TACI-Ig对ConA活化淋巴细胞的染色质诱导SLE样小鼠模型的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     建立刀豆蛋白A(concanavalin A, ConA)活化淋巴细胞的染色质诱导的系统性红斑狼疮(systemic lupus erythematosus, SLE)样小鼠模型,观察B淋巴细胞刺激因子受体TACI融合蛋白(TACI-immunoglobulin, TACI-Ig)隔日一次皮下注射给药8周对模型小鼠的治疗作用,并探讨其部分作用机制。
     方法:
     用ConA活化淋巴细胞的染色质诱导SLE样小鼠模型,d28起以TACI-Ig(3.75,7.5,15mg·kg~(-1))隔日一次皮下注射给药8周,观察小鼠一般体征变化,目测半定量尿蛋白试纸法检测动物的尿蛋白变化,HE染色法检查动物肾脏、脾脏病理改变,计算动物的脾脏和胸腺指数,3~H-TdR掺入法检测脂多糖(lipopolysaccharide, LPS)和ConA诱导的B和T淋巴细胞增殖反应,全自动生化分析仪检测血清中Crea和BUN水平,酶联免疫吸附法(enzyme-linked immunosorbent assay, ELISA)检测小鼠血清中ANA、anti-dsDNA、IgG1、IgG2a、BLyS、IL-10和IFN-γ水平,流式细胞术检测脾脏T、B淋巴细胞亚群变化。
     结果:
     1. TACI-Ig皮下注射给药对SLE样模型小鼠一般体征及尿蛋白的影响模型小鼠在给药开始后5~8周时被毛疏松,光泽度下降。TACI-Ig皮下注射给药各组动物在给药期间行为活泼,毛发较模型组动物有光泽。模型小鼠尿蛋白水平随着造模后时间的延长而逐渐升高,TACI-Ig(15mg·kg~(-1))隔日一次皮下注射给药第4~8周、TACI-Ig(7.5mg·kg~(-1))隔日一次皮下注射给药第6~8周均可显著降低模型动物的尿蛋白水平。
     2. TACI-Ig皮下注射给药对SLE样模型小鼠的肾脏、脾脏组织病理学的影响模型小鼠具有明显的间质性肾炎特征,肾小球体积增大,系膜细胞增生,系膜基质增多,肾小球玻璃样变性,局部中性粒细胞浸润,毛细血管基底膜略增厚;脾脏白髓弥漫性增生,中央动脉管壁纤维性增厚,生发中心形成。TACI-Ig皮下注射给药后模型小鼠的肾小球体积减小,肾小球系膜细胞增生减少,肾间质出血、中性粒细胞浸润等炎症状态有明显改善。TACI-Ig(7.5,15mg·kg~(-1))皮下注射给药能明显减少脾脏生发中心的形成,有效改善白髓增生。
     3. TACI-Ig皮下注射给药对SLE样模型小鼠胸腺指数和脾脏指数的影响模型小鼠的脾脏指数较正常小鼠显著升高,胸腺指数无明显改变,TACI-Ig(15mg·kg~(-1))皮下注射给药可显著降低SLE样模型小鼠异常升高的脾脏指数。
     4. TACI-Ig皮下注射给药对SLE样模型小鼠胸腺淋巴细胞和脾淋巴细胞增殖的影响模型小鼠的脾淋巴细胞增殖反应较对照组显著增强,TACI-Ig(7.5,15mg·kg~(-1))皮下注射给药可显著降低模型小鼠LPS诱导的脾脏B淋巴细胞增殖反应,而对ConA诱导的胸腺T淋巴细胞增殖则无明显影响。
     5. TACI-Ig皮下注射给药对SLE样模型小鼠肾功能的影响模型小鼠血清Crea和BUN水平比对照组BALB/c小鼠显著升高,TACI-Ig(7.5,15mg·kg~(-1))皮下注射给药能显著降低模型小鼠的Crea和BUN水平。
     6. TACI-Ig皮下注射给药对SLE样模型小鼠血清ANA、anti-dsDNA、IgG1和IgG2a的影响
     模型小鼠的血清ANA、anti-dsDNA、IgG1和IgG2a水平显著升高,TACI-Ig皮下注射给药对模型小鼠升高的ANA、anti-dsDNA、IgG1和IgG2a水平均有显著降低作用。
     7. TACI-Ig皮下注射给药对SLE样模型小鼠血清BLyS、IL-10、IFN-γ的影响模型小鼠血清的BLyS、IL-10、IFN-γ水平显著升高,TACI-Ig(3.75,7.5,15mg·kg~(-1))皮下注射给药均可显著下调BLyS水平,TACI-Ig(15mg·kg~(-1))皮下注射给药可显著降低IL-10水平,TACI-Ig给药对模型小鼠的IFN-γ水平无明显影响。
     8. TACI-Ig皮下注射给药对SLE样模型小鼠脾脏T、B淋巴细胞亚群的影响模型小鼠的脾脏总B淋巴细胞(CD19~+),活化B淋巴细胞(CD19~+CD21~+,CD19~+CD23~+),成熟B淋巴细胞(CD19~+IgD~+)的百分比显著升高,而记忆B淋巴细胞(CD19~+CD27~+)和早期B淋巴细胞(CD19~+IgM~+)的表达与对照组比较差异无显著性。TACI-Ig(3.75,7.5,15mg·kg~(-1))皮下注射给药能显著降低模型小鼠总B淋巴细胞,活化B淋巴细胞,成熟B淋巴细胞和早期B淋巴细胞的百分比,而对记忆B淋巴细胞表达无明显影响。模型组小鼠T淋巴细胞各亚群的百分比与对照组无明显差异。TACI-Ig(15mg·kg~(-1))皮下注射给药可以显著升高活化Th淋巴细胞(CD4~+CD25~+)百分比,而对Th淋巴细胞其它亚群的表达无明显影响。
