抗盐草地早熟禾高效转基因体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验以草地早熟禾(P.pratensis L.)7个品种的成熟种子为外植体,对其再生体系和农杆菌介导的遗传转化体系进行了研究。试验表明:MSM培养基比较适宜于草地早熟禾的组织培养;愈伤组织的间接诱导率要显著高于愈伤组织的直接诱导率,各品种均可达93%以上;草地早熟禾品种‘优异’较适合本次试验所建立的组培再生体系,其愈伤组织分化率最高,为77.65%,且16周即可完成植株再生全程。采用农杆菌介导法将抗盐相关基因——rstB和mrstB转入草地早熟禾的愈伤组织,经筛选获得抗性愈伤,分化获取再生植株,通过PCR、Southern-blot和Northern-blot证明,基因rstB和mrstB已经分别整合到草地早熟禾的基因组中,7个品种的转化效率在0%~6.71%之间,遗传转化周期为24周。目前,已获得草地早熟禾品种‘优异’、‘百蒂雅’、‘自由’3个品种的转基因植株共计92株。通过耐盐性试验,失水处理后的叶片剩余重量百分比测定,和盐处理后植物叶片内的脯氨酸、丙二醛、叶绿素含量的测定,证明转基因植株较非转基因植株有较强的抗盐能力。
Mature bluegrass (P. pratensis L.) seeds were used as explant for callus initiation. The basic medium was medium MSM. Under the instructed plant regeneration system, the indirect callus induction frequency was significantly higher (93-99%) than that of direct induction way. The cultivar Merit performed the best of the seven cultivars tested, with a regeneration frequency of 77.65% and a regeneration period of 16 weeks. Embryogenic calli were infected with the A. tumefaciens strain EHA105 harboring the Ti plasmid pZGl or pZG2. The transformation frequencies of the seven cultivars ranged from 0 to 6.71%. In total, 92 transgenic plants were generated. PCR, Southern-blot and Northern-blot were used for molecular test, the results showed that the rstB or mrstB was integrated into the bluegrass genome. The cultivar Merit consumed the shortest time for genetic transformationm, it was about 24 weeks. Some of the transgenic plants could live longer than non-transgenic plant, under stress of different concentration of NaCl. Physiological tests also indicated that the water-retaining capacity and the chlorophyll and proline concentrations of some salt-treated transgenic lines were higher than those of non-transgenic plants, whereas the malondialdehyde contents were lower in some transgenic plants than in non-transgenic plants.
引文
丁路明,龙瑞军.2,4-D和6-BA对早熟禾愈伤组织诱导的影响.草原与草坪,2003,100:34~37
    丁路明,龙瑞军.早熟禾再生体系建立的研究现状.草原与草坪,2003,101:6~9.
    樊军锋,李嘉瑞,韩一凡,李玲,彭学贤.mtlD/gutD双价耐盐基因转化秦美猕猴桃的研究.西北农林科技大学学报(自然科学版),2002,6(3):53~58。
    侯丙凯,夏光敏,陈正华.植物基因工程表达载体的改进和优化策略.遗传,2001,23(5):492-497.
    黄复瑞、刘祖祺主编.现代草坪建植与管理技术.北京:中国农业出版社,1998
    贾海燕,王洪刚.小麦愈伤组织诱导及其再生能力影响因素的研究.山东农业大学学报(自然科学版),2003,34(1):9~14.
    李卫,郭光沁,郑国昌.根癌农杆菌介导遗传转化研究的若干新进展.科学通报,2000,45(8):798-807.
    林拥军,陈浩,曹应龙,等.农杆菌介导的牡丹江8号高效转基因体系的建立.作物学报,2002,28(3):294-300.
    刘俊君,彭学贤,王海云,黄绍兴.大肠杆菌mtlD基因和gutD基因的克隆、全序列测定和高效表达.生物工程学报,1995,11(2):157~161.
    马忠华,张云芳,徐传祥等.早熟禾的组织培养和基因枪介导的基因转化体系的初步建立.复旦学报(自然科学版),1999,38(5):540~544.
    施利利,王松文,蔡宝立,孙宗修,张欣,刘霞.影响农杆菌介导的水稻遗传转化效率的因素.天津农学院学报,2003,10(4):53-57
    施利利.农杆菌介导的抗除草剂基因转化水稻的研究[硕士学位论文].沈阳:沈阳农业大学,2003.
