfaces; a simplified mathematical model of the kang is also put forward, while ignoring the radiation reciprocal heat transfer between surfaces inside the kang. With two models connected, the hourly values of indoor air temperature and surface temperature are brought forward in the case of different burning mode of the kang.
     Methods are given to calculate heat gain from solar and long-wave radiation of the house with the kang, and the methods to make sure the values of heat transfer coefficient of internal and external surface are also studied. The comfort value range of the indoor air temperatures is confirmed, in the condition of given comfortable kang surface temperatures and standard outdoor temperatures, according to the relationship of subjective comfortable temperature of human, indoor air temperature and MRT. On this basis, the value range of heat transfer coefficient of each interior surface is given, with accounting outdoor temperatures fluctuating, due to the particularity of the room that the high temperature heat source is on one side. It comes to a conclusion that the percentage of the radiation heat transfer of the kang surface is about 70%, based on the ratio of radiation heat transfer coefficient and convective heat transfer coefficient on its surface.
     A main program of the calculation and a subroutine for solving the reaction coefficient is given by using MATLAB. It is proved that the aforementioned mathematical model can accurately present the actual working of the houses with the kang during the heating period. Finally, measures are proposed to improve the winter indoor thermal environment of the house with the kang, via comparing the data obtained by changing input parameters of the model with the actual test data.
引文
[1]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告(2008)[M].北京:中国建筑工业出版社,2008.3.1
    [2]Yang Xudong, Jiang Yi. Energy and environment in Chinese rural housing:roadto sustainability [C]. Tianjin University and Dalian University of Technology. The First International Conference on Building Energy and Environment, July13~16,2008, Dalian, China.cl-19.
    [3]J Li, A Zhou, J Bai, Z Su. Assessment of Biomass Resource Availability in China[J]. Beijing:China Environmental Science Press,1998.
    [4]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告(2008)[M].北京:中国建筑工业出版社,2008.3.1
    [5]清华大学北方农村能源与环境调研组.2006年清华大学北方农村能源与环境调研工作总结报告[R].北京:清华大学,2007
    [6]李玉国,孙鹤泉,杨旭东等.中国北方农村能源生态综合利用情况调研考察报告[R].香港:香港大学,2006
    [7]宋凌,林波荣,朱颖心.安徽传统民居夏季室内热环境模拟[J].清华大学学报(自然科学版),Vol.43,No.6,2003:826-828,843.
    [8]刘加平,杨柳.零辅助能耗窑居太阳房热工设计[J].太阳能学报,VoL20,No.3,1999(7):302-310.
    [9]刘加平,闫增峰,刘艳峰,赵群.窑居太阳房室内热环境动态分析的简化模型[J].西安建筑科技大学学报,Vol.32,No.2,2000(6):103-107.
    [10]杨柳,钟珂.新型窑居太阳房设计与热环境分析[J].西安建筑科技大学学报,Vol.35,No.1,2003(3):17-19.
    [11]黎明.佛山东华里清代民居热环境研究[A].第六届全国建筑物理学术会议论文,1996:100104.
    [12]汤国华.广州西关小屋的热、光、声环境[J].南方建筑,1996,1:5457.
    [13]汪帆.福建两类传统民居夏季室内外建筑气候的微机仿真分析[J].暖通空调,1994,4:4548.
    [14]Fan Wang. A Study on Thermal Performance of the Earthen Tower [J]. BUILDING & ENVIRONMENT,27(4)..
    [15]李世芬,宋盟官,冯路,杨雪.“炕”文化及其演变形态[J].华中建筑,Vol.25,No.5,2007:149-150,159.
    [16]王伟.辽东传统住居中“炕”的空间效益[J].华中建筑,Vol.26,No.4,2008:61—64.
    [17]杨绍海.火炕的调查与实测[C].北方土木建筑学会.北方土木建筑学会论文集,1963.
    [18]徐洪波,焦庆余,徐国堂.高效预制组装架空火炕的研究[J].农业工程学报,1991,27(3):81-86.
    [19]金虹,赵华.关于严寒地区乡村住宅节能设计的思考[J].哈尔滨建筑大学学报,2001,34(3):96-100.
