基于A/O/A运行模式的SBR工艺脱氮除磷效能及其微生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“水体富营养化”问题的日渐突出,污水排放标准的日趋严格,如何经济、高效的去除氮磷污染成为水体污染防治领域的研究热点。生物脱氮除磷工艺因其经济、环保等优点而得到了广泛应用,但其本身也存在一些问题亟待解决,如脱氮和除磷过程存在底物竞争和污泥龄等矛盾,使得生物脱氮除磷工艺的去除效能难以提高。一些新的脱氮除磷理论,如反硝化除磷、同步硝化反硝化等为解决生物脱氮除磷工艺中存在的矛盾提供了新思路。
     以反硝化除磷理论为基础,采用A/O/A脱氮除磷工艺为研究主体,分别以人工合成污水和实际生活污水为处理对象,全面系统的研究了A/O/A工艺启动过程中的去除效能及污泥形态的变化,详细的考察了两个系统内颗粒污泥特性的差异。对比分析了环境因子对A/O/A工艺运行效果的冲击和持续影响。探讨了启动期系统内微生物的群落演替,及环境因子对微生物种群结构的影响。在此基础上,对筛选出的反硝化聚磷菌株进行鉴定,并研究了其除磷性能。
     A/O/A脱氮除磷工艺启动过程中,随着系统去除效能的提高,污泥形态逐渐由絮体转化为颗粒、原生动物从无到有。稳定运行过程中,运行模式相同,进水水质不同的两个系统内的颗粒污泥性质存在较大差异。以实际生活污水培养的颗粒污泥与人工配水培养的颗粒污泥相比较,具有粒径小、沉淀速率慢、孔径大、比表面积小、比重轻、含水率高、活性高、胞外聚合物含量高、胞内聚合物含量低,释磷量小、反硝化效果好等特点。
     影响因子对A/O/A脱氮除磷工艺去除性能的冲击影响显著。乙酸钠和丙酸钠为最佳碳源;丁二酸钠略差;乙醇和葡萄糖较差;异戊酸为最差碳源。进水pH值在6.0~8.0的范围内,对系统去除COD无明显影响。进水pH值为7.0时,系统的脱氮除磷效果最佳。进水C/N比在0.5~8.3的范围内,对系统去除COD的影响不大。随着进水C/N比的升高,系统对TN的去除有增加趋势。进水C/N比在0.5~6.1的范围内,系统对PO_4~(3-)-P的去除效果较好。进水中缺少钙、镁和钾离子,对系统去除有机物和脱氮没有明显的影响。钙、镁和钾离子皆参与释磷和吸磷反应,与磷的摩尔比分别为6.1×10~(-2),3.8×10~(-1),2.8×10~(-1)。缺少钙、镁和钾离子会引起聚磷菌超量释磷,释磷量顺序依次为:缺钾>缺钙>缺镁>正常系统。环境温度在10℃~30℃范围内,对系统去除COD的影响较小,释磷和吸磷速率随温度的升高而升高。温度为10℃时,系统硝化效果较差。浓度低于30mg/L时,NO_3~--N和NO_2~--N皆可替代O_2作为电子受体,进行过量吸磷反应。吸磷速率顺序依次为:O_2> NO_3~--N> NO_2~--N。
     影响因子对A/O/A脱氮除磷工艺的持续影响与冲击影响结果并不完全一致。较长时间以乙酸钠和丙酸钠为进水碳源,系统皆可保持良好的脱氮除磷效果;而丁二酸钠为碳源则可导致脱氮效果下降,且除磷效果也随之恶化。系统pH值在7.5~8.5的范围内运行,可取得良好的去除效果;而长期在pH值为6.5的条件下运行,系统的处理效果会逐渐恶化。系统C/N长期在2.6~3.3的范围内运行,可取得理想的去除效果。但C/N进一步升高,系统的出水中磷浓度会逐渐升高,导致处理效能逐渐下降。
     启动期,A/O/A脱氮除磷工艺内的微生物种群结构发生了动态变化。人工配水系统中部分优势菌如Candidatus Accumulibacter phosphatis在系统中始终存在;部分优势菌如Rhodospirillales随着系统的运行逐渐消失,取而代之出现新的优势菌如Rhodocyclaceae和Candidatus Accumulibacter phosphates。实际生活污水系统内亦发生了微生物的群落演替,优势菌M1和M3(β- proteobacteria)始终存在,随着系统的运行出现新的优势菌M14(β- proteobacteria)。环境因子对系统内的微生物的种群结构影响显著。系统内始终存在的优势菌如Denitrifying bacterium和Uncultured Chloroflexi bacterium耐受力较强,为常驻菌;而部分优势菌如Ammonia oxidizing bacterium则随着运行条件的改变,逐渐被系统淘汰。
     从稳定运行的系统中分离纯化出25株菌,通过初筛和复筛试验选取除磷效率较高的4株菌:JL4、FH6、FQ3和FQ4。采用生理生化试验、脂肪酸鉴定及16S rDNA基因测序等手段进行鉴定:菌株JL4 Pseudomonas sp.,菌株FH6、FQ3和FQ4均为Bacillus sp.。环境因子pH值、碳源和温度对菌株生长及除磷效果影响显著。在pH值为5的条件下,菌株几乎停止生长,除磷效果极差;最适pH值为中性。菌株JL4、FH6和FQ3的最适温度为30℃,菌株FQ4的最适温度为25℃。在不同碳源的条件下,菌株的生长速率及除磷率顺序依次为:乙酸钠>丙酸钠>丁二酸钠>葡萄糖。
As the issue of eutrophication grows more severely and the regulatory requirements of wastewater discharge become increasingly stricter, economical and efficient removal of nitrogen and phosphorus has been a focus of wastewater treatment research. Though biological nitrogen and phosphorus removal process has been applied widely as one of economical and sustainable processes, it has some inherent problems that need to be solved. For example, the contradictions of substrates competition and SRT between the nitrogen and phosphorus removal, have inhibited the enhancement of removal efficiency. Some novel theories of nitrogen and phosphorus removal, such as denitrifying phosphorus removal and simultaneous nitrification and denitrification supply new ideas in solving theses contradictions.
