宽禁带半导体氧化锌晶体的离子注入光学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光波导是集成光学的基本单元,集成光学的主要研究内容是以光波导现象为基础的光学和光子系统。光波导因其优良的性能、高集成化以及低廉的生产成本等优点,在现代光通信中起着非常重要的作用。由于其重要的应用,研究人员一直探索用多种方法在各种材料上制备光波导结构。新型光波导材料的发展不仅取决于材料工程的工艺水平,也离不开性能优良的材料的支持以及对这种材料的各方面的基础研究,材料的特性决定了其应用属性。因此就产生了包括固体材料的导电性、光学特性及热学特性等一系列与电子学和光电子学有关的研究课题。
     氧化锌是一种纤锌矿宽禁带半导体材料,在常温下Eg=3.437eV,氧化锌在发光二极管、太阳能电池、压敏电阻以及透明导电膜等方面具有广泛的应用,这大部分应用仅需要多晶材料,而最近成功生长出大体积高质量的单晶氧化锌晶体使得生产蓝光及紫外发光器件和高功率晶体管成为可能。氧化锌作为光发射器的最大的优点就具有较大的激子结合能(Eb=60MeV),氧化锌的激子结合能是氮化镓材料的三倍,并且氧化锌与其他材料如硅、砷化镓、硫化镉以及氮化镓相比,具备很强的抗辐照能力,这种特性使得氧化锌在航空领域具有现实和潜在的应用。氧化锌中光学泵浦紫外激光在低温和高温条件下均已实现,虽然电致激光效率还需要通过生长高质量的p型Zn0材料的方式来有进一步提高。氧化锌和氮化镓在光学、电学、结构以及带隙(在常温下氧化锌为3.4eV,氮化镓为3.5eV)和晶格常数都非常的类似,所以在过去的几年里很多科研人员预测氧化锌很可能成为下一代最主要的光电子材料。而且氧化锌晶体具有60MeV激子束缚能,是氮化镓的两倍,在室温下基于氧化锌材料的紫外激光或紫外激光二极管和探测器具有更高的工作效率
     由于光波导具有非常重要的使用价值,人们一直探索着各种方法来制备高性能的光波导,目前常用来制备光波导的方法有外延生长、扩散、离子交换和离子注入等。外延生长技术的基本原理就是在低折射率的衬底材料上生长一层高折射率的薄膜,但这种技术有自身的不足,最主要的缺点就是在外延薄膜和衬底材料的交界面上由于晶格不匹配而导致散射损耗比较大。扩散或离子交换的原理是用化学方法使衬底表面的折射率升高,这就使波导区域受到污染,扩散过程中波导层中出现其它杂质离子或者离子交换过程中衬底的组分发生变化必然会影响衬底材料的晶格结构。而离子注入技术会克服以上缺点。
     离子注入技术是材料表面改性的一种有效方法,它可以精确控制掺杂离子的横向和纵向浓度分布,而且材料改性可以在任何需要的温度下进行。离子注入可以使得离子射程末端的晶格部分损伤,从而形成一个折射率比衬底折射率低的光学位垒层,光学位垒层和材料表面包裹的结构就是一个光波导结构,光就可以在其中进行传播。离子注入可以在各种非线性材料、电光材料及激光材料中形成光波导结构。
     由于稀土离子,特别是Tm3+离子掺杂的材料在集成光学或光通信系统中具有很广泛的应用潜力,近几年来一直受到人们的关注。三价Tm3+离子具有未填满的4f壳层,4f电子被已填满的5s和5p壳层电子所屏蔽,所以基质材料晶格场对4f电子的影响很小,使得Tm3+离子的光谱与自由电子光谱类似,可以得到非常尖锐的谱线跃迁。Tm3+能级系统因其独特的四能级结构及其光谱特性,得到了研究人员的普遍关注。
     本论文首次报道了用离子注入的方法在氧化锌晶体上形成光波导结构,实现了光束在氧化锌晶体表面传播并研究了光波导的各种特性。此外,还在氧化锌晶体上实现了稀土离子掺杂,分析了掺杂材料的荧光效应和热退火性质。本文的主要结果如下:
     (1)氧化锌是一种重要的光电晶体材料,它具有性能优良的电学和光学特性。O+离子是通过离子注入的方法制备光波导结构的常用离子,本论文首次报道了用O+离子注入的方法在氧化锌晶体上形成光波导结构。通过能量为2MeV、4MeV和6MeV的O+离子注入可以在氧化锌晶体上实现光的传输。用端面耦合法和棱镜耦合技术在633m激光波长下分析了光波导的光学特性,结果显示所形成的光波导的TE偏振光的第一个模式下降峰比较尖锐,说明波导对光波的限制非常好,是真正的传播模式。用卢瑟福背散射/沟道分析技术测试了O+离子注入造成的氧化锌材料表面附近的晶格损伤。建立了一个理论计算模型分析了自发激发、摩尔极化和电光系数等因素对氧化锌折射率改变的影响,并用这个理论模型重构了氧化锌平面波导的折射率分布。
     (2)He+离子也是通过离子注入的方法制备光波导结构的常用离子,用不同能量不同剂量的He+离子注入到氧化锌晶体中形成了光波的传输限制。用计算机程序模拟了He+离子注入到氧化锌晶体的过程,用卢瑟福背散射/沟道分析技术测试了He+离子注入引起的氧化锌晶格损伤,用棱镜耦合技术和端面耦合技术分析了光波导的光学特性,并用光束传播法研究了光波导中的传播模式的场强分布,结果表明对于500KeV的低能量注入,仅可以产生一个传播模式且大部分光波已渗透到衬底中;而对于2MeV的较高能量注入可以产生多个模式,TE偏振光的第一个传播模式的场强大都被限制在光波导区域。重构的折射率分布显示He+离子注入后使得氧化锌晶体表面折射率减小,核能量损失而非电子能量损失在氧化锌折射率改变中起到主要作用。
