野外探险救助信息采集技术的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,野外登山探险活动逐渐增多,随之而来的野外遇险事件频发,急需一种能够实时提供佩戴者生理信息、方向和姿态等信息的监护设备来对野外探险人员进行监测和预警。本文针对野外探险救助信息采集这一市场需求,对野外探险救助关键信息采集技术进行了研究,自主设计了应用于野外探险环境的新型动态电子血压计和数字指南针,并以二者为核心,简单搭建了野外探险救助信息监测仪。
     论文首先以野外信息监测和远程医疗监护为背景,介绍了国内外野外信息监测领域技术的发展现状和背景,论述研究野外探险信息采集技术的必要性与现实意义。其次,详细介绍了关键信号采集技术的各种实现方案,并在对比各方案优缺点后结合课题背景,提出本文关键信号采集方案。对于本课题而言,需要采集的关键信号主要包括血压、心率、运动方向和运动姿态等。其中血压和心率信号属于人体生理信号,通过采集体表信号经过计算获取,由动态电子血压计来实现;运动方向和运动姿态主要由方向和姿态信息监测模块即高精度电子指南针来实现。动态电子血压计选择基于脉搏波传输速度测量血压法来设计,而高精度数字指南针决定以地磁导航为理论基础。
     然后,讲述了动态血压计和数字指南针的软硬件设计过程及设计过程中遇到的各种困难与解决途径。脉搏波信号的稳定采集及信号相位差的计算是动态血压计设计的主要困难,在对比各种压敏传感器材料后,最终选用PVDF膜作为脉搏信号采集材料,创新性的设计了差分脉搏波传感器;指南针基于地磁导航理论,去除软硬铁干扰提高精度是其设计难点,最终依靠自校准算法将其精度提高到2°以内。
     最后,以无创动态血压计和三轴数字指南针为基础,结合ARM嵌入式开发平台,设计了野外探险救助信息监测仪。在以S3C2440为核心处理器的嵌入式平台上,完成了图形化界面的设计、菜单的叠加及各个模块之间实时数据的通信,并设计了数据传输格式与接口,为将来实现远程通信打下基础。
     系统实现了关键模块的自主设计,极大的降低了整体设计成本;采用了先进的前端信号采集方案和合适的数字信号处理算法,保证了测量参数的精确度和实时性;选用了恰当的嵌入式平台做到了动态数字化实时输出且具有友善的人机交互界面;设计了完善的数据输出格式和硬件接口,为将来进一步实现无线传输,组建野外救助监护网络打下了良好的基础。项目针对民用野外探险监护这一特定领域,无论是系统整体还是电子血压计和数字指南针两个独立模块都具有良好的应用前景。
As improvement of people's living standard, outdoor adventure climbing sport is becomingmore and more popular in China, but many safety accidents occurred oft during climbing. Thus,peoples are in urgent need of monitoring equipment, which can provide real-time wearer’s keyphysiological and geographical information, and can also early warn immediately. In this paper,targeting market demand on information collection for outdoor adventure rescue, we researched thetechnology of key related information collection for outdoor rescue, and designed new modelelectronic sphygmomanometer and high-precision compass, which could be applied in the outdooradventure field. Under combination together with above mentioned two parts technology we builtthe monitor for outdoor adventure rescue.
     The paper is set in outdoor information monitoring and remote medical care, and then showsthe recent domestic and international new technology development situation and background inoutdoor information monitoring area. Moreover, execution proposal of key signal samplingtechnology is introduced, and compared with advantages and disadvantages of different proposal, inorder to put forward a key signal sampling proposal in the paper. Information collection is the coretechnology of outdoor rescue and monitoring equipment. According to the topic and requirement inthe paper, the key signal to be collected includes blood pressure, heart rate, movement direction andmovement posture and so on. Signals of blood pressure and heart rate are physiological signals,which can be detected by dynamic electronic sphygmomanometer; movement direction andmovement posture are geographic signals, which can be detected by geographic informationmonitoring module i.e. high-precision electronic compass. Dynamic electronic sphygmomanometeris designed based on blood pressure measurement through measurement of pulse wave transmissionspeed, and high-precision compass is design based on geomagnetic navigation theory.