     Based on the theory of denitrifying phosphorus removal, A/O/A simultaneous nitrogen and phosphorus removal process was adopted as research subject. Dynamic changes in the removal efficiencies and morphologies of activated sludge of two A/O/A processes which treated with synthetic wastewater and domestic wastewater respectively were investigated systematically, and the differences of granular sludge characteristics in the two systems were analyzed comprehensively. Short and long -term influences of environmental factors on the removal efficiency of the A/O/A process were analyzed compar comparatively. Microbial community succession in the systems during the start-up period and the effect of environmental factors on the microbial population structure were investigated. Isolated denitrifying phosphorus removing bacteria were identified, and their phosphorus removal efficiency were further studied.
     During the start-up period, flocculent sludge transformed into granular sludge gradually with the enhancement of removal efficiency, and lots of protozoa appeared in the A/O/A nitrogen and phosphorus removal processes. Granular sludge in the two systems treating different wastewater were quite distinct under the same operational condition in the stable phase. Granular sludge cultivated with real domestic wastewater was smaller in particle size, slower in sedimentation, larger in pore size, smaller in specific surface area, lighter in specific weight, higher in water content, higher in activity, more in extracellular polymeric content, lower in intracellular polymeric content, less in phosphorus release, and better in dintrification, compared with that cultivated with synthetic wastewater.
     Environmental factors had vital influence on the performance of A/O/A nitrogen and phosphorus removal process in short-term. Sodium acetate and sodium propionate were optimal carbon source, and sodium succinate was slightly worse than them. Ethanol and glucose were unsuitable carbon source, and isovalerate was the worst carbon source. As pH value of influent changed from 6.0 to 8.0, no significant effect on the COD removal efficiency of the system were found. Influent pH at 7.0, perfect performance was achived. Value of C/N in the range of 0.5 to 8.3 had little effect on the COD removal efficiency. Total nitrogen removal efficiency increased with the increase of influent C/N. phosphorus removal efficiency of the system was perfect while C/N was in the range of 0.5 to 6.1, but it deteriorated when C/N was larger than 6.1. Value of C/N in the range of 0.5 to 8.3 had little effect on the COD removal efficiency. Total nitrogen removal efficiency increased with the increase of influent C/N. phosphorus removal efficiency of the system was perfect while C/N was in the range of 0.5 to 6.1, but it deteriorated when C/N was larger than 6.1. Effect of calcium, magnesium and potassium cations absence on the COD and nitrogen removal efficiency of the system was invisible. Calcium, magnesium and potassium cations were all involved in phosphorus release and uptake reactions, and the molar ratio of them to phosphorus were 6.1×10~(-2),3.8×10~(-1),2.8×10~(-1), respectively. Absence of calcium, magnesium and potassium cations in the influent led to surplus phosphorus release, and the order of the amounts of phosphorus release was obtained as follow: potassium absence >calcium absence >magnesium absence >normal system. In the range of 10oC to 30oC, changes in temperature had slightly effect on the COD removal efficiency, and the rate of phosphorus release and uptake both rose with the increase of temperature. Nitrification of the system got worse at temperature 10oC. Below 30mg/L, both nitrate and nitrite could be used as electron acceptor instead of oxygen for phosphorus uptake, and the order of phosphorus uptake rate was observed as follow: oxygen > nitrate > nitrite.
     The effects of environmental factors on the A/O/A nitrogen and phosphorus removal procss in long-term and short-term were not entirely consistent. When sodium acetate and sodium propionate were used as influent carbon source in long-term, the system could keep favorable performance. But sodium succinate as carbon source led decrease in nitrogen removal efficiency, and the phosphorus removal deteriorated with the reduction of nitrogen removal efficiency. Favorable removal performance was achieved as pH in the range of 7.5 to 8.5. The performance got worse gradually, when the system was operated at pH 6.5 in long-term. As C/N in the range of 2.6~3.3, the performance of the system was excellent. However, with the increase of influent C/N, the phosphorus concentration in the effluent increased and removal efficiency of the system decreased gradually. In the start-up phase, Dynamic changes were observed in microbial species structure the A/O/A nitrogen and phosphorus removal process. In the synthetic wastewater system, partial dominant bacteria such as Candidatus Accumulibacter phosphatis always existed, partial dominant bacteria such as Rhodospirillales was eliminated and replaced by new strains, e.g Rhodocyclaceae and Candidatus Accumulibacter phosphates. Microbial commuities succession also occured in the domestic wastewater. Bacteria M1 and M3 (β- proteobacteria ) were always dominant, bacteria M14 (β- proteobacteria ) appeared with the operation of the system. Environmental factors had extraordinary influences on the microbial community structure. Dominant bacteria such as Denitrifying bacterium and Uncultured Chloroflexi bacterium with strong tolerance were resident bacteria, and some dominant bacteria such as Ammonia oxidizing bacterium were gradually washed out from the system with the transformation of the operational condition.
     Through primary and secondary screening tests, four efficient phosphorus removing strains named as JL4, FH6, FQ3 and FQ4 were chosen from twenty-five strains isolated from the system with stable performance. Strain JL4 was identified as Pseudomonas sp., and strains FH6, FQ3 and FQ4 were identified as Bacillus sp. By the methods of physiological-biochemical tests, fatty acid identification and phylogenetic analysis of 16S rDNA clone. Environmental factors such as pH value, carbon source and temperature had distinguished effects on the growth and phosphorus removal efficiency of strains. The growth of strains had almost ceased and phosphorus removal performance deteriorated under the condition of pH 5, and the optimal pH was neutral. The optimum temperature was 30oC for strains JL4, FH6 and FQ3, but 25oC for strain FQ4. Cultivated with different carbon source, the sequence of the growth rate and phosphorus removal efficiency of the strains was concluded as follow: Sodium acetate > sodium propionate > sodium succinate >glucose.