    [20]Deguchi K, Sanda T. Thermal environment of private houses with traditional heating system in the northern China[C]. Society of Heating, Air-Conditioning and Sanitary Engineers. Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan, Japan, c2002:583-584.
    [21]王洪林.被动式太阳房地炕相结合效益好[J].农村能源,1994(1):8-9.
    [22]陈滨,庄智,杨文秀.被动式太阳能集热墙和新型节能灶炕耦合运行模式下农村住宅室内热环境的研究[J].暖通空调,Vol.36,No.2,2006:20-24.
    [23]庄智,李玉国,陈滨.架空炕采暖作用下建筑热过程的模拟与分析[J].华中建筑,Vol.39,No.1,2009:9-14.
    [24]竟峰,王靖,张旭.寒冷地区太阳能炕采暖系统[J].低温建筑技术,2006(3):113-115.
    [25]庄智.中国炕的烟气流动与传热性能研究[D].大连理工大学博士论文,2009.3
    [26]Yeo M, Yang I, Kim K. Historical changes and recent energy saving potential of residential heating in Korea[J]. Energy and Buildings,2003,35(7):715-727.
    [27]Yeo H S, K.N.H., Sohn J Y. The evaluation of indoor thermal environmental characteristics in the traditional ondol heating system[J]. Journal of the Arehitectural Institute of Korea,2003,23(1):593-601.
    [28]Bea S, Kim D C. Transient heat conduction through the ondol floor and heat loss to the ground[J]. Journal of the SAREK.,1975,4(1):6-17.
    [29]ChoSH, KimKH.Analysisofgroundheat1055in。 ndolheatingsystem[J).Journal ofthe5.A.R.E.K.,1978,7(3):160—166.
    [30]Kim Y D, Min M K. The effect of an insulation of low temperature gas chimney on the optimum chimney height[J]. Transactions of the Society of Air-conditioning and Refrigerating Engineers of Korea,1990,2(3):177-181.
    [31]Park J J, Rhee G H. Numerical analysis for thermal characteristic in traditional gudul[C]. Proceedings of the SAREK 2005 Summer Annual Conference, Pyeongchang, 2005.
    [32]Jeng K B. A flow distribution characteristics on traditional ondol[J]. Journal of the Architectural Institute of Korea,1992,10(2):373-376.
    [33]Min M K, Kim Y D. Numerical analysis of two-dimensional ondol panel heating model[C]. International Syposium on Transport Phenomena in Thermal Engineering, Seoul, Korea,1993.
    [34]Bansal N H, Shail. Characteristic parameters of a hypocaust construction[J]. Building and Environment,1999,34(3):305-318.
    [35]Bansal N H, Minke G.. Passive Building Design—a handbook of Natural Climatic Control[M]. Elsevier Science B V,1994.
    [36]Basaran T, Ilken Z. Thermal analysis of the heating system of the Small Bath in ancient Phaselis[J]. Energy and Buildings,1998,27(1):1-11.
    [1]彦启森,赵庆珠.建筑热过程[M].中国建筑工业出版社,1986.年12月第一版
    [2]王德芳.集热端不稳定传热问题的反应系数解法[J].太阳能学报,Vol.11,No.4,1990
    [3]李怀谨,施永年.非水平面上日射强度和日射总量的计算方法[J].地理学报,1981,34(1)79-89
    [4]葛新石等.太阳能工程——原理和应用[M].学术期刊出版社,1988
    [5]陈启高.建筑热物理基础[M].西安交通大学出版社.1988
    [6]Liesen R J, Pedersen C O. An evaluation of inside surface heat balance models for cooling load calculations [J]. ASHRAE Transaction,1997,4(3):485-502.
