梯度多孔TiNi合金的制备与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了NH4HCO3对多孔TiNi合金孔隙性能和机械性能的影响,根据实验结论制备了梯度多孔TiNi合金,并对其进行了性能测试。
     实验表明,在相同的烧结工艺下,随着NH4HCO3添加量的增多,材料孔隙率、开孔率升高,孔隙连通性增强,孔隙圆度略有降低。添加质量比为35:100的NH4HCO3的TiNi粉末烧结后可制得孔隙率达到60%的多孔TiNi合金。体现出NH4HCO3的优异造孔性能。同时,研究结果显示多孔TiNi合金的抗弯强度、弹性模量、抗压强度等机械性能随着NH4HCO3的添加量的增加(等同于孔隙率的提高)而降低。
     此外,在研究过程中发现三层结构的梯度多孔TiNi合金的三点弯曲测试曲线存在“伪屈服”现象。这是由于试样心、表孔隙结构差异明显造成的特殊现象。在研究中还注意到梯度多孔TiNi合金的抗弯强度受结构影响较大。随着心部低孔隙率层所占体积比例增加,抗弯强度增加。抗弯强度的实际值比理论值高,表现出优异的复合性能。
     在以上研究的基础上,本课题利用元素粉末冶金法选用国产Ti粉和Ni粉成功制备出具有三维连通网状开孔结构的梯度多孔TiNi合金。合金表层孔隙率为60%,大孔孔径尺寸为100~200μm;心部孔隙率为30%,孔径尺寸为10~60μm,双层梯度结构结合紧密,结合强度为48MPa。
In this paper, the influence of NH4HCO3 on the pore characteristics and mechanical properties of porous TiNi alloy were studied. The gradient porous TiNi alloy was prepared according to the results, and then, the alloy’s properties were tested.
     The results indicated that the connection of the pores, the porosity and open-porosity increased with the increasing of NH4HCO3, but the roundness of the pores decreased slightly at same time. The samples with a porosity of 60% were fabricated by adding NH4HCO3 about 35g in 100g mixed powder which proved NH4HCO3 is good in forming pores. In terms of the mechanical properties, the bending, Young’s modulus, compressive strength and hardness were tested. The results indicated that these mechanical properties decreased with increasing NH4HCO3 content (which is equal to the increase of the porosity).
     Moreover, there was pseudo yield phenomenon according to the test curve of three points bending of the gradient porous TiNi alloy with three layers structure. The reason of this phenomenon was the obvious structure difference between the surface and interior layer.
     The bending strength of the gradient porous TiNi alloy was influenced by its structure. The strength improved greatly with the increasing of the interior layer proportion. Furthermore, the real strength was higher than the theoretical strength which proved the good compound effect of this gradient structure.
     Basing on the above experiments, the gradient porous TiNi alloy with pore characteristics of interconnected three-dimensionally meshy open structure have been fabricated by using domestic Ti and Ni powder through element powder metallurgy. The porosity range and mean big pore size range of the surface layer were 60% and 100-200μm. The porosity range and mean big pore size range of the interior layer were 30% and 10-60μm.The adhesion of the double gradient structure is firm, and its the adhesive strength is about 48MPa.
引文
[1]师昌绪,材料大辞典,北京:化学工业出版社,1994. 849.
    [2]顾汉卿,徐国风,生物医用材料.天津:天津科技翻译出版公司,1993. 8.
    [3]张兴栋,生物医学材料的发展动态和趋势,稀有金属材料与工程, 2000;29[增刊1]:53~57
    [4]邹翰,论生物材料研究的学科发展战略,国外医学生物医学工程分册, 1992;15:249~255.
    [5]王勃生,孟庆恩,高振英,杨志伟,李晓光,生物材料的战略意义及近期发展方向,材料导报, 1995;9[3]:1~3
    [6]姚康德,余耀庭,生物医用材料的发展概况及趋势,余耀庭主编,生物医用材料,天津:天津大学出版社,2000,1~11
    [7]郑学斌,刘宣勇,丁传贤,人体硬组织替代材料的研究进展,物理, 2003;32[3]:159~164
    [8] Damien CJ, Parsons JR, Bone graft and bone graft substitutes: a review of current technology and applications, J Appl Biomater 1992;2:187~208
    [9] Hench LL, Biomaterials: a forecast for the future, Biomater 1998; 19: 1419~1423
    [10]顾汉卿,徐国风,生物医用材料,天津:天津科技翻译出版公司,1993, P54~57.