     (3)在室温条件下用能量为6MeV注入剂量分别为5×1013ions/cm2,5×1014ions/cm2和5×1015ions/cm2的Si+离子注入到表面光学抛光的ZnO晶体中形成了平面光波导结构,光波导的厚度为2.4μm左右。用棱镜耦合法633nm的激光波长下分析了不同Si+离子注入剂量的暗模特性,研究了注入剂量与波导的模式特性及样品表面折射率之间的关系。利用计算机程序模拟了Si+离子注入到样品的整个过程,得到了注入后Si+离子在氧化锌晶体中的浓度分布、电子能量损失以核能量损失。用卢瑟福背散射/沟道分析技术测试了Si+离子注入引起的氧化锌表面区域的晶格损伤。
     (4)在室温下用能量500KeV不同剂量的稀土Tm+离子注入到氧化锌晶体中,用卢瑟福背散射/沟道分析技术测试了Tm+离子注入引起的氧化锌晶格损伤,结果发现晶格损伤分布与Tm+离子的浓度分布非常的吻合,在Tm+离子的注入剂量为3×1015ions/cm2时晶格损伤已基本达到饱和,说明氧化锌晶格具有很强的抗损伤能力。离子注入后为了激活Tm+离子的光学特性我们对样品分别进行了从800℃到1050℃的高温退火,结果显示800℃的高温退火对Tm+离子的浓度分布和氧化锌的晶格恢复均没有影响,而在950℃退火后Tm+离子有向表面扩散的现象发生,而在1050℃后低剂量注入造成的晶格损伤已基本完全恢复。在室温条件下用紫外激光进行泵浦测试了Tm+离子注入后的荧光特性,样品经800℃退火30分钟后,Tm+离子从3H4能级到3H6能级得跃迁的给出了794nm荧光谱线,随着注入浓度的增加,3H4→3H6的跃迁荧光峰越来越弱,具有明显的浓度猝灭效应。在衬底材料上和注入后的样品上均探测到了氧化锌本身的宽光谱发射峰,随着离子注入剂量的增加红光光谱会因注入缺陷的影响产生红移现象。
     (5)用能量为500KeV的Tm+离子和能量为4.0MeV的O+离子共同注入到氧化锌晶体中形成了具有稀土掺杂的平面光波导结构。用卢瑟福背散射/沟道分析技术分析了Tm+离子在氧化锌晶体中的浓度分布,并与理论计算的浓度分布作比较,经过热退火后发现Tm+离子有向晶体表面扩散的现象。用棱镜耦合法测试了O+离子和Tm+离子共注入形成的光波导结构的特性,共得到两个波导模式。用计算机程序重构了波导区域的折射率分布,模拟结果显示在波导区折射率增加而在离子注入的末端会形成一个折射率下降的光学位垒。
     本文中的实验和理论分析结果为以后进一步研究氧化锌材料提供了重要基础,在氧化锌材料上形成光波导结构使得光波可以在氧化锌中的传输并提高传输效率,为拓宽氧化锌材料在集成光学和光电子器件方面的应用提供了依据。
Optical waveguide structure is a fundamental unit of the integrated optics devices. The research content the integrated optics mainly focus on the optics phenomenon and optical system based on waveguide structure, and optical waveguide plays an important role in the field of moden optical communication because of its excellent characteristics, possibility in integration and rather low cost in manufacturing. Researchers are trying to fabricating waveguide structure on various materials by a variety methods due to its practical application. The development of new waveguide materials depends not only on materials engineering at a practical level, but also on a clear understanding of the properties of materials, and the fundamental science behind these properties. It is the properties of a material that eventually determine its usefulness in an application. The series therefore also includes such titles as electrical conduction in solids, optical properties, thermal properties, and so on, all with applications and examples of materials in electronics and optoelectronics.