    [7]B.H.БorocЛoBcKий.建筑热物理学[M].中国建筑工业出版社.1982
    [8]Ian Beausoleil-Morrison. An algorithm for calculating convection coefficients for internal building surfaces for the case of mixed flow in rooms. Energy and Buildings 33(2001)351-361
    [9]K.Nicol. the energy balance of an exterior window surface, Lnuvik, N.W.T., Canada, Building and Environment.12:215-219,1997
    [10]S. Sharplea. Full-scale measurements of convective energy losses from exterior building surface, Building and Environment.19:31-39,1984
    [11]陈启高.陈启高建筑物理学学术论文选集.中国建筑工业出版社,北京,2004
    [12]张继良.传统民居建筑热过程研究[D].西安建筑科技大学,2006.12
    [13]刘艳峰.地板供暖设计与运行基础理论研究[D].西安建筑科技大学博士论文,2004.2
    [14]Kilkis B., M Coley. DEVLOPMENT OF A COMPUTER DESIGN SOFWARE FOR HYDRONIC FLOOR HEATING OF BUILING, ASHREA trans., CH-95-19-1, 1201-1213,1995
    [15]Kilkis B.. Enhancement of heat pump performance using radiant floor heating systems, ASM, Vol.28,119-129,1992
    [16]Timothy. L. R, Kilkis B.. An Analytical Model for the Design of In-Slab Electric Heating Panels, ASHREA trans, SF-98-9-5,1112-1115,1998
    [17]刘加平.附加阳光间式窑居太阳房热过程理论[D].重庆建筑大学,1998.4
    [18]John E. Flynn, Jack A. Kremers, Arthur W. Swgil, Gary R. Ste2ffy: Architectural Interior Systems——Lighting, Acoustics, Airconditioning. VAN NOSTRAND REINHOLD PRESS
    [19]中华人民共和国建设部,国家质量监督检验检疫总局.GB50019-2003采暖通风与空气调节设计规范[S].北京:中国计划出版社,2003.
    [20]国家技术监督局,中华人民共和国建设部.GB 50176-93民用建筑热工设计规范[S].北京:中国标准出版社,1993.
    [21]章熙民,任泽霈,梅飞鸣.传热学[M].中国建筑工业出版社,2001年12月第四版
    [22]庄智,李玉国,陈滨.架空炕采暖作用下建筑热过程的模拟与分析[J].暖通空调,2009.39(1):9-14
    [23]Anderson B R. Calculation of the steady-state heat transfer through a slab-on-ground floor[J]. Building and Environment,1991.24 (4):405-415
    [24]清华大学DeST开发组.建筑环境系统模拟分析方法——DeST[M].北京:中国建筑工业出版社,2004
    [1]庄智.中国炕的烟气流动与传热性能研究[D].大连理工大学博士论文,2009.3
    [2]中国疾病预防控制中心,等.GB/T 18883-2002室内空气质量标准[S].北京:中国标准出版社,2002
    [3]金虹,赵华,王秀萍.严寒地区村镇住宅冬季室内热舒适环境研究[J].哈尔滨工业大学学报,2006.38(12):2108-2111.
    [4]庄智.典型炕系统热性能研究[R].第五届清华大学建筑节能学术周,2009
    [5]章熙民,任泽霈,梅飞鸣.传热学[M].中国建筑工业出版社,2001年12月第四版
    [6]王润山.陕南乡土民居建筑材料及室内热环境[D].西安建筑科技大学硕士论文,2003.6
    [7]刘加平.建筑物理[M].中国建筑工业出版社,2000.12第三版
    [8]刘艳峰.阳光间式靠山窑洞室内热环境动态模拟[D].西安建筑科技大学硕士论文,1999
    [9]A.M.什克洛维尔等.住宅和公用房屋建筑热工学基础[M].建筑工业出版社,1959
    [1]B.W.Olesen, etc. Heat Exehange Coefficient between Floor Surface and Space by Flooring Cooling-Theory of a Question Definition, ASHREA trans., DA-00-8-2, 684-694,2000
    [2]L.N.KalisPeris, ect. AUTOMATED DESIGN OF RADIANT HEATING SYSTEMS BASED ON MRT, ASHREA trans., AT-90-20-4,1288-1295,1990
    [3]B.W.Olesen, etc. Method for Measuring and Evaluating the Thermal Radiation in a Room, ASHREA trans., CH-89-17-4,1028-1044,1989
    [4]Bj(?)rn kavisgaard. Operative Temperature Measured by Ellipsoid-shaped Sensor, Measuring equipment and techniques,2002, No.3
    [5]章熙民,任泽霈,梅飞鸣.传热学[M].中国建筑工业出版社,2001年12月第四版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700