     结论:
     1. TACI-Ig皮下注射给药对活性染色质诱导的SLE样模型小鼠具有治疗作用,可有效改善小鼠的肾功能,降低小鼠的蛋白尿水平,明显改善模型小鼠肾小球肾炎和脾脏增生等病理变化。
     2. TACI-Ig皮下注射给药可有效减少脾脏总B淋巴细胞、活化B淋巴细胞和成熟B淋巴细胞数量,显著降低升高的自身抗体和炎性细胞因子水平,提示其作用机制与调节免疫功能有关。
OBJECTIVE
     Systemic lupus erythematosus (SLE)-like mouse model was successfully established by immunizing with active chromatin isolated from concanavalin A (ConA)- activated lymphocytes. We observed the therapeutic effects of B lymphocyte stimulator receptor TACI fusion protein (TACI-Ig) subcutaneously once every other day for 8 weeks on model mice and investigated its partly mechanism.
     METHODS
     SLE-like mouse model was successfully established by immunized with active chromatin isolated from ConA-actived lymphocytes. Mice were treated with TACI-Ig (3.75, 7.5, 15mg·kg~(-1)) subcutaneously once every other day from d28 for 8 weeks. General signs were observed. Proteinuria was measured by Semi-quantitative Albustix paper. Histopathological changes of kidney and spleen were observed by haematoxylin and eosine (HE) staining. Thymus index and spleen index were calculated. Thymo-lymphocyte and spleno-lymphocyte proliferation stimulated by ConA and lipopolysaccharide (LPS) were tested by 3H-TdR incorporation method. Levels of Crea and BUN were detected by automatic biochemical analyzer. Levels of ANA, anti-dsDNA, IgG1, IgG2a, BLyS, IL-10 and IFN-γin serum were tested by enzyme-linked immunosorbent assay (ELISA). Splenic T, B lymphocyte subsets were analysed by flow cytometry.
     RESULTS
     1. Effect of TACI-Ig on general signs and urine protein
     Model mice showed hair loose and glossiness decline from 5-8 weeks, while mice treated with TACI-Ig subcutaneously bahaved actively and had more glossy hair than model group.
     The level of urine protein of model group gradually improved over time. TACI-Ig (15mg·kg~(-1)) subcutaneously once every other day from 4-8 week and TACI-Ig (7.5mg·kg~(-1)) subcutaneously once every other day from 6-8 week could reduce the level of urine protein of the SLE-like model mice significantly.