     Wurtzitic ZnO is a wide band gap semiconductor material (Eg=3.437eV at RT) that has many applications, including light emitting diode, solar cell window, phosphors, and transparent conduction films. Most of these applications only require polycrystalline materials; however, recent successes in producing large-area single crystals make possible the production of blue and UV light emitters and high power transistors. The main advantage of ZnO as a light emitter is its large exciton binding energy (Eb=60meV). This binding energy is three times larger than that of the20meV exciton of GaN. ZnO also affords superior radiation hardness compared with other common semiconductor materials, such as Si, GaAs, CdS, and even GaN, enhancing the usefulness of ZnO for space applications. Optically pumped UV laser action in ZnO has already been demonstrated at both low and high temperatures although efficient electrically induced lasing awaits further improvements in the experimental ability to grow high quality p-type ZnO material. Over the past years, a number of reseach groups have proposed that ZnO might be a leading candidate device material for the next generation of optoelectronics, owing to the many similarities between the optical, electrical and structural properties of ZnO and GaN, including their band gaps (3.44eV for ZnO and3.50for GaN at RT) and their lattice constants. In addition, still others have noted that ZnO has a free excition binding energy of60meV, approximately twice that of GaN, which could lead to highly efficient, ZnO-and MgZnO-based, UV injection lasers (UV laser diodes and detectors) at room temperature.
     Scientists and engineers are trying to find various ways to fabricate high-quality optical waveguide due to its importance in practical application. Several alternative methods can be employed to fabricate optical waveguide. The common technique are epitaxial layer growth, diffusion, ion exchange and ion implantation, and so on. The basic principle of epitaxial layer growth method is to grow a higher index thin film epitaxially on a lower index substrate, but this method is not always reliable, the common problem of epitaxial growth, especially for crystal, is relatively high scattering loss at the interface between the optical film and substrate due to their in-plane lattice mismatch. The principle of diffusion or ion exchange method is to increase the index above that of the substrate by chemical means, which implies that the guiding region must to some extent be contaminated, the presence of impurities (in the diffusion case) or the change in composition (ion exchange) would be expected to affect the crystalline properties of the substrate. However, the ion implantation method can be used to overcome these drawbacks.
     Ion implantation is an outstanding method to modify the surface property of materials since it offers accurate control of both the depth and lateral concentrations of dopant structural modification at any selected temperature. The dominant effect of ion implantation on refractive index is usually due to the partial lattice disorder produced by nuclear damage processes, which leads to a decrease in physical density and hence to a low index optical barrier. The region between this barrier and the surface is therefore surrounded by regions of low index and is able to act as awaveguide. Ion implantation can be used to fabricate optical waveguides in a wide variety of substrates, including non-linear, electro-optic and laser host materials.
     Increasing interest has been centered on the Tm-doped materials due to their potential applications integrated optics and optical communications. Trivalent thulium has an unfilled4f electronic shell that is shielded by the filled5s and5p electronic shell, so it has a little influence of the suerounding materials, Tm3+has attracted much attention due to its stable excited levels which is suitable for blue and ultraviolet emitting devices.
     In this dissertation, we report the fabrication and the properties of the planar waveguide, and the optical confinement in ZnO crystal is observed by ion implantation. Furthermore, the rare-earth doped ZnO is investigated and the phenomenon of photoluminiscence and thermal annealing are also discussed. The main contents of this dissertation are given as follows:
     (1) ZnO is considered as one of the most outstanding material in optoelectronics applications owing to its remakable electrical and optical properties. O ions is the common ions used to fabricated waveguide by implantation. To our knowledge, it is the first time to report formation of planar optical waveguides in the O+ion-implanted ZnO single crystal. Optical confinement in ZnO is observed by implantation with implantation energy of2MeV,4MeV and6MeV. The optical properties of the waveguide are studied by the end-face coupling and the prism-coupling technology at the wavelength of633nm, The results shows that the first sharp mode TEo means a good confinement of the light, which corresponds to the real waveguide mode. The ZnO lattice damage in near surface region induced by the O+ions implantation is investigated by the Rutherford backscattering/Channeling technique. A theoretical model is developed to explain the refractive-index changes in the ZnO and the refractive index profile in the planar waveguide is reconstructed accordingly.