引文
[1]于萍萍,张进忠,林存刚.水资源现状分析及保护对策的研究[J].资源环境与发展,2006,2:21-27
    [2]万咸涛.世界和中国水资源质量工作进展[J].水资源研究,2005,26(3): 14-16
    [3]王鹏. SBR工艺同步脱氮除磷的实验研究[D].太原:太原理工大学学位论文, 2008:
    [4] Gerald M., Gillian A. G., Alan D. T., et al. The Use of Monitoring Data for Identifying Factors Influencing Phytoplankton Bloom Dynamics in the Eutrophic Taw Estuary, SW England [J]. Marine Pollution Bulletin,2009,58(7):1007-1015
    [5] Theodore J. S. Complexity in the Eutrophication–harmful Algal Bloom Relationship, with Comment on the Importance of Grazing [J]. Harmful Algae,2008,8(1):140-151
    [6] Edna G., liMartin W., Paulo S. Salomon. Harmful Algal Blooms of Allelopathic Microalgal Species: The Role of Eutrophication [J]. Harmful Algae, 2008,8(1):94-102
    [7]熊彩蕾,罗亚田,王丽.藻类对水体的危害及灭藻技术的研究现状分析[J].辽宁化工,2009,38(3):173-175
    [8] Elke D.,Claudia W. Cyanobacterial Toxins-occurrence, Biosynthesis and Impact on Human Affairs [J]. Mol. Nutr. Food Res.,2006,50:7-17
    [9]潘双叶.水体中藻类的危害及控制方法[J].黑龙江环境通报,2006,30(1):43-45
    [10] Lindrea K. C., Seviour R. J. Activated Sludge the Process. Encyclopaedia of Environmental Microbiology Wiley Scientific [C]. New York,2004:74-81
    [11] Barnard J. L. Biological Nutrient Removal without the Addition of Chemicals [J]. Wat. Res.,1975,9:485-490
    [12] Barnard J. L. A Review of Biological Phosphorus Removal in Activated Sludge [J]. Wat. S.A.,1976,2:136-144
    [13] Toerien D. F., Gerber A., Loner L. H., et al. Enhanced Biological Phosphorus Removal in Activated Sludge [J]. Adv. Microb. Ecol.,1990,11:173-230
    [14] Blackall L. L., Crocetti G., Saunders A. M., et al. A Review and Update of theMicrobiology of Enhanced Biological Phosphorus Removal in Wastewater Treatment Plants [C]. Anton,Leeuw,2002,81 (1-4):681-691
    [15] Thomas M., Wright P., Blackall L., et al. Optimisation of Noosa BNR Plant to Improve Performance and Reduce Operating Costs [J]. Water Sci. Tech.,2003,47 (12):141-148
    [16] Ge S. J., Peng Y. Z., Wang S. Y., et al. Enhanced Nutrient Removal in a Modified Step Feed Process Treating Municipal Wastewater with Different Inflow Distribution Ratios and Nutrient Ratios [J]. Bioresour. Tech.,2010,101(23):9012-9019
    [17] Nielsen P. H., Mielczarek A. T., Kragelund C., et al. A Conceptual Ecosystem Model of Microbial Communities in Enhanced Biological Phosphorus Removal Plants [J]. Wat. Res.,2010,44(17):5070-5088
    [18] Carlos M. L. Christine M. H., Damir B., et al. Factors Affecting the Microbial Populations at Full-scale Enhanced Biological Phosphorus Removal (EBPR) Wastewater Treatment Plants in the Netherlands [J]. Wat. Res.,2008,42(10-11): 2349-2360
    [19] Kim D., Kim K. Y., Ryu H. D. Long Term Operation of Pilot-scale Biological Nutrient Removal Process in Treating Municipal Wastewater [J]. Bioresour. Tech,2009,100(13):3180-3184
    [20]王立立.同步反硝化除磷系统的实验研究[D].哈尔滨:哈尔滨工业大学学位论文,2005:21
    [21]钟四姣.同步生物脱氮除磷工艺的研究进展[J].广东化工,2007,7(34):99-102
    [22] Zeng W., Li L., Yang Y. Y., et al. Denitrifying Phosphorus Removal and Impact of Nitrite Accumulation on Phosphorus Removal in a Continuous Anaerobic-anoxic-aerobic (A~2O) Process Treating Domestic Wastewater [J]. Enzyme Microbial Tech.,2011,48(2):134-142
    [23] Baeza J. A., Gabriel D., Lafuente J. Effect of Internal Recycle on the Nitrogen Removal Efficiency of an Anaerobic/anoxic/oxic (A~2/O) Wastewater Treatment Plant (WWTP) [J]. Process Biochem.,2004,39(11):1615-1624
    [24] Peng Y. Z., Wang X. L., Li B. K. Anoxic Biological Phosphorus Uptake and the Effect of Excessive Aeration on Biological Phosphorus Removal in the A~2O Process [J]. Desalination,2006,189 (1-3) :155-164
    [25]吴昌永. A~2/O工艺脱氮除磷及其优化控制的基础研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:1-30
    [26] Vaiopoulou E., Melidis P., Aivasidis A. An Activated Sludge Treatment Plant for Integrated Removal of Carbon, Nitrogen and Phosphorus [J]. Desalination,2007,211(1-3):192-199
    [27] Hao X. D., Van Loosdrecht M. C. M., Meijer S. C. F, et al. Model-based Evaluation of Two BNR Processes-UCT and A~2N [J]. Wat. Res.,2001,35(12):2851-2860
    [28] Qstgaard K., Christensson M., Lie E, et al. Anoxic Biological Phosphorus Removal in a Full-scale UCT Process [J]. Wat. Res.,1997,31(11):2719-2726
    [29] Eric R. H., Alessandro M., William W. M. A Comparison of Bacterial Populations in Enhanced Biological Phosphorus Removal Processes Using Membrane Filtration or Gravity Sedimentation for Solids-liquid Separation [J]. Wat. Res.,2010,44(9):2703-2714
    [30]张园,罗固源,许晓毅,等. UCT工艺进水COD浓度与C/N对除磷效果的影响[J].环境科学,2010,31(8):1846-1850