    王永勤,肖兴国,张爱民.农杆菌介导的小麦遗传转化几个影响因素的研究.遗传学报,2002,29(3):260~265
    吴乃虎编著.基因工程原理.北京:科学出版社,2001
    颜启传,毕辛华译.叶常丰,毕辛华校.国际种子检验规程.北京:农业出版社,1985.206
    张红梅,刘小红,张红伟,刘欣洁,陈刚,谭振波.不同杂种优势类群玉米幼胚愈伤组织的诱导及植株再生特性的研究.西北植物学报,2004,24(1):50~55.
    赵艳,王慧中,于彦春,等.转基因植物中标记基因的安全性新策略.遗传,2003,25(1):119~122.
    周晓丽,奚惕.植物组织培养简报摘编.1988,
    朱根发,余毓君.草地早熟禾的组织培养条件和分化能力的研究.华中农业大学学报,1994,13(2):199~203.
    邹奇主编.植物生理学试验指导.北京:高等教育出版社.2000.68~74,161~162,173-174
    J.萨姆布克鲁,E.F.弗里奇,D.W.拉塞尔著.分子克隆.黄培堂等译.第三版.北京:科学出版社,2002.492.
    Alan B J, Huang H, King J W. Plant regeneration through somatic embryogenesis in common bermudagrass tissue culture. Crop Sci, 1985, 25: 1107.
    Ahn B J, Huang H, King J W. Regeneration of bermudagrass cultivars and evidence of somatic embryogenesis. Crop Sci, 1987,27:594.
    Al-Khayri J, Huang F H, Thompson L F, et al. Plant regeneration of zoysiagrass from embryo-derived callus. Crop Sci, 1989,29:1324.
    Anthony Yeo. Molecular biology of salt tolerance in the context of whole-plant physiology. Journal of Experimental Botany, 1998,49(323): 915-929.
    Benli Chai, Mariam B Sticklen. Application of biotechnology in turfgrass genetic improvement. Crop Science, 1998,38(5): 1320-1338.
    Bian X-1, Ge S-c and Yang S-s, Subcloning and sequencing of DNA fragment related to salt tolerance in Sinorhizobium fredii RT19. Acta Genetica Sinica, 2000,27: 925-931.
    Blanche F C, Krans J V, Coats G E. Improvement in callus growth and plantlet formation in creeping bentgrass.Crop Sci ,1986,26 :1245-1248.
    Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells. Biochim Biophys Acta,2000,1465:140-151.
    Bohnert H J, Nelson D E, Jensen, R G. Adaptation to enviroment stresses. Plant Cell, 1995, 7:1099-1111.
    Bovo O A, Mroginski L A. Tissue culture in Paspalum(Gramineae) : Plant regeneration from cultured inflorescences. J Plant Physiol ,1986 ,124 :481-492.
    Boyd L A, Dale P J. Callus production and plant regeneration from mature embryos of Poa pratensis L.Plant Breeding, 1986,97:246-254.
    Bray E A, Bailey Serres J, Weretilnyk E. Responses to abiotic stresses [A]. In: Buchanan B, Gruissem W, Jones R (eds). Biochemistry and Molecular Biology of Plants[C]. Maryland: American Society of Plant Physiologists, 2000,1158-1203.
    Bray E A. Plant response to water deficit. Trends Plant Sci, 1997, 2:48-54.
    Cardona C A, Duncan R R. In Vitro culture, somaclonal variation , and transformation strategies with paspalum turf ecotypes. In: MB Sticklen and MP Kenna (ed) Turfgrass biotechnology2Cell and molecular genetic approaches to turfgrass improvement [M]. Ann Arbor Press , MI ,1997 ,229-236.
    Chai B-F, Liang A-H, Wang W and Hu W. Agrobacterium-mediated transformation of Kentucky bluegrass. Acta Botanica Sinica, 2003,45:966-973.
    Chaudhury A, Qu R. Somatic embyogenesis and plant regeneration of turf-type bermudagrass : Effect of 6-benzyladenine in callus induction medium. Plant Cell Tissue Organ Cult ,2000,60 :113-120.
    Cho M J, Ha C D, Lemaux P G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed derived highly regenerative tissues. Plant Cell Reports, 2000, 19:1084-1089.
    Conger B V, Hovanesian J C, Trigiano R N, et al. Somatic embryo ontogeny in suspension cultures of orchardgrass.Crop Sci, 1989, 29: 448.