     (2) He ions is the common ions used to fabricated waveguide by implantation. Waveguide effect is observed in the ZnO crystal by He+ion implantation with different energies and doses. Computer code is employed to simulate the process of He+ion implantation into ZnO. The Rutherford backscattering/Channeling is used to analyze ZnO lattice damage in the guiding region caused by the ion implantation.The waveguide properties are measured by the prism coupling and end-face coupling technique. The optical properties as well as the electric field intensity distribution of the propagation mode in the implanted waveguide are also investigated by using finite-difference beam propagation method, The results show that only one mode is observed for500KeV implantation and most distribution of the TE field extends into the substrate, but for2MeV implantation, most of field of fundamental TEo is restricted within the guide region. The refractive index profile of the waveguide is reconstructed and the results shows that the ordinary index decreases at the near surface region after implantation, the nuclear energy loss plays the major role in the crystal refractive index change rather than that from electronic energy loss.
     (3) ZnO waveguide are formed at room temperature by6MeV Si+implantation with dose of5×1013ions/cm2,5×1014ions/cm2and5×1015ions/cm2, The width of waveguide is2.4μm. Dark modes are studied by prism couping method at633nm, The relationship between modes and doses is also presented. The computer code is employed to simulate implantation prosess of Si+into ZnO. The ion concentration and energy loss of Si+is analyszed. The Rutherford backscattering/Channeling is used to measure ZnO lattice damage in the surface region caused by Si+implantation.
     (4) ZnO crystals were implanted by Tm+ions at500KeV with different doses at room temperature. The damage profiles in ZnO induced by Tm+implantation are studied using Rutherford backscattering/Channeling technique and we found that damage profile shows good consistence with the distribution of Tm+ions. The lattice damage tends to saturate at the implantation dose3×1015ions/cm2, indicating that ZnO is very resistive to high dose and high energy irradiation. After implantation post-implant annealing at temperature from800to1050℃is performed to activate Tm ion optically. Results show that annealing at800℃exerts no obvious effect on Tm+ions distribution, as well as the lattice damage. But annealing higher than950℃resulted in out-diffusion of Tm ions. Complete damage recovery is found in the ZnO with low fluence after annealing at1050℃. Photoluminescence was measured at room temperature with UV and green excitation, significant luminescence of transition3H4→3H6at794nm from Tm3+and concentration quenching behavior is observed in samples suffering800℃annealing for30minutes. Typical Broad band emission from ZnO are detected in both virgin and the implanted samples, and the red shift of peak indicates that deep defects introduced by implantation contribute to the enhanced red emission.
     (5) Planar optical waveguides were formed in ZnO crystal doped with Tm+ions by500KeV Tm+implantation combining with a subsequent implantation of4.0MeV O+ions. The distributions of Tm+in as-implanted and annealed ZnO samples are measured by Rutherford backscattering/Channeling technique. A shift of Tm+peak towards sample surface and out-diffusion are observed after thermal treatment. Waveguide properties was determined by using prism coupling method after O+implantation in Tm+-doped ZnO crystal and two guided modes were detected. The refractive index profile in the waveguide region was reconstructed according to computer code simulation. The result shows that the refractive index contrast of waveguide comes from both the index increase in guiding region and the index decrease in reduced index barrier.
     The experimental result and theoretical analysis in this dissertation are significant for the further study of ZnO material, and a chievement of optical waveguide structure in ZnO crystal makes it possible to expand its application in ZnO-based integrated optics and optoelectronic devices in attempt to control the propagation of light and to enhance the optical efficiency.
引文
1.[美]汉斯伯格,集成光学导论,国防工业出版社,1983
    2.[美]Amnon Yariv,现代通信光电子学,电子工业出版社,2004
    3.唐天同,王兆宏,集成光学,科学出版社,2005
    4.[美]塔米尔,集成光学,科学出版社,1982
    5.唐天同,王兆宏,陈时,集成光电子学,西安交通大学出版社,2005
    6.陈益新,集成光学,上海交通大学出版社,1985
    7.[英]卡萨普,光电子学与光子学的原理及应用,电子工业出版社,2003
    8.吴重庆,光波导理论,清华大学出版社,2005.
    9.李玉权,崔敏,光波导理论与技术,人民邮电出版社,2002..
    10.方俊鑫,曹庄琪,杨傅子,光波导技术物理基础,上海交通大学出版社,1987.
    11.[日]西原浩,集成光路,科学出版社,2004.
    12.朱京平,光电子技术基础,科学出版社,2008.
    13. N. Grote, H.Venghaus著,王景山等译,光纤通信器件,北京:国防工业出版社,2003.
    14.行松健一光开关与光互联,北京:科学出版社,2002.
    15. P. Rabiei and W. H. Steier, Appl. Phys. Lett.,86 (2005) 161115.
    16. G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. M. Farmery, P. D. Townsend and A. Perez, J. Appl. Phys.,50 (1979) 7898.
    17. T. A. Ramadan, M. Levy and R. M. Osgood, Appl. Phys. Lett.,76 (2000) 1407.
    18. G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestri, C. Sada, N. Argiodi, M. Bazzan and P. Mazzoldi, Opt. Lasers Eng.,45 (2007) 368.