    [11] Overgaard S, Calcium phosphate coatings for fixation of bone implants, Acta Orthop Scand 2000; 71[Suppl 197]:1~74
    [12]杨贤金, NiTi合金生物活性表面工程的研究,天津:天津大学,2000
    [13] Buehler W.W., Gilfrich J.V., Willey R.C., Effect of low - temperature phase changes on the mechanical properties of alloys near composition NiTi, Journal Applied Physics, 1963, 34, 1475~1477
    [14] Lipscomb I. P., Nokes L. D. M., The application of shape memory alloys in medicine, Antony Rowe Ltd, Chippenham, Wiltshire, Great Britain, 1996
    [15]赵连城,蔡伟,郑玉峰,合金的形状记忆效应与超弹性,北京:国防工业出版社,2002
    [16]杨杰,形状记忆合金及其应用,北京:机械工业出版社,1996,127
    [17]舟久保,熙康,形状记忆合金,千东范译,北京:机械工业出版社,1984
    [18]徐祖耀主编,形状记忆材料,上海:上海交通大学出版社,2000
    [19] Y. Y. Li, L. J. Rong. Proc. IA-SMA’94, Quebec, Canada, 1994
    [20]费超,冯焕,形状记忆合金的研制及其应用现状,金属材料, 1989[1]:1~10.
    [21] Mohammed E S, Helge F B., On the properties of two binary NiTi shape memory alloys, Biomaterials, 2002,23:2887~2894
    [22]崔福斋,冯庆玲,生物材料学,北京:科学出版社, 1996,127.
    [23]杨桂通,吴文周,骨力学,北京:科学出版社, 1989,5.
    [24]张亨.神奇的形状记忆材料.化学世界,2002,43(6):335~ 336。325
    [25]李青山,马云兰,等.功能橡胶与智能弹性体世界橡胶工业,2003,30(6):38~41.
    [26]陈士朝.杜仲橡胶的开发和应用.橡胶工业,1993,40(11):690~ 698.
    [27]傅玉成.杜仲胶记忆材料的性质与应用.高分子材料科学与工程,1992。7(4):123~126.
    [28]潘道成,张和康。张隐西.形状记忆聚合物的原理和应用.化学世界,1990,31(12):534~537.
    [29]宋景社,黄宝琛,潘若盛,等.高反式1,4-聚异戊二烯形状记忆材料的研究.弹性体,1998,8(1):1~5.
    [30]宋景社,黄宝琛,张昊,等.高反式1,4-聚异戊二烯与高密度聚乙烯共混型形状记忆材料的研究.塑料科学,1998,(5):4~7.
    [31]朱光明,梁国正,徐前永等.辐照对聚己内醋结构和性能的影响.高分子学报,2003,43(6):667~672.
    [32]金嘉陵,张一.形状记忆材料特性综合研究方法.医用生物力学,1995,10(2):51~55.
    [33]詹中贤,朱长春,浅议形状记忆聚氨酯弹性体,聚氨酯工业, 2005.Vol.20 No.3.
    [34]姜敏,彭少贤,郦华兴,形状记忆聚合物研究现状与发展,现代塑料加工应用, 2005 .Vol.17 No.2.
    [35] Langer R,Lendlein A,Schmidt A,et a1.Biodegradable shape memory polymers.WO 99/42147.Aug.26.1999
    [36] V. I. Itin, V. E. Gjunter, S. A. Shabalovskaya, R. L. C. Sachdeva, Mechanical properties and shape memory of porous nitinol. Mater. Charact, 1994(32):179~187
    [37]朱胜利,多孔TiNi形状记忆合金的研究;[博士论文],添加:天津大学,2005.
    [38] V. E. Gjunter. Delay Law and New Class of Materials and Implants in Medicine Northampton, USA: STT, 2000,157
    [39] Yahia L.Shape memory implants. Berlin:Springer;2000.