    Dale P J. Embryoids from cultured immature embryos of Lolium multiflorum. Z Pflanzenphysiol ,1980, 100 : 73-77.
    Dalton S H, Bettany A J E, Timms E, Morris P. Transgenic plants of Lolium multiflorum, Lolium
     perenne, Festuca arundinacea and Agrostisstolonifera by silicaon carbide fibre mediated transformation of cell suspension cultures. Plant Sci., 1998,132: 31-43.
    Dalton S J. Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb, Lolium perenne Land Lmaltiflorum Lam. Plant Cell Tissue Organ Cult ,1988 ,12 :137~140.
    Dalton S J, Bettany A J E, Timms E, Morris P. The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue {Festuca arundinacea Schreb.). Plant Sci, 1995,108:63-70.
    Dalton S J. Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb. Lolium perenne Land Loliummultif lorum Lam. Plant Cell Tissue Orgon Culture, 1988, 12: 137-142.
    Daniell H, Muthukumar B, Lee S B. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Current Genetics, 2001,39(7): 109-116.
    Green D E, Vargas J M, Chai B, Dykema N M, Sticklenm. The use of transgenic plants to confer resistance to brown patch caused by Rhizoctoniasolani in Agrostispalustris. In: Clark J M, Kenna M P (eds), Fatend Management of Turfgrass Chemicals. Washington, D C, Oxford University Press,2000,330-341.
    Griffin J D, Dibble M S. High-frequency plant regeneration from seed derived callus cultures of Kentucky bluegrass (Poa pratensis L). Plant Cell Report, 1995, 14: 721-724.
    Guo G Q, Maiwald F, Lorenzen P, et al. Factors influencing T-DNA transfer into wheat and barelu cells by Agrobacterium tumefaciens. Cereal Research Communication. 1998, 26(1):15~22.
    Ha C D, Lemaux PG and Cho M-j. Stable transformation of a recalcitrant Kentucky Bluegrass (Poa pratensis L) cultivar using mature seed-derived highly regenerative tissues. In Vitro Cellular and Developmental Biology, 2001, 37: 6-15.
    Hodges C F, Stephens L C, Campbell D A. Ethylene and ethane from Poa pratensis callus and from leaf blades of regenerated and seed-derived plants inoculated with Bipolaris sorokiniana. Plant Physiol,1999,154:113-118.
    Horn M E, Shillito R D, Conger B V et al. Transgenic plants of orchardgrass (Dactylisglomerata L.) from protoplasts. Plant Cell Report, 1988, 7: 469-472.
    Ingram J et al. The molecular basis of dehydration tolerance in plant. Annu Rev Plant Physiol Mol Biol, 1996, 47: 377-403.
    Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. High efficiency transformation of maize (Zeamays L) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 1996,14: 745-750.
    Ishitani M, Nakamura T, Handeung Y. Expression of the betinaldehyde dehydrogenesase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol, 1995, 27: 307-310.
    Jackson J A, Dale P J. Callus induction, plant regeneration and assessment of cytological variation in regenerated plants oiLolium multiflorum L. J Plant Physiol ,1988 ,132 :351~355.
    Kaeppler H F, Gu W, Somers D A, Rines H W, Cockburn A F.Siliconcarbide fibermediated DNA delivery into plant cells. Plant Cell Rep, 1990, 9: 415-418.
    Ke S, Lee CW, Cheng, et al. Genetic transformation of Kentucky bluegrass with rolC gene.
     Hortiscience, 1996, 31: 616.
    Kuai B, Morris P. The physiological state of suspension cultured cells affects the expression of the Bglucuronidase gene following transformation of tall fescue (Festucaarundinacea) protoplasts. Plant Sci, 1995,110:235-247.
    Kuo Y, Smith M A L. Plant regeneration from St. Augustinegrass immature embryo derived callus. Crop Sci ,1993 ,33 :1394~1396.
    Lee L, Day P. Herbicide resistant transgenic creeping bentgrass. In: Sticklen M B, Kenna M P, Turfgrass biotechnology Cell and molecular genetic approaches to turfgraas improvement. M I: Ann Arbor Press, 1997.195-202.
    Lee L, Laramore C L, Day P, Turner N E. Transformation and regeneration of creeping bentgrass (Agrostispalustris Huds.) protoplasts. Crop Sci, 1996,36: 401-406.