    19. K. Hattori, T. Kitagawa, M. Oguma, M. Wada, J. Temmyo, M. Horiguchi, Electron. Lett.29, (1993) 357.
    20.I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, A. Greiner, K. Schafer, J. Sochtig, W. Sohler and R. Wessel, IEEE J. Quantum Electron.2, (1996) 355.
    21. S. F. Wong, E. Y. B. Pun, P. S. Chung, Photonics Tech. Lett.14, (2002) 80.
    22. R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, H. Suche, IEEE J. Quantum Electron.30, (1994) 2356.
    23.葛文萍,殷宗敏等,几种新型结构光纤隔离器,光通信技术,6,(2002)42-45.
    24. Shintaku T, Applied physics letters 66, (1995) 2789-2791.
    25. Yamamoto S, Okamura Y, Makimoto T, IEEE Journal of quantum electronics 12(12),764-770.
    26. Sugimoto N, Shintaku T, Tate A, et al, IEEE Photonics technilogy letters 11(3), (1999)355-357.
    27. Koga M, Matsrnmoto T, IEEE Journal of lightwave technology 10(9), (1992) 1210-1217.
    28. Kato K, Kazen A, Muramoto Y, et al,110-GHz, IEEE Photonics technology leters 6(6), (1994) 719-721.
    29. Mcintyre R J,13(1), (1996) 164-168.
    30. M. C. Hamilton, D. A. Wille, W. J. Miceli, Opt. Eng.16,475 (1977)
    31. D. Mergerian, E. C. Malarkey, Microwave J.23, (1980) 37
    32. H. Kressel, M. Ettenberg, J. Appl. Phys.47, (1976) 3533
    33. U. Ozgiir,Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H.Morkoc, Journal of Applied Physics 98, (2005) 041301.
    34. D. Persegol, E. Pic, and J. Plantier, Journal of Applied Physics,62 (6) (1987) 2563-2565.
    35. R. G Heideman, P. V. Lambeck, J. G. E. Gardeniers, Optical Materials 4, (1995) 741-755.
    36. C. Klingshirn, physica status solidi B 244, (2007) 3027-3073.
    37. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Journal of Applied Physics,79 (1996) 7983-7990.
    38. Y. Wang, W. Lee, T. Tseng, Applied physics letters 69, (1996) 1807-1809.
    39. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge,1994)
    40. G. Destefanis, P. D. Townsend, and J. Gailliard, Appl. Phys. Lett.,32, (1978) 293
    41. D. Kip, S. Aulkemeyer, and P. Moretti, Opt. Lett.20, (1995) 1256
    42. F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, Appl. Phys. Lett.89, (2006)191102
    43. J. H. Zhao, X. L. Wang, G. Fu, X. H. Liu, Q. Huang, and P. Liu, Nucl. Instrum. Meth. B 268, (2010) 3434
    44. Y. Tan, F. Chen, and D. Kip, Appl. Phys. B 94, (2009) 467
    45.王亮玲,离子注入与离子交换平面和条形光波导的制备及其特性研究,山东大学博士学位论文,2008
    46. G. M. Davis, L. Zhang, P. J. Chandler, and P. D. Townsend, J. Appl. Phys.79, (1996)2863
    47.王雪林,MeV重离子注入光电晶体光波导的制备和特性研究,山东大学博士学位论文,2004
    48. D. Fluck, P. Gunter, M. Fleuster, and C. Buchal, J. Appl. Phys.72, (1992) 1671
    49.陈峰,离子注入光电晶体光波导的折射率分布研究,山东大学博士学位论文,2002
    50. G. L. Yip, J. Albert, Opt. Lett.10, (1985) 151
    51.姜毅,离子注入光电晶体损伤诱导折射率改变及波导导模特性研究,山东大学博士学位论文,2006
    52. J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, J. Lightw. Technol.28, (2010)1913
    53.付刚,离子注入光电晶体平面和条形波导的研究,山东大学博士学位论文,2005
    54. J. H. Zhao, T. Liu, S. S. Guo, J.Guan, X. L. Wang, Opt. Express 18,18989 (2010)
    55.焦扬,离子注入与离子束刻蚀制备平面及条形光波导的研究,山东大学博士学位论文,2007
    56. X. L. Wang, K. M. Wang, G. Fu, S. L. Li, D. Y. Shen, H. J. Ma, and R. Nie, Opt. Express 12, (2004) 4675
