亚高寒草甸阳坡—阴坡梯度上植物功能性状及群落构建机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在阳坡-阴坡梯度上,由于地形学的缘故百米的距离可能就会造成环境因素极大的变化,植物群落组成、物种多样性和生产力等随之也发生了很大的改变。目前,国内外关于阳坡-阴坡梯度植物生态学的研究主要是描述性的,很少有研究从功能性状的角度去揭示群落的构建以及植物的功能性状对于不同坡向的响应,从而探讨不同坡向物种的共存机制以及生存策略。功能性状是指间接的通过影响物种的“生长-生殖-生存”三方面的个体表现,而影响物种适合度的任何一种“形态-生理-物候”(morpho-physio-phenological)性状,以功能性状为基础的方法,目前正广泛的应用于生态学研究中。
     基于功能性状的生态学研究中,一个重要的方面是植物对环境的适应。物种对环境的适应性是植物生存策略的一个重要方面。植物在漫长的进化和发展过程中,与环境相互作用,逐渐形成了许多内在生理和外在形态方面的适应对策,以最大程度地减小环境的不利影响,这些适应对策的表现即为植物性状(Plant traits)。叶性状,如比叶面积、叶片氮含量,已经被广泛认为与植物的资源利用策略相关。除了资源利用策略之外,叶片性状还反映了不同的“投资回报“策略。随着环境的改变,物种会采取不同的策略以使得自身在不同的环境下更具竞争力,而这就会表现在功能性状的改变上。
     基于功能性状的生态学研究中,另一个重要方面是探讨群落的构建。性状的研究使得生态学家从以种群统计为基础的群落学研究中脱离出来,可以研究多物种的共存。以功能性状为基础的群落构建法则有两种,一种是环境筛选,一种是生物间的相互作用。环境筛选的作用使在同一地区生存的物种具有相似的性状,而生物间的相互作用使得共存物种的性状趋异。这两种构建法则在不同环境中可能具有不同的作用力,进而影响了功能多样性。例如在环境资源较差的条件下物种间竞争强烈,生态位的分化也更加强烈,以使物种能充分互补的利用有限的资源,提高了群落的功能多样性。随着以性状为基础的群落生态学研究方法的发展,一些学者认为除了物种多样性,功能多样性也对生态系统功能发挥着重要的作用。功能多样性就是在一个群落中功能性状的值,范围和分布。
     综合以上的研究背景,在本研究中我们主要从以下三个方面研究了阳坡-阴坡梯度上植物群落的变化和群落构建的机理。首先,探索阳坡-阴坡梯度上植被差异的主要限制性环境因子是我们探索群落构建等生态学问题的基础。我们沿着阳坡-阴坡梯度在两个山地设置了连续的九个样地,在每个样地测量了六个主要的环境因子并调查了植被结构。其次,我们通过研究植物的叶片功能性状,探索了不同坡向的植物资源利用策略和投资回报策略。我们在甘南合作的亚高寒草甸选取山地的阴坡和阳坡,分别测量了四个叶片功能性状:比叶面积,叶片氮含量,叶片磷含量和叶片氮磷比。再次,我们从研究群落功能多样性入手探讨阳坡-阴坡梯度上植物群落的构建和物种的共存机制。本研究我们选用了两个物种性状,比叶面积和高度,来研究坡向梯度上功能性状多样性和物种多样性的格局。
     通过以上的实验研究我们得出了以下结果:1)土壤含水量从阳坡向阴坡逐渐提高,是该梯度上主要的限制性因素,可以解释整个植被差异的28%;物种多样性沿着该梯度显著的提高,与土壤含水量呈现显著的正相关性;从阳坡到阴坡,生产力却显著地降低,与土壤含水量呈现显著的负相关关系;物种多样性与生产力呈现显著的负相关关系;2)每个功能群的平均比叶面积和叶片磷含量都呈现出阳坡显著小于阴坡,叶片氮磷比是阴坡显著的小于阳坡;在阳坡禾草(禾本科+莎草科)是优势功能群,而在阴坡杂草(非豆科杂草)则是优势功能群,而且禾草的比叶面积,叶片营养含量都显著的低于杂草;土壤含水量与群落组成和叶性状的变化有显著的相关性;3)两种类型的多样性在此梯度上的变化并不一致。物种多样性沿着阳坡-阴坡梯度逐渐增大,而功能多样性则沿着此梯度逐渐降低;而功能多样性则由生态位分化和物种丰富度共同决定,并受土壤含水量的影响;物种多样性和功能多样性之间呈现显著的二次曲线的关系。
     由以上实验结果可得出本研究主要结论如下:
     1)在高寒草甸阴阳坡梯度上决定植被结构的主要限制性资源为土壤含水量。
     2)沿着阳坡-阴坡梯度,物种共存策略并不一致,阳坡的植物增大了生态位的分化以利用阳坡较为贫瘠的资源,而阴坡植物的生态位分化程度较小。土壤水分决定了物种多样性,而物种丰富度和生态位分化则共同决定了功能多样性,同时也受到土壤含水量的影响。
     3)植被的资源利用策略在阴坡和阳坡发生了很大的变化:阴坡植物采取了快速获取资源的快回报策略,而阳坡植物则采取了有效贮存资源的慢回报策略。这种变化可以从不同坡向植物的叶性状的差异和优势功能群的改变反映出来,土壤含水量的改变是影响策略改变的重要因素。
Although located only a few hundred meters apart and sharing the same macroclimatic zone, the microclimatic conditions on different slopes vary dramatically affecting species composition, biodiversity and productivity. Recently most studies along the south- to north-facing slope are focused on descriptions of the different vegetation; however, few studies investigated the mechanisms of the community assembly and strategies of plant resource use based on functional traits. The use of methods based on functional traits is growing in the recent ecology studies. Functional traits are defined as morpho-physio-phenological traits that impact fitness indirectly via their effects on growth, reproduction and survival, three components of individual performance.