    Li ming X, Karen S, Schumaker, Zhu J K. Cell singling during cold, Drought, and Salt Stress. The Plant Cell, Supplement, 2002, S165-S183.
    Liang C M, Hwan K D. Agrobacterium mediated transformation of Korean lawn grass (Zoysiajaponica). J. Korean Society Horticultural Science, 2000,41:455-458.
    Lilius J C et al. Enhance NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Bio&tehnology, 1996,14:177-180.
    Liu C N, Zhong H, bargas J, Penner D, Sticklen M. Prevention of fungal diseases in transgenic bialaphos and glufosinate-resistant creeping bentgrass (Agrostispalustris L.) Weed Sci, 1998, 46:139-146.
    Ma Z-h, Zhang Y-f, Xu C-f et al. Tissue culture and genetic transformation of Kentucky bluegrass (Poa pratensis) via microprojectile bombardment. Journal of Fudan University, 1999,38: 540-544.
    Manton M, Riordan T P, Shearman R C. Callus induction and plant regeneration in Kentucky bluegrass (Poa pratensis L.). Proc. Nebraska Acad. Sci, 1982, 80:
    Mc Donnell R E, Conger B V. Callus induction and plantlet formation from mature embryo explants of Kentucky bluegrass. Crop Sci, 1984,24: 573-578.
    Murashige T and Skoog F. A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol. Plant, 1962,15:473-497.
    Nielsen K A, Knudsen E. Regeneration of green plants from embryogenic suspension culture of Kentucky bluegrass (Poa pratensis L.). J Plant Physiol ,1993 ,141 :589~595.
    Nielsen K A, Larsen E, Knudsen E. Regeneration of protoplast-derived green plants of Kentucky bluegrass (Poa pratensis L). Plant Cell Rep ,1993 ,12 :537~540.
    Niu X, Bressan R A, Hasegawa P M, Pardo J M. Plant Physiol, 1995,109: 735-742.
    Rajoelina S R, Alibert G, Planchon C. Continuousplant regeneration from established embryogenic cell suspension culture of Italian ryegrass and tall fescue. Plant Breed ,1990 ,104 :265~271.
    Riordan T P, Fei S, Johnson PG Plant breeding, plant regeneration, and flow cytometry in buffalograss. In: MB Sticklen and MP Kenna (ed) Turfgrass biotechnology Cell and molecular genetic approaches to turfgrass improvement [M]. Ann Arbor Press , MI ,1997. 183-193.
    Romero C, Belles J M, Vaya J L, Serrano R, Culianez-Macia. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta, 1997, 201: 293-297.
    Sakamoto A, Alia M N. Metablic engineering of rice leading to biosynthesis of glycine betaine and toerance to salt and cold. Plant Mol Biol, 1998,338:1011-1019.
    Shinozaki K, Yamaguchi-shinozaki K. Gene expression and single transduction in water-stress response. Plant Physiol, 1997,115: 327-334.
    Spangenberg G, Wang Z Y, Nagel J , et al. Protoplast culture and generation of transgenic plants in red fescue (Festucarubra L. ). Plant Sci ,1994 ,97 :83~94.
    Spangenberg G, Wang Z Y, Nagel J, W u X L, Potrykus I. Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci, 1995,108: 209-217.
    Spangenberg G, Wang ZY,WuXL,N agel J, Iglesias V A, Potrykus I. Transgenic tall fescue (Festuca arund inacea) and red fescue (F. rubra) plant from microprojectile bombardment of embyogenic suspension cells. Plant Physiol, 1995,145: 693-700.
    Takamizo T, Suginobu K I, Ohsugi R. Plant regeneration from suspension culture derived protoplasts of tall fescue (Festuca arundinacea Schreb.) of a single genotype. Plant Sci ,1990,72:125~131.
    Tarczynski M C, Jensen R G, Bohnert H J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 1993, 259: 508-510.
    Terakawa T, Sato T, Koike M. Plant regeneration from protoplasts isolated from embryogenic suspension cultures of creeping bentgrass (Agrostispalustris Huds.). Plant Cell Rep ,1992 ,11:457~461.
    Torello W A, Symington A G, Rufner R. Callus initiation ,plant regeneration , and evidence of somatic embyogenesis in red fescue. Crop Sci ,1984 ,24 :1037-1040.
    Vain P, Finer KR, Engler DE et al. Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.). Plant Cell Report, 1996,15:489-494.