    [40] L’H. Yahia, S. Lombardi, N. Hagemeister, G. Drouin, C.H.Rivard, M.Assad, M.okuyama, Improvement of cyto-compatibility and biomechanical compatibility of NiTi shape memory alloys, J.Appl.Biomech.,10, 19~24(1995)
    [41] M.Assad, L’H.Yahia, N.Lemieux, Ch.H.Rivard, Comparative in vitro biocompatibility of nickel-titanium,pure nickel,pure titanium,and stainless steel:genotoxicity and atomic absorption evaluation, Biomed.Mater.Eng.,9(1),1(1999)
    [42] V.E.Gunter, Supperelastic shape memory implants in maxillofacial surgery, traumatology, orthopaedics and neurosurgery (Tomsk, Russia, Tomsk University Publishing house, 1995)
    [43] G.Z.Dambaev, V.E.Gjunter, A.A.Radionchenko, V.I.Itin, I.G.Kouzenko, V.N.Hodorenko, L.R.Bazilevich, K.A.Goural, Porous permeable superelastic implants in surgery(Tomsk University Publishing house, Tomsk, Russia, 1996)
    [44] C.Trepanier, T.K.Leung, M.Tabrizian, D.Bienvenu, J.F.Tanguay, D.L.Piron, L.Bilodeau, J.Appl.Biomater.,48,165(1999)
    [45] I.D.Tazin, In:shape memory alloy’86:proceedings of the international symposium on advanced biomaterial(ISAB)(Montreal, Canada, 1997) 186
    [46] S.Rhalmi, M. Odin, M.Assad, M.Tabrizian, CH. Rivard, L’H. Yahia. Hard, soft tissue and in vitro cell response to porous nickel-titanium:a biocompatibility evaluation, Biomed. Mater.Eng,1999(9):151-162
    [47] R. A.Ayers,S. J. Simske,A. BatemanT,eta1.Effect of nitinoiimplant porosity on cranial bone ingrowth and apposition after 6 weeks.Journal of Biomedical Materials Research,1999,45(1):42~47.
    [48] S.J.Simske, R.L.C.Sachdevar Cranial bone apposition and ingrowth in a porous nickel-titanium implant, J.Biomed. Mater. Res., 1995(29):527-533.
    [49] B. Y. LI, L. J. RONG, Y. Y. LI and V. E. GJUNTER, Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis reaction mechanism and anisotropy in pore structure, Acta mater, 48 (2000) 3895~3904
    [50] C.L. Chu, C.Y. Chung, P.H. Lin, Phase transformation behaviors in porous Ni-rich NiTi shape memory alloy fabricated by combustieron synthesis , Matials Science and Engineering A 392 (2005) :106~111
    [51] S.L. Zhu, X.J. Yang, F. Hu, S.H. Deng, Z.D. Cui, Processing of porous TiNi shape memory alloy from elemental powders by Ar-sintering, Materials Letters 58 (2004): 2369~2373
    [52] Li Bingyun, Rong Jianli, Li Yiyi, Porous NiTi alloy prepared from element powder sintering, J. Mater. Res., 1998: 13(10), 2847~2851
    [53] Green S.M., Grant D.M., Kelly N.R., Powder metallurgical processing of NiTi shape memory alloy, Powder Metallurgy, 1997, 40(1): 43~47
    [54] McNeese D.M., Lagoudas D.C., Pollock T.C., Processing of TiNi elemental powders by ho isostatic pressing, Materials Science and Engineering A, 2000, 280: 334~348
    [55] Bing-Yun Li, Li-Jian Rong, Yi-Yi Li, Anisotropy of dimensional change and its corresponding improvement by addition of TiH2 during elemental powder sintering of porous NiTi alloy, Materials Science and Engineering 1998,A255: 70~74
    [56] J. C. Hey, A. P. Jardine, Shape memory TiNi synthesis from elemental powders, Mater. Sci. Eng., 1994, A188, 291-300.