     In ecology studies based on functional traits, adaptation of vegetation to environment is one of the most important aspects. Adaptation to environment matters the survival strategy of plants. In the process of evolution and development, plants formed many physiological and morphological attributes adopting environment conditions in order to diminish the adverse effect. Especially, leaf functional traits, such as specific leaf area and leaf nitrogen content, are widely considered to associate with resource use strategies. Besides, leaf functional traits have also been suggested to respond the plant investment-return strategy.
     Another important aspect in ecological studies based on functional traits is exploring the community assembly mechanism. The approach based on traits enables ecologists to distract from the population demography studying pairwise species and to rebuild community ecology studying more co-existing species whose abundance will be decreased or increased by their different traits. The mechanism of species co-existing associates with the niche space partitioning which also associates functional diversity. Some researchers have suggested that functional diversity may be what is important for ecosystem function. Functional diversity is the range and distribution of functional trait values in a community.
     On the basis of the above-mentioned background, in our study we mainly do the researches on the vegetation adaptations and community assembly and obtain important results from the three aspects as following:firstly, in this study we measured soil factors and vegetation composition along this gradient to explore the limiting resource factors affecting vegetation distribution. Secondly, we explored the resource use strategies on south- and north- facing slopes. In this study, leaf functional traits [specific leaf area (SLA), leaf nitrogen content (LNC), leaf phosphorus content (LPC) and leaf N:P ratio] and vegetation composition were investigated on south- and north- facing slopes in a sub-alpine meadow. Thirdly,beginning with studying functional diversity, we explored the niche space partitioning in plant communities to investigate the community assembly and species coexistence on different slope aspects; we chose two functional traits (specific leaf area and plant height) to study the patterns of species diversity and functional diversity along the slope gradient.
     Our results showed:1) Soil water content was the primary limiting factors in this gradient; species diversity increased but primary productivity declined or comparable from south- to north-facing slope; species diversity and productivity positively and negatively relates to soil water content, respectively; species diversity and productivity were negatively linearly related.2) both SLA and LPC of each functional group were significantly higher and N:P ratio was lower on north- than on south- facing slopes; furthermore, grasses dominated south-facing slopes, while north-facing slopes were dominated by forbs. In addition, soil water content was significantly related to the shift in functional groups along the south- to north- facing slope gradient; soil water availability significantly related vegetation composition and leaf functional traits.3) the pattern of species diversity and functional diversity are not similar along this gradient. Both species richness and Shannon-wiener index were increased, but oppositely functional diversity was slightly decreased or comparable from south- to north- facing slope; soil water content (SWC) was the limiting resource in this region and determined species diversity. While functional diversity was determined by both species diversity and niche differentiation with the influence of soil water content; species diversity and functional diversity formed a significant quadratic regression relationship.
     The main conclusions we got are as followings:
     1) Soil water content was the primary limiting factors in this gradient determining vegetation distribution.
     2) The pattern of species diversity and functional diversity are not similar along this gradient. Species diversity increased, but functional diversity decreased from south- to north- facing slope; Soil water content (SWC) was the limiting resource in this region and determined species diversity. While functional diversity was determined by both species diversity and niche differentiation with the influence of soil water content; Species diversity and functional diversity formed a significant quadratic regression relationship.
     3) The change of functional traits and dominant functional group implied a difference in resource-use strategy between the two slope aspects, reflecting a transition in investment-return strategy from slow on south-facing slopes to fast on north-facing slopes. Moreover, we concluded that soil water availability affected vegetation composition and leaf functional traits, resulting in the shift in resource-use strategy.
引文
[1]McGill, B.J., Enquist, B.J., Weiher, E., Westoby, M. Rebuilding community ecology from functional traits. Trends in ecology & evolution (Personal edition).2006,21(4):178-185.
    [2]Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Gamier, E. Let the concept of trait be functional! Oikos.2007,116(5):882-892.
    [3]Petchey, O.L. On the statistical significance of functional diversity effects. Functional Ecology.2004,18(3):297-303.