     Then, hardware and software design process of the dynamic electrical sphygmomanometer anddigital compass, and encountered difficulties and solution are described. The stabile acquisition ofpulse wave signals and calculation of signal phase difference are the main difficulties in the designof dynamic electrical sphygmomanometer. With comparison of different pressure-sensitive sensormaterial, PVDF membrane is selected as pulse signal acquisition material, and finally differentialpulse wave sensor is innovated designed. Digital compass is based on geomagnetic navigationtheory, and removal of hard and soft iron interference is its design challenge, and the accuracy isincreased ultimately within 2°through self-calibration algorithm.
     Finally, the monitor for outdoor adventure rescue is designed based on the non-invasivesphygmomanometer and 3-axis electronic compass, which is also implemented and developed by the ARM embedded platform. A graphical user interface (GUI) is designed and the real-time datacommunication between various modules is realized based the embedded platform with the coreprocessor S3C2440. In addition, the data transmission format and the interface are designed forremote communication in the future.
     First, the capital cost is reduced greatly through the independent design of the key modules.Second, the advanced signal sampling scheme and the optimal digital signal processing algorithmare used to guarantee the precise and real-time measurement of different parameters. And then theoptimal embedded platform is selected to real-time output the digital information dynamically andto achieve a friendly interactive interface. In addition, the data transmission format and the interfaceare designed for the remote communication and network construction of outdoor adventure rescuein the future. Finally, the whole system focuses on the application in the outdoor adventure rescuearea, moreover, dynamic electronic sphygmomanometer and high-precision electronic compass canbe used independently as well, and it must have very good application prospect.
引文
[1]王晓春.登山与健康关系的调查研究[J].南京体育学院学报,2002,1(3):19-21.
    [2]陈清文.基于磁阻传感器的载体姿态测量系统的设计[D].南京:南京理工大学,2004:5-20.
    [3]李舒平.登山死亡事件的原因与预防—附44例报告[J].体育科学,1986,(2):20-23.
    [4]章力.基于ARM的远程生理监护仪的设计与嵌入式低功耗策略的研究[D].上海:东华大学,2009.
    [5] DOCOBO, Home ECG monitoring reduces costs and improves care [EB/OL]. http://www.nursingtimes.net/whats-new-in-nursing/primary-care/home-ecg-monitoring-reduces-costs-and-improv es-care/5017591.article,2010.9.27.
    [6]郑捷文,吴太虎,张政波,万振.生命信息检测与监测技术[J].医疗卫生装备,2004,25(12):32-34.
    [7]王春飞.美军单兵生命体征监测系统中的无线传感网络[J].医疗卫生装备,2007,28(11):34-39.
    [8] Caruso.M.J. Applications of magnetoresistive sensors in navigation systems [J]. Sens. Actuators, 1997,pp.15-21.
    [9] John G.Webster. Medical Instrumentation [M] . John Wiley& Sons, Inc. New York ,1998,pp.50-67.
    [10] R.F.施密特, G.特夫斯,人体生理学[M].北京:科学出版社,1991:56-78.
    [11] Jiao Xue-jun, Fang xing-ye. Rearch progress of methods of continous measurement of blood pressure [J]. Space medicine & Medical Engineering,2000,13(2),pp.13-15.
    [12]余学飞.现代医学电子仪器原理与设计(第二版)[M].广州:华南理工大学出版社,2007:30-64.
    [13]车琳琳.常用生理参数测量方法的原理与改进[J].中国医疗设备,2008:45-77.
    [14] Brian Gribbin. Pulse wave velocity as a measure of pressure change [J]. Psychophysiology 1976,13(5),pp.87-90.
    [15] King, D.Coghlan. etal, Transcutaneous measurement of pulse wave velocity and mean blood pressure in man[J]. Blood flow measurent ,London:sector,1972,pp.40-43.
    [16] R.A.Payne. C.N.Symeonides. D.J. Webb etal. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure[J]. J Appl Physiol, 2006,100(1),pp.136-137.
    [17]李顶立,基于脉搏波的无创连续血压测量方法研究[D].杭州:浙江大学,2008:30-45.
    [18]徐克,周奇,韦云隆.无创血压测量[J].重庆工学院学报,2008,2(21):164-167.
    [19]罗志昌,张松,杨益民.脉搏波的工程分析与临床应用[M].北京:可行出版社,2006:110-124.
    [20]王斌.地磁导航综合检测仪的实现及其精确校准技术的研究[D].杭州:杭州电子科技大学,2011,30-45.