    [31]穆亚东,俞晶,穆瑞林. UCT工艺在污水处理工程设计中的应用[J].给水排水,2007,33(3):30-33
    [32]刘红梅. UCT工艺处理低碳氮比城市污水的实验研究[D].长春:吉林大学学位论文,2010:14
    [33] Vaiopoulou E., Aivasidis A. A Modified UCT Method for Biological Nutrient Removal: Configuration and Performance [J]. Chemosphere,2008,72(7):1062-1068
    [34]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,1999:157-159
    [35]曹雪梅. A2/O工艺反硝化除磷的实现及性能的研究[D].哈尔滨,哈尔滨工业大学学位论文,2007:8-9
    [36] Fan J., Tao T., Zhang J., et al. Performance Evaluation of a Modified Anaerobic/anoxic/oxic (A2/O) Process Treating Low Strength Wastewater [J]. Desalination,2009,249(2):822-827
    [37]杨志泉,周少奇,何伟,等.改良A~2/O工艺生物脱氮除磷应用研究[J].中国给水排水,2010,26(1):79-82
    [38] Wanner J., Cech J.S., Kos M. New Process Design for Biological Nutrient Removal [J]. Wat. Sci. Tech.,1992, 25(4-5):445-448
    [39] Kuba T., Van Loosdrecht M. C. M., Heijnen J. J. Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Nitrification in a Two-sludge System [J]. Wat. Res.,1996,30(7):1702-1710
    [40]代文臣.序批式膜生物反应器中反硝化聚磷菌的富集[D].大连:大连理工大学学位论文,2006:10-12
    [41]王晓玲. MUCT工艺缺氧吸磷性能强化技术研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:11-12
    [42]龙北生.两级SBR除磷脱氮工艺技术及其运行控制参数研究[D].长春:吉林大学学位论文,2005:25-26
    [43] Bortone G., Marsili L. S., Tilche A. Anoxic Phosphate Uptake in the Dephanox Process [J]. Wat. Sci. Tech.,1999,40(4-5):177-183
    [44] Tadashi S., Hiroyasu S., Takashi M. Quantitative Estimation of Role of Denitrifying Phosphate Accumulating Organisms in Nutrient Removal [J]. Wat. Sci Tech.,2003,47(11):23-29
    [45] Van Loosdrecht M. C. M., Brandse F. A., De Vries A. C. Upgrading of Waste Water Treatment Processes for Integrated Nutrient Removal-the BCFS? process [J]. Wat. Sci. Tech.,1998,37(9):209-217
    [46] Barat R., Van Loosdrecht M. C. M. Potential Phosphorus Recovery in a WWTP with the BCFS? Process: Interactions with the Biological Process [J]. Wat. Res.,2006,40(19):3507-3516
    [47]代更明,程晓如.污水生物脱氮除磷机理与新工艺[J].节水灌溉,2008,11:29-32
    [48]操家顺,杨雪冬, Van Loosdrecht M. C. M. BCFS-生物除磷新工艺[J].中国给水排水,2002,8 (3):23-26
    [49]郝晓地,戴吉,胡沅胜,等. C/P比与磷回收对生物营养物去除系统影响的试验研究[J].环境科学,2008,29(11):3098-3103
    [50] Ma J., Yang Q., Wang S.Y., et al. Effect of Free Nitrous Acid as Inhibitors on Nitrate Reduction by a Biological Nutrient Removal Sludge [J]. Journal of Hazardous Materials,2010,175(1-3):518-523
    [51]肖文涛.污水生物脱氮除磷工艺的现状与发展[J].环境保护与循环经济,2010,11(24): 59-61
    [52] Tu X., Zhang S., Xu L. R., et al. Performance and Fouling Characteristics in a Membrane Sequence Batch Reactor (MSBR) System Coupled with Aerobic Granular Sludge [J]. Desalination,2010,261(1-2):191-196
    [53]石瑾. MSBR污水脱氮除磷工艺试验研究及工程应用[D].上海:同济大学学位论文,2007:25
    [54] Kang I. J., Lee C. H., Kim K. J . Characteristics of Microfiltration Membranesin a Membrane Coupled Sequencing Batch Reactor System [J]. Wat. Res.,2003,37(5):1192-1197
    [55] Jorge L., Christelle W., Marc H., et al. Membrane Bioreactor Performances: Effluent Quality of Continuous and Sequencing Systems for Water Reuse [J]. Desalination,2007,204(1-3):39-45
    [56]令云芳.厌氧/缺氧/硝化双污泥反硝化除磷[D].北京:北京工业大学学位论文,2006:14-15
    [57]罗宁.双泥生物反硝化吸磷脱氮系统工艺的试验研究[D].重庆:重庆大学学位论文, 2003:22
    [58]许延营.双泥SBR-BAF复合工艺的特性和处理效能研究[D].青岛:中国海洋大学学位论文,2008:24
    [59]李勇智,李安安,彭永臻,等. A~2N-SBR双污泥反硝化生物除磷系统效能分析[J].北京工商大学学报,2007,25(1):10-14
    [60]王亚宜.反硝化除磷脱氮机理及工艺研究[D].哈尔滨:哈尔滨工业大学学位论文,2004:29-30
    [61] Wang Y. Y, Peng Y. Z., Stephenson T. Effect of Influent Nutrient Ratios and Hydraulic Retention Time (HRT) on Simultaneous Phosphorus and Nitrogen Removal in a Two-sludge Sequencing Batch Reactor Process [J]. Bioresour. Tech.,2009,100(14):3506-3512
    [62] Wang Y. Y., Pan M. L., Yan M., et al. Characteristics of Anoxic Phosphors Removal in Sequence Batch Reactor [J]. J. Environ. Sci.,2007,19(7):776-782
    [63] Cech J. S, Hartman P. Competition between Polyphosphate and Polysaccharide Accumulating Bacteria in Enhanced Biological Phosphate Removal System [J]. Wat. Res.,1993,27(7):1219-1225
    [64] Mino T., Satoh H., Matsuo T. Metabolisms of Different Bacterial Populations in Enhanced Biological Phosphate Removal Process [J]. Wat. Sci. Tech.,1994:29(7):67-70
    [65] Randall A. A., Benefield L. D., Hill W. E. The Effect of Fermentation Products on Enhanced Biological Phosphorus Removal, Polyphosphate Storage, and Microbial Population Dynamics [J]. Wat. Sci. Tech.,1994,30(6):213-219
    [66] Satoh H., Mino T., Matsuo T. Deterioration of Enhanced Biological Phosphorus by the Domination of Microorganisms without Polyphosphate Accumulation [J]. Wat. Sci. Tech.,1994:30(6):203-211