     2. Effect of TACI-Ig on kidney and spleen histopathology
     Kidney sections from model group showed obvious features of interstitial nephritis, glomerular volume and mesangial matrix increasing, mesangial cell hyperplasia, glomerular hyaline degeneration, local neutrophil infiltration, capillary basement membrane thickening slightly. Spleen sections from model group showed diffuse hyperplasia of the spleen white pulp, central arterial wall fibrous thickening and germinal centers formation. TACI-Ig subcutaneously markedly reduced glomerular volume, decreased mesangial cell hyperplasia, effectively improved renal interstitial hemorrhage, neutrophil infiltration and other inflammatory state. TACI-Ig (7.5, 15mg·kg~(-1)) subcutaneously evidently reduced the formation of splenic germinal centers and improved the hyperplasia of white pulp.
     3. Effect of TACI-Ig on thymus index and spleen index
     Spleen index of model group rose strikingly compared with normal group, but no obvious changes on thymus index were observed. TACI-Ig (15mg·kg~(-1)) subcutaneously could decrease the elevated spleen index of model group significantly.
     4. Effect of TACI-Ig on thymo-lymphocyte and spleno-lymphocyte proliferation
     Spleno-lymphocyte proliferation was higher in model group compared with that in control group. TACI-Ig (7.5, 15mg·kg~(-1)) subcutaneously could decrease spleno-lymphocyte proliferation of the model mice stimulated by LPS obviously, but had no significant effect on thymo-lymphocyte proliferation stimulated by ConA.
     5. Effect of TACI-Ig on renal function
     The levels of Crea and BUN increased significantly in serum of model group compared with control group. TACI-Ig (7.5, 15mg·kg~(-1)) subcutaneously could decrease the elevated levels of Crea and BUN.
     6. Effect of TACI-Ig on levels of ANA, anti-dsDNA, IgG1 and IgG2a in serum
     The levels of ANA, anti-dsDNA, IgG1 and IgG2a increased significantly in serum of model group compared with control group. TACI-Ig subcutaneously could decrease the elevated levels of ANA, anti-dsDNA, IgG1 and IgG2a.
     7. Effect of TACI-Ig on levels of BLyS, IL-10, IFN-γin serum
     The levels of BLyS, IL-10, IFN-γin serum of model group increased obviously. TACI-Ig (3.75, 7.5, 15mg·kg~(-1)) subcutaneously could reduce the level of BLyS evidently. TACI-Ig (15mg·kg~(-1)) subcutaneously could reduce the level of IL-10 markedly. TACI-Ig administration had no significant effect on the level of IFN-γin model mice.
     8. Effect of TACI-Ig on splenic T, B lymphocyte subsets
     The percentage of total B cells (CD19~+), activated B cells (CD19~+CD21~+, CD19~+CD23~+) and mature B cells (CD19~+IgD~+) in spleen elevated significantly in model group compared with control group except immature B cells (CD19~+IgM~+) and memory B cells (CD19~+CD27~+). Mice treated with TACI-Ig (3.75, 7.5, 15mg·kg~(-1)) subcutaneously could decrease the percentage of total B cells, activated B cells, mature B cells and immature B cells, but with no significant effect on memory B cells.
     The percentage of T cell subsets in model group had no significant differences compared with control group. TACI-Ig (15mg·kg~(-1)) subcutaneously could elevate the percentage of activated Th cells (CD4~+CD25~+), but had no significant effect on other subsets of Th cells.
     CONCLUSIONS
     1. TACI-Ig subcutaneously had a therapeutic effect on SLE-like mouse model induced by active chromatin. It could improve renal function effectively, reduce the level of urine protein, ameliorate the pathological changes such as interstitial nephritis and spleen hyperplasia of model mice obviously.
     2. TACI-Ig subcutaneously could decrease the percentage of total B cells, activated B cells and mature B cells effectively and reduce the elevated levels of autoantibodies and inflammatory cytokines evidently, which prompt that its mechanism may be related with the regulation of immune function.
引文
1. Robak E, Sysa-Jedrzejowska A, Wozniacka A. Progress and perspectives in the treatment of systemic lupus erythematosus. Przegl Lek, 2005; 62(9):894-899.