    57. C. Wang, A. Mandelis, J. Tolev, B. Burchard, J. Meijer, J. Appl. Phys.101, (2007) 123109
    58. E. J. Teo, A. A. Bettiol, M. B. Breese, P. Yang, G. Z. Mashanovich, W. R. Headley, G. T. Reed, and D. J. Blackwood, Opt. Express 16, (2008) 573
    59. A. Guarino, M. Jazbinsek, C. Herzog, R. Degl'Innocenti, G. Poberaj, and P. Gunter, Opt. Express 14, (2006) 2344
    60. M. Domenech, G. V. Vazquez, E. Flores-Romero, E. Cantelar, and G. Lifante, Appl. Phys. Lett.86, (2005)151108
    61. Y. Ren, Y. Tan, F. Chen, D. Jaque, H. Zhang, J. Wang, Q. Lu, Opt. Express 18, (2010)16258
    62. X. L. Wang, K. M. Wang, G. Fu, S. L. Li, F. Chen, F. Lu, H. J. Zhang, H. K. Kong, J. Y. Wang, and X. G. Xu, Opt. Express 13, (2005) 675
    63. Y. Tan, and F. Chen, J. Phys. D:Appl. Phys.43, (2010) 075105
    64. L. Zhang, P.J. Chandler, P.D. Townsend, Z.T. Alwahabi, S.L. Pityana, A.J. Mccaffery, J. Appl. Phys.73, (1993) 2695
    65. Y. Y. Ren, F. Chen, Q. M. Lu, H. J. Ma, Appl. Opt.49, (2010) 2085
    66. F. Chen, Y. Tan, L. Wang, X. L. Wang, K. M. Wang, Q. M. Lu, J. Appl. Phys.103, (2008)083123
    67.孔艳霞:山东大学硕士学位论文,离子注入YAG激光晶体光波导2010
    68. S. S.Guo, T. Liu, J. H. Zhao, J. Guan, and X. L. Wang, Appl. Opt.49, (2010) 6039
    69. T. Yang, C. Feng, W. Lei, and L. Q. Ming, Phys. Stat. Sol. (a) 204, (2007) 3170
    70. S. F. Wong, E. Y. B. Pun, P. S. Chung, Photonics Tech. Lett.14, (2002) 80
    71. Tan, F. Chen, L. L. Hu, P. F. Xing, Y. X. Chen, X. L. Wang, K. M. Wang, J. Phys. D:Appl. Phys.40, (2007) 6545
    72. S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, G. C. Righini, Appl. Phys. Lett.90, (2007) 121136
    73.王磊:山东大学博士学位论文,离子注入平面与条形光波导的优化条件研究2007.
    74. F. Chen, K. M. Wang, X. L. Wang, X. S. Li, Q. M. Lu, D. Y. Shen, R. Nie, J. Appl. Phys.92, (2002) 2959.
    75.1. Banyasz, M. Fried, Cs. Ducso, Z. Vertesy, Appl. Phys. Lett.79,3755 (2001).
    76. T. C. Sum, A. A. Bettiol, C. Florea, F. Watt, J. Lightw. Technol.24, (2006) 3803.
    1.季家镕,冯莹:高等光学教程——非线性光学与导波光学,科学出版社,2008
    2.范崇澄,彭吉虎:导波光学,北京理工大学出版社,1988
    3.李家泽,阎吉祥:光电子学基础,北京理工大学出版社,1998
    4.许政权,介质光波导器件原理,上海:上海交通大学出版社,1989
    5.叶培大等,光波导技术基本理论,北京:人民邮电出版社,1981
    6.曹庄琪,导波光学中的转移矩阵方法,上海:上海交通大学出版社,2000
    7. A.W.Sy nder等著,周幼龙等译.光波导理论.北京:人民邮电出版社,1991
    8. S. Hufner, Optical Spectra of Transparent Rare-Earth Compounds, Academic Press, New York,1978.
    9. Yunxin Liu, Changfu Xu, QibinYang, Journal of applied physics 105, (2009) 084701.
    10. Rolindes Balda, Joaquin Fernandez, Sara Garcia-Revilla, Jose M. Fernandez-Navarro, Optics express 15, (2007) 6750-6761.
    11. J.F. Ziegler, SRIM 2003, Nuclear Instruments and Methods in Physics Research Section B,219 (2004) 1027-1036.
    12. J.M.White and P.F.Heidrich, Applied Optics.1976,15(1):151-155.
    13. K.Kawano and T.Kitoh, John Wiley & Sons, INC.2004.
    14. P.J.Chandler and F.L.Lama, Optica Acta,1986,33(2):127-143.
    15. L, Thylen, Opt. Quantum Electron,15, (1983) 433-439.
    16. M. D. Felt, J. A. Fleck, Appl. Opt.,17, (1978) 3990-3998.
    1.罗普生,离子注入物理,上海科学技术出版社,1984.
    2.刘金声,离子束技术及应用,国防工业出版社,1995.
    3.戴达煌,周克菘,袁振海,现代材料表面技术科学,冶金技术出版社,2004.
    4.张光华,离子注入技术,北京-机械工业出版社,1982.