    [67] Gülsüm E. Z., Nazik A. Derin O., et al. Population Dynamics in a SequencingBatch Reactor Fed with Glucose and Operated for Enhanced Biological Phosphorus Removal [J]. Bioresour. Tech.,2010,101(11):4000-4005
    [68] Wang Y. Y., Jiang F., Zhang Z. X., et al. The Long-term Effect of Carbon Source on the Competition between Polyphosphorus Accumulating Organisms and Glycogen Accumulating Organism in a Continuous Plug-flow Anaerobic/ aerobic (A/O) Process [J]. Bioresour. Tech.,2010,101(1):98-104
    [69] Carucci A., Lindrea K., Majone M., et al. Dynamics of the Anaerobic Utilization of Organic Substrates in an Anaerobic/aerobic Sequencing Batch Reactor [J]. Wat. Sci. Tech.,1994,31(2):35-43
    [70] Nakamura K., Masuda K., Mikami E. Isolation of a New Type of Polyphosphate Accumulating Bacterium and Its Phosphate Removal Characteristics [J]. J. Ferment. Bioeng.,1991,71(4):258-263
    [71] Che O. J., Jong M. P. Enhance Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose as a Sole Carbon Source [J]. Wat. Res.,2000,34(7):2160-2170
    [72] Oehmen A., Saunders A. M., Vives M. T., et al. Competition between Polyphosphate and Glycogen Accumulating Organisms in Enhanced Biological Phosphorus Removal Systems with Acetate and Propionate as Carbon Sources [J]. J. Biotech.,2006,123:22-32
    [73] Li H. J., Chen Y. G., Gu G. W. The Effect of Propionic to Acetic Acid Ratio on Anaerobic-aerobic (low dissolved oxygen) Biological Phosphorus and Nitrogen Removal [J]. Bioresour. Tech.,2008,99:4400-4407
    [74] Lu H. B., Oehmen A., Virdis B., et al. Obtaining Highly Enriched Cultures of Candidatus Accumulibacter Phosphates Through Alternating Carbon Sources [J]. Wat. Res.,2006,40:3838-3848
    [75] Carvalho G., Lemos P. C., Oehmen A., et al. Denitrifying Phosphorus Removal: Linking the Process Performance with the Microbial Community Structure [J]. Wat. Res.,2007,41:4383-4396
    [76]李亚静,陈修辉,孙力平,等.不同碳源和泥龄对反硝化聚磷的影响[J].环境工程学报,2010,4(3):513-516
    [77]侯红勋,王淑莹,闫骏,等.不同碳源类型对生物除磷过程释放磷的影响[J].化工学报,2007,58(8):2081-2086
    [78]张立卿.碳源对SBR内除磷效果的影响试验研究[D].西安:西安建筑科技大学学位论文,2005:31-35
    [79] Fu Z. M., Yang F. L., Zhou F. F., et al. Control of COD/N Ratio for NutrientRemoval in a Modified Membrane Bioreactor (MBR) Treating High Strength Wastewater [J]. Bioresour. Tech.,2009,100:136-141
    [80] Alistair B., Steven P., Andy S. Enhanced Biological Phosphorus Removal for High-strength Wastewater with a Low rbCOD:P Ratio [J]. Bioresour. Tech.,2008,99:1236-1241
    [81]荣宏伟,陈志强,吕炳南.有机碳源对生物除磷的影响[J].南京理工大学学报,2004,28(4):440-443
    [82] Brdjanovic D., Hooijmans C. M., Van Loosdrecht M. C. M., et al. The Dynamic Effects of Potassium Limitation on Biological Phosphorus Removal [J]. Wat. Res.,1996,30(10):2323-2328
    [83] Jonsson K, Johansson P, Christensson M, et al. Operational Factors Affecting Enhanced Biological Phosphorus Removal at the Wastewater Treatment Plant in Helsingborg, Sweden [J]. Wat. Sci. Tech.,1996,34(1-2):67-74
    [84] Romanski J, Heider M, Wiesmann U. Kinetics of anaerobic orthophosphate release and substrate uptake in enhanced biological phosphorus removal from synthetic wastewater [J]. Wat. Res.,1997,31(12):3137-3145
    [85] Pattarkine V. M., Randall C. W. The Requirement of Metal Cations for Enhanced Biological Phosphorus Removal by Activated Sludge [J]. Wat. Sci. Tech.,1999,40(2):159-165
    [86] Carlsson H., Aspegren H., Lee N., et al. Calcium Phosphate Precipitation in Biological Phosphorus Removal Systems [J]. Wat. Res.,1997,31(5):1047-1055
    [87] Barat R., Montoya T., Borrás L., et al. Interactions between Calcium Precipitation and the Polyphosphate-accumulating Bacteria Metabolism [J]. Wat. Res.,2008,42(13):3415-3424
    [88] Sch(o|¨)nborn C., Bauer H. D., R(o|¨)ske I. Stability of Enhanced Biological Phosphorus Removal and Composition of Polyphosphate Granules [J]. Wat. Res.,2001,35(13):3190-3196
    [89] Aguado D., Montoya T., Ferrer J., et al. Relating Ions Concentration Variations to Conductivity Variations in a Sequencing Batch Reactor Operated for Enhanced Biological Phosphorus Removal [J]. Environ. Model. Software,2006,21:845-851
    [90] Smolders G. J. F., Van der Meij J., Van Loosdrecht M. C. M., et al. Stoichiometric Model of the Aerobic Metabolism of the Biological Phosphorus Removal Process [J]. Biotech. Bioeng.,1994,44:837-848
    [91] Liu W. T., Mino T., Matsuo T., et al. Biological Phosphorus Removal Processes - Effect of pH on Anaerobic Substrate Metabolism [J]. Wat. Sci. Tech.,1996,34:25-32.