    2. Nashi E, Wang Y, Diamond B. The role of B cells in lupus pathogenesis. Int J Biochem Cell Biol, 2010; 42(4):543-550.
    3. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol, 2001; 2(9):764-766.
    4. Youinou P, Lydyard PM, Mageed RA. B cells underpin lupus immunopathology. Lupus, 2002; 11(1):1-3.
    5. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D. The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med, 1994; 180(4):1295-1306.
    6. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science, 1999; 285(5425):260-263.
    7. Nardelli B, Belvedere O, Roschke V, Moore PA, Olsen HS, Migone TS, Sosnovtseva S, Carrell JA, Feng P, Giri JG, Hilbert DM. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood, 2001; 97(1):198-204.
    8. Mackay F, Schneider P. TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. Cytokine Growth Factor Rev, 2008; 19(3-4):263-276.
    9. Mackay F, Silveira PA, Brink R. B cells and the BAFF/APRIL axis: fast-forward on autoimmunity and signaling. Curr Opin Immunol, 2007; 19(3):327-336.
    10. Zhang J, Roschke V, Baker KP, Wang Z, Alarcón GS, Fessler BJ, Bastian H, Kimberly RP, Zhou T. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol, 2001; 166(1):6-10.
    11. Kalled SL. The role of BAFF in immune function and implications forautoimmunity. Immunol Rev, 2005; 204:43-54.
    12. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, Xu W, Parrish-Novak J, Foster D, Lofton-Day C, Moore M, Littau A, Grossman A, Haugen H, Foley K, Blumberg H, Harrison K, Kindsvogel W, Clegg CH. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature, 2000; 404(6781):995-999.
    13. Cheema GS, Roschke V, Hilbert DM, Stohl W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum, 2001; 44(6):1313-1319.
    14. Liu W, Szalai A, Zhao L, Liu D, Martin F, Kimberly RP, Zhou T, Carter RH. Control of Spontaneous B Lymphocyte Autoimmunity With Adenovirus-Encoded Soluble TACI. Arthritis Rheum, 2004; 50(6):1884-1896.
    15. Ramanujam M, Wang X, HuangW, Schiffer L, Grimaldi C, Akkerman A, Diamond B, Madaio MP, Davidson A. Mechanism of action of transmembrane activator and calcium modulator ligand interactor-Ig in murine systemic lupus erythematosus. J Immunol, 2004; 173(5):3524-3534.
    16. Carbonatto M, Yu P, Bertolino M, Vigna E, Steidler S, Fava L, Daghero C, Roattino B, Onidi M, Ardizzone M, Peano S, Visich J, Janszen D, Dillon S, Ponce R. Nonclinical Safety, Pharmacokinetics, and Pharmacodynamics of Atacicept. Toxicol Sci, 2008; 105(1):200-210.
    17. Munafo A, Priestley A, Nestorov I, Visich J, Rogge M. Safety, pharmacokinetics and pharmacodynamics of atacicept in healthy volunteers. Eur J Clin Pharmacol, 2007; 63(7):647-656.
    18. Li H, Zhang YY, Sun YN, Huang XY, Jia YF, Li D. Induction of systemic lupus erythematosus syndrome in BALB/c mice by immunization with active chromatin. Acta Pharmacol Sin, 2004; 25(6):807-811.
    19.力弘,章蕴毅,黄曦益,孙雅楠,贾永锋,李端.小鼠系统性红斑狼疮样综合征的诱导及病变特征.中国新药与临床杂志, 2004; 23(8):480-484.
    20.钟叔平,温博贵,何开玲. SRS-淋巴瘤小鼠淋巴细胞染色质理化性质的研究.中国病理生理杂志, 1994; 10(4):378-382.
    21. van Rappard-van der Veen FM, Rolink AG, Gleichmann E. Diseases caused by reactions of T lymphocytes towards incompatible structures of the major histocompatibility complex. VI. Autoantibodies characteristic of systemic lupus erythematosus induced by abnormal T-B cell cooperation across I-E. J Exp Med, 1982; 155(5):1555-1560.
    22. Qiao B, Wu J, Chu Y W, Wang Y, Wang DP, Wu HS, Xiong SD. Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford), 2005; 44(9):1108-1114.