    5.刘乃泉,加速器理论,清华大学出版社,2004.
    6.朱唯干等:背散射分析技术,原子能出版社,1978.
    7.杨福家,赵国庆:离子束分析,上海-复旦大学出版社,1985.
    8. P. K. Tien, R. Ulrich, P. J. Martin, Applied Physics Letter,14 (1969) 291-294.
    9. P. K. Tien, R Ulrich, Journal of the optical society of American.60(8), (1970) 1325-1337.
    10. J. H. Harris, R. Shubert, J. N. Polky, Journal of the optical society of American.60, (1970) 1007-1009.
    11. R. Ulrich, Journal of the optical society of American.60(8), (1970) 1337-1350.
    12. H. G. Unger, Planar optical waveguide and fibres. Oxford:Clarendon,1977.
    13. W. A. Pasmooij, P. A. Manderloot, M K Smit. Lightwave technology,7(1), (1989) 175-180.
    14. Tamir T. Integrated Optics. New York:Springer- Verlag,1979,102-107.
    15. Merz J L, Logan R A, Sergent A M, Journal of applied physics,47, (1976) 1436-1450.
    1.C. Klingshirn, physica status solidi B 244, (2007) 3027-3073.
    2. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Journal of Applied Physics,79 (1996) 7983-7990.
    3. Y. Wang, W. Lee, T. Tseng, Applied physics letters 69, (1996) 1807-1809.
    4. D. Persegol, E. Pic, and J. Plantier, Journal of Applied Physics,62 (6) (1987) 2563-2565.
    5. R. G. Heideman, P. V. Lambeck, J. G. E. Gardeniers, Optical Materials 4, (1995) 741-755.
    6. Debjani Karmakar, S. K. Manda, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta, G. P. Das, Physical review B 75, (2007) 144404.
    7. S. F. Yu, Clement Yuen, S. P. Lau, Y. G. Wang, H. W. Lee, and B. K. Tay, Applied physics letters 83, (2003) 4288-4290.
    8. Hsieh Hsing-Hung, Wu Chung-Chih, Applied physics letters 91, (2007) 013502.
    9. K. Maeda, M. Sato, I. Niikura, T. Fukuda, Semiconductor science technology 20, (2005) S49-S54.
    10. C. Liu, F. Yun, and H. Morkoc, J. Mater. Sci.-Mater. Electron.16,555-579 (2005).
    11. D.C. Reynolds, D.C. Look, B. Jogai, Solid State Communications 99 (1996) 873-875.
    12. D. C. Look, D. C. Reynolds, J. W. Hemski, R. L. Jones, and J. R. Sizelove, Applied physics letters 75,811-813 (1999).
    13. D. Fluck, P. Gunter, R. Irmscher, and Ch. Buchal, Appl. Phys.Lett.59,3213-3215 (1991).
    14. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge,1994).
    15. D. W. Hamby, D. A. Lucca,,J.-K. Lee, M. Nastasi, Nuclear instruments and methods in physics research B,242 (2006) 663-666.
    16. J.-K. Lee, T. A. Harriman, D. A. Lucca, H. S. Jung, D. B. Ryan, M. Nastasi, Nuclear instruments and methods in physics research B,257 (2007) 71-74.
    17.陈志权,河裾厚男,物理学报,55(2006)4353-4357.
    18. S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, Applied physics letters 93,2972-2976 (2003).
    19. S. O. Kucheyev, P. N. K. Deenapanray, C. Jagadish, J. S. Williams, Mitsuaki Yano, Kazuto Koike, Shigehiko Sasa, Masataka Inoue, Ken-ichi Ogata, Applied physics letters 81, (2002) 3350-3352.
    20. J. F. Ziegler, SRIM-2003, Nuclear instruments and methods in physics research B 219,(2004)1027-1036.
    21. M. DiDomenico, Jr. and S. H. Wemple, Oxygen-octahedra ferroelectics. I. Journal of Applied Physics,40, (1969) 720-734.
    22. S. H. Wemple, and M. DiDomenico, Jr., Physical review B 1, (1970) 193-202.
    23. U. Ozgur, Ya. I.Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, Journal of Applied Physics,98, (2005) 041301.
    24. M. J. Weber, Handbook of optical materials, (Academic, The CRC press, Boca Raton,2003)
    25. M. C. Gupta and J. Ballato, The handbook of Photonics, (Academic, The CRC press, Boca Raton,2006), Chap.6.
    26. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, and Y. Jiao, Physical review B 75, (2007) 195101.
    27. J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, Journal of Applied Physics,108, (2010) 033105.
    28. H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, Journal of Applied Physics, 77,(1995)4467-4476.
    29. L. C. Feldman, J. W. Rodgers, Journal of Applied Physics 41, (1970) 3776-3782.
    30. X. B. Ming, F. Lu, J. J. Yin, M. Chen, S. M. Zhang, X. H Liu, Z. H. Qin, Y. J. Ma, Opt. Express 19, (2011) 7139-7146.