    [57] Sauli Kujala, Ari Pajala, Matti Kallioinen, Antti Pramila, Juha Tuukkanen and Jorma Ryh?nen , Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon , Biomaterials, 2004: 25(2), 353~358
    [58]赵兴科,王中,郑玉峰,赵连城,TiNi合金粉末烧结与燃烧合成工艺,粉末冶金技术,2000, 183(3): 214~217
    [59]张小明,殷为宏,王学成,SHS法制备高孔隙度TiNi合金,稀有金属材料与工程,2000,29(1): 61~63,
    [60]李丙运,戎利建,李依依,V.E.Gjunter,生物医用多孔TiNi形状记忆合金的研究进展,材料研究学报,第六卷,2000.6, 561~567
    [61]邢树中等,自蔓延高温合成镍钛形状记忆合金的生物医学基础研究,上海生物医学工程,第20卷, 1999.3. 3~5
    [62] Christian Greiner, Scott M. Oppenheimer, David C. Dunand, High strength, low stiffness, porous NiTi with superelastic properties, Acta Biomaterialia1(2005)705~716
    [63] OlegPrymak , Denise Bogdanski, Morphological characterization and invitro biocompatibility of a porous nickel–titanium alloy, Biomaterials26(2005)5801~5807.
    [64] B.Yuan , C.Y. Chung ,M.Zhu, Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processingMaterialsScienceandEngineeringA382(2004)181~187
    [65]袁斌,曾美琴,热等静压法制备多孔NiTi形状记忆合金,功能材料, 2004年增刊第35卷,1647~1651
    [66] B.Yuan , C.Y. Chung , M.Zhu. Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing, MaterialsScienceandEngineeringA382(2004)181~187
    [67] Cheal E ,Spector M ,Hayes W, Role of loads and prostheses material properties on the mechanics of the proximal femur after total hip arthroplasty, J Orthop Res, 1992 ,10 :405~422.
    [68] Huiskes R , Weinans H , Riebergen B, The relationship between stress shielding and hone resorption around total hip stems and the effects of flexible materials, Clin Orthop Relat Res, 1992 ,274 :124~134.
    [69]欣柯材,材料领域的新葩:梯度材料[N],科技日报, 2003 .04 . 11.
    [70]梯度性材料:复合材料的未来,山东科学. 2005.1
    [71]窦光宇,正在兴起的功能梯度材料,金属世界, 2004.4
    [72]李永,宋健,张志民,钛基梯度功能材料的复合结构研究进展,稀有金属材料与工程第34卷,2005.2
    [73]邓松华,杨贤金,朱胜利,崔振铎,多孔NiTi形状记忆合金的生物医学特性及其医用前景,金属热处理第28卷, 2003.12, 12~15
    [74]黄培云主编,粉末冶金原理,北京:冶金工业出版社1982
    [75] Itin V I, Gyunter V E, Shabalovskaya S A, Mechanical properties and shape memory of porous Nitinol, Mater Charact,. 1994,32:179~187
    [76]陆荣林,孙庆平,方如华,多孔NiTi形状记忆合金的力学性能的实验研究,力学季刊第22卷第二期,2001.6. 270~272
    [77] K.I.Hirano, K.I.Ouchi, Reaction diffusion in the TiNi system, J.Japan Inst. Metals 1968(32):613~618
    [78] B. Y. Li, L. J. Rong, Y. Y. Li, The influence of addition of TiH2 in elemental powder sintering porous Ni-Ti alloys, Materials Science and Engineering 2000,A281:169~175
    [79]张廷华,郑玉峰,蔡伟,赵连城,NiTi形状记忆合金的相变行为及其影响因素,材料科学与工艺,1997,5(1):80-85
    [80] E. A.鲍利索娃等著,陈石卿译.钛合金金相学,国防工业出版社.1986.4: 24~26
    [81]葛志明,钛的二元合金相图,国防工业出版社,1977.12: 45~48
    [82]张喜燕等,钛合金及应用,化学工业出版社,2005.4: 70~71
    [83] K. Ishizaki, S. Komamenni, M. Nanko, Porous materials process technology and application, Norwell, USA Kluwer Academic Publishers, 1998
    [84] F.N. Rhines, Microstructology, Riederer Verlag, Stuttgart 1986: 36~44
    [85] H. E. Exner, Int. Metall. Rev. 1972,17,25
    [86] Marcu Puscas, T. Signorini, M. Molinari, A. Straffelini, G., Image analysis investigation of the effect of the process variables on the porosity of sintered chromium steels, Materials Characterization, 2003, 50(1): 1~10
    [87] H.P.蒂吉斯切,B.克雷兹特,多孔泡沫金属,化学工业出版社
    [88]束德林编,金属力学性能,机械工业出版社, 1995. 61-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700