    23. Wang Z, Li H, Xu H, Yue XL, Cheng XQ, Hou WJ, Zhang YY, Chen DF. Beneficial effect of Bupleurum polysaccharides on autoimmune disease induced by Campylobacter jejuni in BALB/c mice. J Ethnopharmacol, 2009; 124(3):481-487.
    24. Brosh N, Eilat E, Zinger H, Mozes E. Characterization and role in experimental systemic lupus erythematosus of T-cell line specific to peptides based on complementarity-determining region-1 and complementarity-determining region-3 of a pathogenic anti-DNA monoclonal antibody. Immunology, 2000; 99(2):257-265.
    25. Lu L, Li J, Wang M, Wu H. Induction of anti-DNA antibodies by immunization with activated lymphocytes and active chromatin. Clin Med J, 1998; 111(6):524-526.
    26. Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, Tschopp J, Browning JL. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med, 1999; 190:1697-1710.
    27. Gross JA, Dillon SR, Mudri S, Johnston J, Littau A, Roque R, Rixon M, Schou O, Foley KP, Haugen H, McMillen S, Waggie K, Schreckhise RW, Shoemaker K, Vu T, Moore M, Grossman A, Clegg CH. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity, 2001; 15(2):289-302.
    28. Wallace DJ, Stohl W, Furie RA, Lisse JR, McKay JD, Merrill JT, Petri MA,Ginzler EM, Chatham WW, McCune WJ, Fernandez V, Chevrier MR, Zhong ZJ, Freimuth WW. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum, 2009; 61(9):1168-1178.
    29. Dall'Era M, Chakravarty E, Wallace D, Genovese M, Weisman M, Kavanaugh A, Kalunian K, Dhar P, Vincent E, Pena-Rossi C, Wofsy D. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum, 2007; 56(12):4142-4150.
    30. Yap DY, Lai KN. Cytokines and their roles in the pathogenesis of systemic lupus erythematosus: from basics to recent advances. J Biomed Biotechnol, 2010; 2010: 365083.
    31. Csiszár A, Nagy G, Gergely P, Pozsonyi T, Pócsik E. Increased interferon-gamma (IFN-gamma), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol, 2000; 122(3):464-470.
    32.叶玉津,梁柳琴,许韩师,杨岫岩,詹钟平,连帆,尹培达. IL-10在系统性红斑狼疮患者PBMC B细胞刺激因子表达中的作用.中山大学学报(医学科学版), 2007; 28(1):54-58.
    33. Harigai M, Kawamoto M, Hara M, Kubota T, Kamatani N, Miyasaka N. Excessive production of IFN-gamma in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B. J Immunol, 2008; 181(3):2211-2219.
    34. Uhm WS, Na K, Song GW, Jung SS, Lee T, Park MH, Yoo DH. Cytokine balance in kidney tissue from lupus nephritis patients. Rheumatology (Oxford), 2003; 42(8):935-938.
    35. Ozmen L, Roman D, Fountoulakis M, Schmid G, Ryffel B, Garotta G. Experimental therapy of systemic lupus erythematosus: the treatment of NZB/W micewith mouse soluble interferon-gamma receptor inhibits the onset of glomerulonephritis. Eur J Immunol, 1995; 25(1):6-12.
    36. Vallerskog T, Heimbürger M, Gunnarsson I, Zhou W, Wahren-Herlenius M, Trollmo C, Malmstr?m V. Differential effects on BAFF and APRIL levels in rituximab-treated patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res Ther, 2006; 8(6):R167.
    37. Stohl W. Therapeutic targeting of B lymphocyte stimulator(BLyS) in the rheumatic diseases. Endocr Metab Immune Disord Drug Targets, 2006; 6(4):351-358.
    1. Lamoureux JL, Watson LC, Cherrier M, Skog P, Nemazee D, Feeney AJ. Reduced receptor editing in lupus-prone MRL/lpr mice. J Exp Med, 2007; 204(12):2853-2864.
    2. Ahuja A, Shupe J, Dunn R, Kashgarian M, Kehry MR, Shlomchik MJ. Depletion of B cells in murine lupus: efficacy and resistance. J Immunol, 2007; 179(5):3351-3361.