    [92] Pijuan M., Saunders A. M., Guisasola A., et al. Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor using Propionate as the Sole Carbon Source [J]. Biotech. Bioeng.,2004,85:56-67
    [93] Filipe C. D. M., Daigger G. T., Grady Jr. C. P. L. Stoichiometry and Kinetics of Acetate Uptake under Anaerobic Conditions by an Enriched Culture of Phosphorus-accumulating Organisms at Different pHs [J]. Biotech. Bioeng., 2001,76:32-43
    [94] Filipe C. D. M., Daigger G. T., Grady Jr. C. P. L. A Metabolic Model for Acetate Uptake under Anaerobic Conditions by Glycogen Accumulating Organisms: Stoichometry, Kinetics, and Effect of pH [J]. Biotech. Bioeng.,2001,76:17-31
    [95] Filipe C. D. M., Daigger G. T., Grady Jr. C. P. L. Effects of pH on the Rates of Aerobic Metabolism of Phosphate-accumulating and Glycogen-accumulating Organisms [J]. Wat. Environ. Res.,2001,73:213-222
    [96] Oehmen A., Vives M. T., Lu H. B., et al. The Effect of pH on the Competition between Polyphosphate Accumulating Organisms and Glycogen Accumulating Organisms [J]. Wat. Res.,2005,39:3727-3737
    [97] Liu Y., Chen Y. G., Zhou Q. Effect of Initial pH Control on Enhanced Biological Phosphorus Removal from Wastewater Containing Acetic and Propionic Acids [J]. Chemosphere,2007,66:123-129
    [98] Zhang C., Chen Y. G., Yan L. Effect of pH on Enzyme Activity Involved in Enhanced Biological Phosphorus Removal System [J]. J. Biotech.,2008,136:657
    [99] Zhang C., Chen Y. G., Yan L. The Long-term Effect of Initial pH Control on the Enrichment Culture of Phosphorus and Glycogen Accumulating Organisms with a Mixture of Propionic and Acetic Acids as Carbon Sources [J]. Chemosphere,2007,69:1713-1721
    [100] Nittami T, Matsumoto H. K., Seviour R. J. Influence of Temperature, pH and Dissolved Oxygen Concentration on Enhanced Biological Phosphorus Removal under Strictly Aerobic Conditions [J]. J. Biotech.,2010,150:237
    [101] McClintock SA, Randall CW, Pattarkine VM. Effects of Temperature and Mean Cell Residence Time on Biological Nutrient Removal Processes [J]. Wat. Environ. Res. 1993,65(5):110-118
    [102] Converti A, Rovatti M, Del Borghi M. Biological Removal of Phosphorus from Wastewaters by Alternating Aerobic and Anaerobic Conditions [J]. Wat. Res.,1995,29(1)263-269
    [103] Brdjanovic D, Van Loosdrecht M. C. M, Hooijmans C. M, et al. Temperature Effects on Physiology of Biological Phosphorus Removal [J]. J. Environ. Eng.,1997,123(2):144-153
    [104] Thongchai P., Apiradee D., Jin A. Temperature Effect on Microbial Community of Enhanced Biological Phosphorus Removal System [J]. Wat. Res.,2003,37 :409-415
    [105] Krishna C, Van Loosdrecht M. C. M. Effect of Temperature on Storage Polymers and Settle Ability of Activated Sludge [J]. Wat. Res. 1999,33(10):2374-2382
    [106] Mulkerrins D., Dobson A. D. W., E. Colleran. Parameters Affecting Biological Phosphate Removal from Wastewaters [J]. Environ. Int.,2004,30:249-259
    [107] Carlos M. L., Oehmen A., Christine M. Hooijmans. Modeling the PAO-GAO Competition: Effects of Carbon Source, pH and Temperature [J]. Wat. Res.,2009,43:450-462
    [108] Li N., Ren N. Q., Wang X. H., et al. Effect of Temperature on Intracellular Phosphorus Absorption and Extracellular Phosphorus Removal in EBPR Process [J]. Bioresour. Tech.,2010,101:6265-6268
    [109] Comeau H., Hall K. J., Hancook R. E. W., et al. Biological Model for Enhanced Biological Phosphorus Removal [J]. Wat. Res.,1986,20(12):1511-1521
    [110] Fuhs G. W, Chen M. Microbiological Basis of Phosphate Removal in the Activated Sludge Process for the Treatment of Wastewater [J]. Microbial Ecol.,1975,2(2):119-138
    [111] Liu Y. N., Xue G., Yu S. L. Comparing Results of Cultured and Uncultured Biological Methods Used in Biological Phosphorus Removal [J]. J. Environ. Sci.,2007,19:1371-1379
    [112] Streichan M., Golecki J. R., Schon G. Polyphosphate Accumulating Bacteria from Sewage Plants with Different Processes for Biological Phosphorus removal [J]. FEMS Microbiol. Ecol.,1990,73:113-124
    [113] Hrenovic J., Tibljas D., Ivankovic T., et al. Sepiolite as Carrier of the Phosphate-accumulating Bacteria Acinetobacter junii [J]. Appl. Clay Sci., 2010,50:582-587
    [114] Deinema M. H., Habets L. H. A., Scholten J., et al. The Accumulation ofPolyphosphate in Acinetobacter spp [J]. FEMS Microbio. Lett.,1980,9(4):275-279
    [115] Wagner M., Erhart R., Manz W., et al. Development of an Ribosomal-RNA Targeted Oligonucleotide Probe specific for the Genus Acinetobacter and Its Application for In-situ Monitoring in Activated Sludge [J]. Appl. Environ. Microbiol.,1994,60(3):792-800
    [116] Seviour R. J., Mino T., Onuki M. The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems [J]. FEMS Microbiol. Rev.,2003,27(1):99-127