    [21]周军,葛致磊,施桂国,刘玉霞.地磁导航发展与关键技术宇航学报[J],2008,29(5):1468-1469.
    [22]陈忠义,质子旋进磁力仪[J].地震研究,1982,5(4):498-516.
    [23]冯延,孙涵,毛飞.地磁测量仪器发展综述[J].地震地磁观测与研究,2009,30(1):104-105.
    [24]赵仁余.航海学[M].北京:人民交通出版社,2006:114-115.
    [25]刘建业.导航系统理论与应用[M].西安:西北工业大学出版社,2010:130-144.
    [26]徐金华,许江宁,张晓锋,朱涛. GPS磁罗经最优组合导航应用研究[J].弹箭与制导学报,2006,26(2):710-712.
    [27]张静,金志华,田蔚风.无航向基准时数字式磁罗盘的自差校正[J].上海交通大学学报2004,38(10):1758-1759.
    [28]杨新勇,黄圣国.小型固态航姿系统的研制[J]. Journal of Data A cquisit ion & P rocessing,2003,18(3):105-106.
    [29] Honeywell.用于低价位的指南针系统的磁传感器的应用[EB/OL]. http://www.honeywell-sensor.com.cn/prodinfo/sensor_magnetic/applications_notes/apn01.pdf,2010.6.9
    [30] TAMARA BRATLAND.为什么选择磁性传感器[J]. Measurements&Control,1995,(12):12-14.
    [31]邵显涛,陈明,李俊.基于霍尔传感器电机转速的单片机测量[J].电子测试,2008,(12):46-47.
    [32]关政军,陈小凤.磁传感器在航海上应用[J].大连海事大学学报,2006,32 (2):45-46.
    [33]黄一菲,郑神,吴亮,陆申龙.坡莫合金磁阻传感器的特性研究和应用[J].物理试验,2002,22(4):45-47.
    [34]李懿,羊彦.基于DSP和MEMS的人体动作识别系统[J].计算机技术,2011,11(2):256-260.
    [35]莫小鸥.基于PVDF压力传感器的车座人体应力动态监测[D].昆明:昆明理工大学,2008.
    [36] Microchip. dsPIC30F6014 datasheet [EB/OL]. www.microchip.com.
    [37] Microchip. MRF24WB0MA/MRF24WB0MB datasheet [EB/OL]. www.microchip.com.
    [38]许臣蓉.基于DSP的数字滤波器设计[D].武汉:武汉理工大学,2006.
    [39]牛余朋,成曙.单片机数字滤波算法的研究[J].中国测试技术,2005,31(6):98-99.
    [40]石朝林. DSPIC数字信号控制器入门与实战[M].北京:北京航空航天大学出版社,2008:120-135.
    [41]李志颖.基于脉搏波的无创血压检测样机的研究与设计[D].吉林:吉林大学,2009.
    [42] Honeywell/Commercial Switch&Sensor.用于低价位的指南针系统的磁传感器的应用[EB/OL].www.microchip.com.
    [43]刘武发,蒋蓁,龚振邦.基于MEMS传感器的双轴倾斜角计及其应用[J].传感器技术,2005,24(3):86-87.
    [44]许臣蓉.基于DSP的数字滤波器设计[D].武汉:武汉理工大学,2006.
    [45] Analog Device. ADXL213E datasheet [EB/OL]. www.analog.com.
    [46] Microchip. PIC18F452 Datasheet [EB/OL]. www.microchip.com.
    [47]宋丽梅.磁阻式电子指南针的软件集成设计[D].哈尔滨:哈尔滨工程大学,2007.
    [48]李希胜,于广华.各向异性磁阻传感器在车辆探测中的应用[J].北京科技大学学报,2006,28(6):587-590.
    [49]李声飞.基于WSN的穿戴式人体姿态与健康监护系统的研制[M].重庆:重庆大学,2010.
    [50]徐战亚.可移植嵌入式导航平台关键技术研究[D].北京:中国地质大学,2010.
    [51]周立功. ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2008:123-135.
    [52]钱德俊,张哲,胡晨. NMEA0183协议解析[J].电子器件,2007,30(2):698-701.
    [53]孙纪坤,张小全.嵌入式LINUX系统开发技术详解——基于ARM [M].北京:人民邮电出版社.2006:55-65.
    [54]成洁,卢紫毅. LINUX窗口程序设计—Qt4精彩实例分析[M].北京:清华大学出版社,2008:101-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700