    3. Matsumoto K, Yoshikai Y, Asano T, Himeno K, Iwasaki A, Nomoto K. Defect in negative selection in lpr donor-derived T cells differentiating in non-lpr host thymus. J Exp Med, 1991; 173(1):127-136.
    4. Nakatani K, Qu WM, Zhang MC, Fujii H, Furukawa H, Miyazaki T, Iwano M, Saito Y, Nose M, Ono M. A genetic locus controlling aging-sensitive regression of B lymphopoiesis in an autoimmune-prone MRL/lpr strain of mice. Scand J Immunol, 2007; 66(6):654-661.
    5. Atkinson C, Qiao F, Song H, Gilkeson GS, Tomlinson S. Low-dose targeted complement inhibition protects against renal disease and other manifestations of autoimmune disease in MRL/lpr mice. J Immunol, 2008; 180(2):1231-1238.
    6. Teramoto K, Negoro N, Kitamoto K, Iwai T, Iwao H, Okamura M, Miura K. Microarray analysis of glomerular gene expression in murine lupus nephritis. J Pharmacol Sci, 2008; 106(1):56-67.
    7. Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB, Dixon FJ. Spontaneous murine lupus-like syndrome. Clinical and immunopathological manifestations in several strains. J Exp Med, 1978; 148(5):1198-1215.
    8. Elkon KB, Bonfa E, Llovet R, Eisenberg RA. Association between anti-Sm and anti-ribosomal P protein autoantibodies in human systemic lupus erythematosus and MRL/lpr mice. J Immunol, 1989; 143(5):1549-1554.
    9. Treadwell EL, Cohen P, Williams D, O'Brien K, Volkman A, Eisenberg R. MRL mice produce anti-Su autoantibody, a specificity associated with systemic lupus erythematosus. J Immunol, 1993; 150(2):695-699.
    10. Helyer BJ, Howie JB. Renal disease associated with positive lupus erythematosus tests in a cross-bred strain of mice. Nature, 1963; 197:197-208.
    11. Taguchi N, Hashimoto Y, Naiki M, Farr AG, Boyd RL, Ansari AA, Shultz LD, Kotzin BL, Dorshkind K, Ikehara S, Gershwin ME. Abnormal thymic expression of epithelial cell adhesionmolecule (EP-CAM) in New Zealand Black (NZB) mice. J Autoimmun, 1999; 13(4):393-404.
    12. Tao X, Fan F, Hoffmann V, Longo NS, Lipsky PE. Therapeutic impact of the ethyl acetate extract of Tripterygium wilfordii Hook F on nephritis in NZB/W F1 mice. Arthritis Res Ther, 2006; 8(1):R24.
    13. Rahman ZS, Tin SK, Buenaventura PN, Ho CH, Yap EP, Yong RY, Koh DR. A novel susceptibility locus on chromosome 2 in the (New Zealand Black×New Zealand White) F1 hybrid mouse model of systemic lupus erythematosus. J Immunol, 2002; 168 (6):3042-3049.
    14. Izui S, Merino R, Fossati L, Iwamoto M. The role of the Yaa gene in lupus syndrome. Int Rev Immunol, 1994; 11(3):211-230.
    15. Kasono K, Nishida J, Tamemoto H, Fudaka K, Namai K, Kajio H, Masatoshi K, Kanazawa Y, Kawakami M. Thiazolidinediones increase the number of platelets in immune thrombocytopenic purpura mice via inhibition of phagocytic activity of the reticulo-endothelial system. Life Sci, 2002; 71(17):2037-2052.
    16. Rogers NJ, Gabriel L, Nunes CT, Rose SJ, Thiruudaian V, Boyle J, Morley BJ. Monocytosis in BXSB mice is due to epistasis between Yaa and the telomeric region of chromosome 1 but does not drive the disease process. Genes Immun, 2007; 8(8):619-627.
    17. Gleichmann E, van Elven EH, van der Veen JPW. A systemic lupus erythematosus (SLE)-like disease in mice induced by abnormal T-B cell corporation: preferential formation of autoantibodies characteristic of SLE. Eur J Immunol, 1982; 12:152-159.