    [117] Oehmena A., Lemosa P. C., Carvalhoa G., et al. Advances in Enhanced Biological Phosphorus Removal: From Micro to Macro scale [J]. Wat. Res.,2007,41:2271-2300
    [118] Lin C., Katayama Y., Hosomi M., et al. The Relationship between Isoprenoid Quinone and Phosphorus Removal Activity [J]. Wat. Res.,2000,34(14):3607-3613
    [119] Knight G. C., Seviour E. M., Seviour R. J., et al. Development of the Microbial Community of a Full Scale Biological Nutrient Removal Activated Sludge Plant during Start-up [J]. Wat. Res.,1995,29(9):2085-2093
    [120] Lotter L. H., Murphy M. The Identification of Heterotrophic Bacteria in an Activated Sludge Plant, with Particular Reference to Polyphosphate Accumulation [J]. Wat. SA,1985,11:179-184
    [121] Lina C. K., KatayamaY., Hosomi M., et al. The Characteristics of the Bacterial Community Structure and Population Dynamics for Phosphorus Removal in SBR Activated Sludge Processes [J]. Wat. Res.,2003,37:2944-2953
    [122]吴蕾,宋志文,温少鹏,等.生物除磷微生物研究进展[J].四川环境,2007,26(3):94-98
    [123] Ryuichi H., Akio K., Junichi K., et al. Bacterial Phosphate Metabolism and Its Application to Phosphorus Recovery and Industrial Bioprocesses [J]. J. Biosci. Bioeng.,2010,19(5):423-432
    [124]张记江.聚磷菌PAOX的生长特性及除磷性能研究[D].苏州:苏州科技学院学位论文,2008:8-11
    [125] Cai T. M., Guan L. B., Chen L. W., et al. Enhanced Biological Phosphorus Removal with Pseudomonas putida GM6 from Activated Sludge [J]. Pedosphere,2007,17(5):624-629
    [126] Bao L. L., Li D., Li X. K., et al. Phosphorus Accumulation by BacteriaIsolated from a Continuous Flow Two-sludge System [J]. J. Environ. Sci.,2007,19:391-395
    [127] Nakamura K., Hiraishi A., Yoshimi Y., et al. Microlunatus Phosphovorus gen nov,sp nov,a New Gram-positive Polyphosphate Accumulating Bacterium Isolated from Activated Sludge [J]. Int. J. Syst. Bacteriol.,1995,45(1):17-22
    [128] Ubukata Y., Takii S. Some Physiological Characteristics of a Phosphate Removing Bacterium, Microlunatus phosphovorus, and a Simplified Isolation and Identification Method for Phosphate Removing Bacteria [J]. Wat. Sci. Tech.,1998,38(1):149-157
    [129] Nakamura K., Ishikawa S., Kawaharasaki M. Phosphate Uptake and Release Activity in Immobilized Polyphosphate Accumulating Bacterium Microlunatus phosphovorus Strain NM-1 [J]. J. Ferment. Bioeng.,1995,80(4):377-382
    [130] Santos M. M., Lemos P. C., Reis M. A. M., et al. Glucose Metabolism and Kinetics of Phosphorus Removal by the Fermentative Bacterium Microlunatus phosphovorus [J]. Appl. Environ. Microbiol.,1999,65(9):3920-3928
    [131]张超,陈银广.增强生物除磷系统中微生物及其代谢机制研究进展[J].换进科学与技术,2010,33(1):81-85
    [132] Stante L., Cellamare C. M., Malaspina F., et al. Biological Phosphorus Removal by Pure Culture of Lampropedia spp [J]. Wat. Res.,1997,31(6):1317-1324
    [133]王图锦. SUFR反应器中菌群结构分析及聚磷菌的分离[D].重庆:西南大学学位论文,2007:7-8
    [134] Wang X. H., Zhang K., Ren N. Q., et al. Monitoring Microbial Community Structure and Succession of an A/O SBR during Start-up Period using PCR-DGGE [J]. J. Environ. Sci.,2009,21(2):223-228
    [135] Marianna V., Mario B., Davide D., et al. Effect of pH on the Production of Bacterial Polyhydroxyalkanoates by Mixed Cultures Enriched under Periodic Feeding [J]. Process Biochem.,2010,45(5):714-723
    [136] Zubair A., Byung R. L., Jinwoo C., et al. Biological Nitrogen and Phosphorus Removal and Changes in Microbial Community Structure in a Membrane Bioreactor: Effect of Different Carbon Sources [J]. Wat. Res.,2008, 42(1-2):198-210
    [137] Lee N., Nielsen P. H., Aspegren H., et al. Long-term Population Dynamics and in situ Physiology in Activated Sludge Systems with Enhanced Biological Phosphorus Removal Operated with and without Nitrogen Removal [J]. Syst.Appl. Microbiol.,2003,26(2):211-227
    [138] Luz E. D., Yoav B. Recent Advances in Removing Phosphorus from Wastewater and its Future Use as Fertilizer (1997-2003) [J]. Wat. Res.,2004,38(19):4222-4246
    [139] Che O. J., Dae S. L., Jong M. P. Microbial Communities in Activated Sludge Performing Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor [J]. Wat. Res.,2003,37(9):2195-2205
    [140] Slater F. R., Johnson C. R., Blackall L. L., et al. Monitoring Associations between Clade-level Variation, Overall Community Structure and Ecosystem Function in Enhanced Biological Phosphorus Removal (EBPR) Systems Using Terminal Restriction Fragment Length Polymorphism (T-RFLP) [J]. Wat. Res.,2010,44(17):4908-4923
    [141] Johwan A., Tomotaka D., Satoshi T., et al. Characterization of Denitrifying Phosphate-accumulating Organisms Cultivated under Different Electron Acceptor Conditions Using Polymerase Chain Reaction-denaturing Gradient Gel Electrophoresis Assay [J]. Wat. Res.,2002,36(2):403-412