    1. Rolindes Balda, Joaquin Fernandez, Sara Garcia-Revilla, Jose M. Fernandez-Navarro, Optics express 15, (2007) 6750-6761.
    2. X. B. Chen, W. M. Du, N. Sawanobori, G. Y. Zhang, Z. F. Song, Optics communications 181, (2000) 171-181.
    3. Yunxin Liu, Changfu Xu, QibinYang, Journal of applied physics 105, (2009) 084701.
    4. N. Mails, J. P. Reithmaier, A. Forchel, M. Kohls, L. Spanhel, G. Muller, Appl. Phys. Lett.75, (1999) 2005-2007.
    5. Y.E. Romanyuk, I. Utke, D. Ehrentraut, V. Apostolopoulos, M. Pollnau, S. Garcia-Revilla, R. Valiente, J. Cryst. Growth 269, (2004) 377-384.
    6. K.M. Wang, M.Q. Meng, F. Lu, X. Wang, W. Wang, P.J. Ding, Y.G. Liu, Opt. Commun.134,(1997)55-58.
    7. S. Zhou, K. Potzger, G.Talut, H. Reuther, N.Volbers, M. Lorenz, J. Borany, R. Grotzschel, W. Skorupa, M. Helm, J. Fassbender, T. Herrmannsdorfer, J. Appl. Phys.103, (2008) 023902.
    8. A.Y. Azarov, S.O. Kucheyev, A.I. Titov, P.A. Karaseov, J. Appl. Phys.102, (2007) 083547.
    9. S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, C. Evans, A.J. Nelson, A.V. Hamza, Phys. Rev. B 67, (2003) 094115.
    10. R. Dogra, A.P. Byrne, M.C. Ridgway, Opt. Mater.31, (2009) 1443-1447.
    11. M. Peres, J. Wang, M.J. Soares, A. Neves, T. Monteiro, E. Rita, U. Wahl, J.G. Correia, E.Alves, Superlattice Microst.36, (2004) 747-753.
    12. A. Audren, A. Hallen, M.K. Linnarsson, G. Possnert, Nucl. Instrum. Meth. B 268, (2010) 1842-1846.
    13. L.C. Feldman, J.W. Rodgers, J. Appl. Phys.41, (1970) 3776-3782.
    14. J.F. Ziegler, Nucl. Instrum. Meth. B 219, (2004) 1027-1036.
    15. R.B. Lauer, J. Phys. Chem. Solids 34, (1973) 249-253.
    16. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys.84, (1998) 2287-2294.
    17. B.S. Pierce, R.L. Hengehold, J. Appl. Phys.47, (1976) 644-651.
    18. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, J. Appl. Phys.79,(1996)7983-7990.
    1. V. Donzella, V. Toccafondo, S. Faralli, F. Di Pasquale, C. Cassagnettes, D. Barbier, and H. Hernandez Figueroa, Optics Express 18, (2010) 12690-12701.
    2. Rafael Salas-Montiel, Mehmet E.Solmaz, Ohannes Eknoyan, Christi K. Madsen, IEEE Photonics technology letters 22, (2010) 362-364.
    3. D. Zhang, C. Chen, F. Wang, D. M.Zhang, Applied physics B:Lasers and optics 98, (2010)791-795.
    4. D. L. Yang, E. Y.B. Pun, H. Lin, Applied physics letters 95, (2009) 151106.
    5. R. T. Zhao, W. H. Liu, J. Zhang, E. Y. B. Pun, H. Lin, Optics and lasers in engineering 49, (2011) 52-56.
    6. S. Rivier, X. Mateos, V. Petrov, U. Griebner, Optics express 15, (2007) 5885-5892.
    7. Western Bolanos, Joan J. Carvajal, Xavier Mateos, Gines Lifante, Ganapathy S. Murugan, James S. Wilkinson, Magdalena Aguilo, Francesc Diaz, Optics materials express 1, (2011) 306-315.
    8. C. Klingshirn, Phys. Stat. Sol. B (2007) 244 3027
    9. P.J. Chandler and F.L. Lama 1986 Opt. Acta 33 127
    10. P. Hertel and H.P. Menzler 1987 Appl. Phys. B 44 75
    11. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi 2002 J. App. Phys.926477
    12. J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero and A. Garcia-Cabanes 2005 86 183501
    13. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, R. Guzzi 2004 J. App. Phys.96242
    14. J. Olivares, A. Garcia-Navarro, G. Garcia, F. Agullo-Lopez, F. Agullo-Rueda, A. Garcia-Cabanes and M. Carrascosa 2007 J. App. Phys.101033512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700