    18. Rolink AG, Pals ST, Gleichmann E. Allosuppressor and allohelper-T cells in acute and chronic GVHD.ⅡF IR carring mutations at H-2k and/or I-A. J Exp Med, 1983;157:755-771.
    19. van Dam AP, Meilof JF, van den Brink HG, Smeenk RJ. Fine specificities of antibodies in murine models of graft-versus-host disease. Clin Exp Immunol, 1990; 81(1):31-38.
    20.吴厚生,马爱妞,张鹏,郭玲,胡新美.活性染色质诱导抗核抗体生成及肾损伤.上海免疫学杂志, 2000; 20(1):21-24.
    21. Li H, Zhang YY, Sun YN, Huang XY, Jia YF, Li D. Induction of systemic lupus erythematosus syndrome in BALB/c mice by immunization with active chromatin. Acta Pharmacol Sin, 2004; 25(6):807-811.
    22. Vink A, Coulie P, Warnier G, Renauld JC, Stevens M, Donckers D, Van Snick J. Mouse Plasmacytoma growth in vivo: enhancement by interleukin6(IL-6) and inhibition by antibodies directed against IL-6 or its receptor. J Exp Med, 1990; 172:997-1000.
    23. Wooley PH, Seibold JR, Whalen JD, Chapdelaine JM. Pristane-induced arthritis. The immunologic and genetic features of an experimental murine models of autoimmune disease. Arthritis Rheum, 1989; 32:1022-1031.
    24. Satoh M, Reeves WH. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristine. J Exp Med, 1994; 180:2341-2346.
    25. Satoh M , Kumar A , Kanwar YS. Antinuclear antibody production and immune complex glomerulonephritis in BALB/c mice treated with pristine. Proc Natl Acad Sci USA, 1995; 92:10934-10938.
    26. Satoh M, Hamilton KJ, Ajmani AK, Dong X, Wang J, Kanwar YS, Reeves WH. Autoantibodies to ribosomal P antigens with immune complex glomerulonephritis in SJL mice treated with pristane. J Immunol, 1996; 157(7):3200-3206.
    27孙兵,马宝骊,谢雅莉.甲醛化空肠弯曲菌(CJ-S131)与佐剂诱导的自身免疫动物模型.上海免疫学杂志, l991; 11:257-260.
    28.贾永锋,力弘,张剑萍,孙兵,张罗修.空肠弯曲菌CF-1与佐剂诱发的动物自身免疫反应亢进模型.中国药理学通报, 1998; 14(6):564-566.
    29.刘星霞,缪兵,马秀峰,时庆,侯怀水,沈柏均.非特异性T细胞疫苗对空肠弯曲菌诱导的SLE样综合征小鼠免疫功能的影响.中华风湿病学杂志, 2004; 8:601-603.
    30. Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P, Walker A, Mack TM. A rivised estimate of twin concordance in SLE. Arthritis Rheum, 1992; 35(3):311-318.
    31. Namjou B, Kelly JA, Harley JB. The genetics of lupus. In: Tsokos GC, Gordon C, Smolen JS, eds. Systemic lupus erythematosus. Philadelphia: Mosby Elsevier, 2007; 74-80.
    32. Nashi E, Wang Y, Diamond B. The role of B cells in lupus pathogenesis. Int J Biochem Cell Biol, 2010; 42(4):543-550.
    33. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol, 2001; 2(9):764-766.
    34. Youinou P, Lydyard PM, Mageed RA. B cells underpin lupus immunopathology. Lupus, 2002; 11(1):1-3.
    35. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D. The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med, 1994; 180(4):1295-1306.
    36. Scudla V, Horák P, Faltynek L, Pospísil Z, BudíkováM, HermanováZ. The importance of determination of interleukin-10 in the blood of patients with systemic lupus erythematosus. Cas Lek Cesk, 1998; 137(2):44-47.
    37. Llorente L, Richaud-Patin Y, García-Padilla C, Claret E, Jakez-Ocampo J, Cardiel MH, Alcocer-Varela J, Grangeot-Keros L, Alarcón-Segovia D, Wijdenes J, Galanaud P, Emilie D. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systermic lupus erythematosus. Arthritis Rheum, 2000; 43(8):1790-1800.