    [142] Satoshi T., Ryuki M., Takashi O., et al. Characterization of Denitrifying Polyphosphate-accumulating Organisms in Activated Sludge Based on Nitrite Reductase Gene [J]. J. Biosci. Bioeng.,2005,99(4):403-407
    [143] Daims H., Taylor M. W., Wagner M. Wastewater Treatment: a Model System for Microbial Ecology [J]. Trends Biotech.,2006,24(11): 483-489
    [144] Martin E., Markus S., Isolde R. Molecular Characterization of the Microbial Community Structure in Two Activated Sludge Systems for the Advanced Treatment of Domestic Effluents [J]. Wat. Res.,2003,37(13):3224-3232
    [145] Luísa S. S., Paulo C. L., Caterina L., et al. Methods for Detection and Visualization of Intracellular Polymers Stored by Polyphosphate Accumulating Microorganisms [J]. J. Microbiol. Methods,2002,51(1):1-18
    [146] Suguru O., Mamoru K., Hideo T T., et al. Changes in Phosphorus Removing Performance and Bacterial Community Structure in an Enhanced Biological Phosphorus Removal Reactor [J]. Wat. Res.,2004,38(9):2433-2439
    [147] Gülsüm E. Z., Nazik A., Derin O., et al. Effect of Aspartate and Glutamate on the Fate of Enhanced Biological Phosphorus Removal Process and Microbial Community Structure [J]. Bioresour. Tech.,2011,102(2):894-903
    [148] Christina M. F., Elisabeth M., Patrik A., et al. Population Changes in a Biofilm Reactor for Phosphorus Removal as Evidenced by the Use of FISH [J]. Wat. Res.,2002,36(2):491-500
    [149] Wong M. T., Mino T., Seviour R. J., et al. In Situ Identification and Characterization of the Microbial Community Structure of Full-scale Enhanced Biological Phosphorous Removal Plants in Japan [J]. Wat. Res.,2005,39(13):2901-2914
    [150] Naohiro K., Juhyun K., Satoshi T. Anaerobic/oxic/anoxic Granular Sludge Process as an Effective Nutrient Removal Process Utilizing Denitrifying Polyphosphate-accumulating Organisms [J]. Wat. Res.,2006,40:2303-2310
    [151] Koichi S., Shinya M., Satoshi O. Modeling and Experimental Study on the Anaerobic/aerobic/anoxic Process for Simultaneous Nitrogen and Phosphorus Removal: the Effect of Acetate Addition [J]. Process Biochem.,2008,43:605-614
    [152]国家环保总局.水和废水监测分析方法(第四版) [M].北京:中国环境科学出版社,2002
    [153] American Public Health Association. Standard Methods for the Examination of Water and Wastewater (19th ) [M]. Washington DC,1995
    [154]暴瑞玲.低温条件下好氧颗粒污泥同步脱氮除磷效能及其过程研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:29-40
    [155] Kuba T., Murnleitner E., Van Loosdrecht M. C. M., et al. A Metabolic Model for Biological Phosphorus Removal by Denitrifying Organisms [J]. Biotech. Bioeng.,1996,52(6):685-695.
    [156]陈清后.影响生物脱氮除磷的因素[J].污染防治技术,2007,20(1):41-42
    [157] Adav S. S., Lee D. J., Show K. Y., et al. Aerobic Granular Sludg: Recent Advantages [J]. Biotech. Adv.,2008,26:411-423
    [158] Lin Y. M., Liu Y, Tay J. H. Development and Characteristics of Phosphorus Accumulating Microbial Granules in Sequencing Batch Reactors [J]. App. Microbiol. Biotech.,2003,62(4):430-435
    [159]李庆钊,赵长遂,武卫芳,等. O_2/ CO_2气氛快速升温煤焦低温氮吸附等温线形态分析[J].热能动力工程,2009,24(1):89-94
    [160] De Boer J. H., Lippens. B. C. Studies on Pore Systems in Catalysts II, the Shapes of Pore in Aluminum Oxide Systems [J]. J. Catal.,1964,3:38-43
    [161] Zheng Y. M., Yu H. Q. Determination of the Pore Size Distribution and Porosity of Aerobic Granules Using Size-exclusion Chromatography [J]. Wat. Res.,2007,41:39-46
    [162]张自杰.排水工程下册[M].北京:中国建筑工业出版社,2002:312-330
    [163]尹军,王雪峰,王建辉,等. SBR工艺活性污泥比耗氧速率与控制参数的关系[J].环境污染与防治,2007,29(7):481-483
    [164]欧阳二明,王伟,龙能,等.污泥内层和外层胞外聚合物的三维荧光光谱特性研究[J].光谱学与光谱分析,2009,29(5):1313-1318
    [165]张冉.饮用水源中天然有机物特性表征及有机物强化去除工艺研究[D].石家庄:河北科技大学学位论文,2009:16-17
    [166] Puig S., Coma M., Monclus H., et al. Selection between Alcohols and Volatile Fatty Acids as External Carbon Sources for EBPR [J]. Wat. Res.,2008,42:557-566
    [167]李楠.低温除磷系统的性能及作用机制的研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:18-19
    [168] Wachtmeister A., Kuba T., Van Loosdrecht M. C. M., et al. A Sludge Characterization Assay for Aerobic and Denitrifying Phosphorus Removing Sludge [J]. Wat. Res.,1997,31(3):471-478
    [169]朱育菁,肖荣凤,王秋红,等.茄科作物青枯病原菌的脂肪酸鉴定[J].植物保护科学,2008,24(8):392-395
    [170] Amrit K., Chaudhary A., Amarjeet K., et al. Phospholipid Fatty Acid Abioindicator of Environment Monitoring and Assessment in Soil Ecosystem [J]. Curr. Sci.,2005,89(7):1103-1112
    [171] Snaidr J., Amann R., Huber I., et al. Phylogenetic Analysis and in Situ Identification of Bacteria in Activated Sludge [J]. Appl. Environ. Microbiol.,1997,63(7):2884-2896
    [172] Randall A. A., Liu.Y. Polyhydroxyalkanoates from Potentially a Key Aspect of Aerobic Phosphorus Uptake in Enhanced Biological Phosphorus Removal [J]. Wat. Res.,2002,36(14):3473-3478

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700