    Van Ark H F, Zaal M A C M, Creemers-Molenaar J and Van der Valk P. Improvement of the tissue culture response of seed-derived callus cultures of Poa pratensis L.: Effect of gelling agent and abscisic acid. Plant Cell, Tissue and Organ Culture, 1991,27: 275-280.
    Van der Valk P, Ruis F, Tettelaar-Schrier A M, Van de Velde C M. Optimizing plant regeneration from seed-derived callus cultures of Kentucky bluegrass. The effect of benzyladenine. Plant Cell Tiss.Organ Culture, 1995,40:101-103.
    Van der Valk P, Zaal MACM and Creemers-Molenaar J. Somatic embryogenesis and plant regeneration in inflorescence and seed derived callus cultures of Poa pratensis L. (Kentucky bluegrass). Plant Cell Report, 1989, 7: 644-647.
    Wang G R, Binding H, Posselt U K. Fertile transgenic plantsfrom direct gene transfer to protoplants of Lolium perenne Land Loliummultif lorum Lam. J. Plant Physiol, 1997,151: 83-90.
    Wang Z Y, Nagel J , Potrykus I , et al . Plants from cell suspension derived protoplasts in Lolium
     species. Plant Sci ,1993 ,94 :179-193.
    Wang Z Y, Valles M P, Montavon P, et al. Fertile plant regeneration from protoplasts of meadow Fescue (Festuca pratensis Huds.). Plant Cell Report, 1993,12(2): 95-100.
    Willy D, Janniek D C, Jyoti K, et al. The effect of temperature on Agrobacterium tumefaciens mediated gene transfer to plant. The Plant Journal, 1997,12(6): 1459-1463.
    Wu L, Jampates R. Chromosome number and isoenzyme variation in Kentucky bluegrass cultures and plants regenerated from tissue culture. Cytologia, 1986,51:125-132.
    Xiao L, Ha S B. Efficient selection and regeneration of creeping bentgrass transfornants following particle bombardment. Plant Cell Report, 1997,16(12): 874-878.
    Xu D et al. Expression of a late embryogenesis abundant protein gene HVA1 from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant physiol, 1996,110: 249-257.
    Yancey P H, Clark M E, Hand S C, Bowlus P D, Somero G N. Living with water stress-evolution of osmolyte systems. Science, 1982,217:1214-1217.
    Ye X, Wang Z Y, W u X, Potrykus I, Spangenberg G. Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells. Plant Cell Report, 1997,16: 379-384.
    Zaghmout O M F, Torello W A. Plant regeneration from callus and protoplasts of perennial ryegrass ( Lolium perenne L.). J Plant Physiol, 1992,140:101-105.
    Zhang H X, Blimwald E. Transgenic salt-tolerance tomato plants accmulate salt in foliage but not in fruit. Nat Biotechnol, 2001,19: 765-768.
    Zhang H X, Hodson J N, Williams J P, Blumwaid E. Engineering salt-tolerant Brassica plantsxharacterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA, 2001, 98:12833-12836.
    Zhang W-j and Wang T. Construction the system of high frequency regeneration from callus of alfalfa and study on the effect factors. Sci Agri Sin, 2002, 24:1579-1583.
    Zhang W-j, Li T-h, Wang T et al. Establishment of the high-efficient plant regeneration system tall fescue and analysis of the affection factors. Journal of Agricultural Biotechnology, 2004, 12:157-161.
    Zhong H, Srinivasan C, Sticklen M B. Plant regeneration via somatic embryogensis in creeping bentgrass (Agrostispalustris Huds). Plant Cell Rep., 1991,10 :453-456.
    Zhong H, Bolyard M G, Srinivasan C, Sticklen M B. Transgenic plants of turfgrass (Agrostis palustris Huds) from microprojectile bombardment of embyogenic callus. Plant Cell Report, 1993,13: 1-6.
    Zhong H, Liu C A .Vargas J , Penner D, Sticklen M B. Simultaneous control of weeds, dollar spot, and brown patch deseases in transgenic creeping bentgrass. In: Sticklen M B, Kenna M P (eds).Turfgrass biotechnology cell and molecular genetic approaches to turfgrass improvement. M I: Ann Arbor Press, 1997. 203-210.
    Zhu J K. Plant salt tolerance. TRENDS in Plant Science, 2001, 6: 66-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700