    38. Hayashi T, Hasegawa K, Ohta A, Maeda K. Reduction of serum interferon ( IFN) -gamma concentration and lupus development in NZB×NZWF(1) mice by lactic dehydrogenase virus infection. J Comp Pathol, 2001; 125(4):285-291.
    39. Csiszár A, Nagy G, Gergely P, Pozsonyi T, Pócsik E. Increased interferon-gamma (IFN-gamma), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol, 2000; 122(3):464-470.
    40. Chan RW, Lai FM, Li EK, Tam LS, Chow KM, Lai KB, Li PK, Szeto CC. Intrarenal cytokine gene expression in lupus nephritis. Ann Rheum Dis, 2007; 66(7):886-892.
    41. Crowley JE, Treml LS, Stadanlick JE, Carpenter E, Cancro MP. Homeostatic niche specification among naive and activated B cells: a growing role for the BLyS family of receptors and ligands. Immunol, 2005; 17(3):193-199.
    42. Zhang X, Park CS, Yoon SO, Li L, Hsu YM, Ambrose C, Choi YS. BAFF supports human B cell differentiation in the lymphoid follicles through distinct receptors. Int Immunol, 2005; 17(6):779-788.
    43. Ahuja A, Shupe J, Dunn R, Kashgarian M, Kehry MR, Shlomchik MJ. Depletion of B cells in murine lupus: efficacy and resistance. J Immunol, 2007; 179(5):3351-3361.
    44. Cheema GS, Roschke V, Hilbert DM, Stohl W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum, 2001; 44(6):1313-1319.
    45. Koneru S, Kocharla L, Higgins GC, Ware A, Passo MH, Farhey YD, Mongey AB, Graham TB, Houk JL, Brunner HI. Adherence to medications in systemic lupus erythematosus. J Clin Rheumatol, 2008; 14(4):195-201.
    46. Parker BJ, Bruce IN. High dose methylprednisolone therapy for the treatment of severe systemic lupus erythematosus. Lupus, 2007; 16(6):387-393.
    47. Rückemann K, Fairbanks LD, Carrey EA, Hawrylowicz CM, Richards DF, Kirschbaum B, Simmonds HA. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T lymphocytes from healthy humans. J Bio Chem, 1998; 273(34):21682-21691.
    48. Costedoat-Chalumeau N, Amoura Z, Hulot JS, Lechat P, Piette JC.Hydroxychloroquine in systemic lupus erythematosus. Lancet, 2007; 369(9569):1257-1258.
    49. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis, 2010; 69(1):20-28.
    50. Tanaka Y, Yamamoto K, Takeuchi T, Nishimoto N, Miyasaka N, Sumida T, Shima Y, Takada K, Matsumoto I, Saito K, Koike T. A multicenter phase I/II trial of rituximab for refractory systemic lupus erythematosus. Mod Rheumatol, 2007; 17(3):191-197.
    51. D?rner T, Kaufmann J, Wegener WA, Teoh N, Goldenberg DM, Burmester GR. Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther, 2006; 8(3):R74.
    52. Zhang J, Roschke V, Baker KP, Wang Z, Alarcón GS, Fessler BJ, Bastian H, Kimberly RP, Zhou T. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol, 2001; 166(1):6-10.
    53. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, Xu W, Parrish-Novak J, Foster D, Lofton-Day C, Moore M, Littau A, Grossman A, Haugen H, Foley K, Blumberg H, Harrison K, Kindsvogel W, Clegg CH. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature, 2000; 404(6781):995-999.
    54. Carbonatto M, Yu P, Bertolino M, Vigna E, Steidler S, Fava L, Daghero C, Roattino B, Onidi M, Ardizzone M, Peano S, Visich J, Janszen D, Dillon S, Ponce R. Nonclinical Safety, Pharmacokinetics, and Pharmacodynamics of Atacicept. Toxicol Sci, 2008; 105(1):200-210.
    55. Munafo A, Priestley A, Nestorov I, Visich J, Rogge M. Safety, pharmacokinetics and pharmacodynamics of atacicept in healthy volunteers. Eur J Clin Pharmacol, 2007; 63(7):647-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700