    [4]Eviner, V.T. PLANT TRAITS THAT INFLUENCE ECOSYSTEM PROCESSES VARY INDEPENDENTLY AMONG SPECIES. Ecology.2004,85(8):2215-2229.
    [5]Petchey, O.L., Gaston, K.J. Functional diversity:back to basics and looking forward. Ecology Letters.2006,9(6):741-758.
    [6]Shipley, B.:From Plant Traits to Vegetation Structure:Chance and Selection in the Assembly of Ecological Communities. Cambridge University Press 2009.
    [7]Diamond, J.M.:Assembly of species communities. In Ecology and evolution of communities. Eds. Cody, M.L., Diamond, J.M., Harvard University Press, Cambridge,Massachusetts,USA,1975, p.^pp.
    [8]Weiher, E., Keddy, P.A. Assembly Rules, Null Models, and Trait Dispersion:New Questions from Old Patterns. Oikos.1995,74(1):159-164.
    [9]Weiher, E., Clarke, G.D.P., Keddy, P.A. Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species. Oikos.1998,81(2):309-322.
    [10]Weiher, E., Keddy, P.A.:Ecological Assembly Rules:Perspectives, Advances, Retreats. Cambridge University Press 1999.
    [11]Keddy, P.A. Assembly and response rules:two goals for predictive community ecology. Journal of Vegetation Science.1992,3(2):157-164.
    [12]Shipley, B. Community assembly, natural selection and maximum entropy models. Oikos. 2007,119(4):604-609.
    [13]Bremer, C., Braker, G., Matthies, D., Reuter, A., Engels, C., Conrad, R. Impact of Plant Functional Group, Plant Species, and Sampling Time on the Composition of nirK-Type Denitrifier Communities in Soil. Appl. Environ. Microbiol.2007,73(21):6876-6884.
    [14]Grime, J.P. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science.2006,17(2):255-260.
    [15]De Bello, F., Leps, J., Sebastia, M.T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography.2006,29(6):801-810.
    [16]De Bello, F., Thuiller, W., Leps, J., Choler, P., Clent, J.-C., Macek, P., Sebastia, M.T., Lavorel, S. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science.2009,20(3):475-486.
    [17]Tadashi, F., Bezemer, T.M., Simon, R.M., Wim, H.P. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters.2005,8(12):1283-1290.
    [18]Pillar, V.D., Duarte, L.d.S., Sosinski, E.E., Joner, F. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science.2009,20(2):334-348.
    [19]Elton, C. Competition and the Structure of Ecological Communities. Journal of Animal Ecology.1946,15(1):54-68.
    [20]Schulter, D. Ecological character displacement in adaptive radiation. Am Nat. 2000,156(october):S4-S16.
    [21]Vandermeer, J.H. Niche Theory. Annu Rev Ecol Syst.1972,3(1):107-132.
    [22]Silvertown, J. Plant coexistence and the niche. Trends in Ecology & Evolution.2004,19(11): 605-611.
    [23]Hutchinson, G.E. Homage to santa rosalia or why are there so many kinds of animals? The American Naturalist.1959,93(870):145-159.
    [24]Kraft, N.J.B., Valencia, R., Ackerly, D.D. Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest. Science.2008,322(5901):580-582.
    [25]Ackerly, D.D., Schwilk, D.W., Webb, C.O. Niche evolution and adaptive radiation:testing the order of trait divergence. Ecology.2006,87(7 Suppl):S50-61.
    [26]Mason, N.W.H., Mouillot, D., Lee, W.G., Wilson, J.B. Functional richness, functional evenness and functional divergence:the primary components of functional diversity. Oikos. 2005,111(1):112-118.
    [27]Wilson, J.B. Trait-divergence assembly rules have been demonstrated:Limiting similarity lives! A reply to Grime. Journal of Vegetation Science.2007,18(3):451-452.
    [28]Schamp, B.S., Chau, J., Aarssen, L.W. Dispersion of traits related to competitive ability in an old-field plant community. Journal of Ecology.2008,96(1):204-212.
    [29]Thompson, K., Petchey, O.L., Askew, A.P., Dunnett, N.P., Beckerman, A.P., Willis, A.J. Little evidence for limiting similarity in a long-term study of a roadside plant community. Journal of Ecology.2010,98(2):480-487.
    [30]Stubbs, W.J., Wilson, J.B. Evidence for Limiting Similarity in a Sand Dune Community. Journal of Ecology.2004,92(4):557-567.
    [31]Violle, C., Jiang, L. Towards a trait-based quantification of species niche. Journal of Plant Ecology.2009,2(2):87-93.
    [32]Hubbell, S.P.:The Unified Neutral Theory of Biodiversity and Biogeography Princeton University Press, Princeton and Oxford 2001.
    [33]Bell, G. The Distribution of Abundance in Neutral Communities. Am Nat.2000,155(5): 606-617.
    [34]Chave, J. Neutral theory and community ecology. Ecology Letters.2004,7(3):241-253.
    [35]Volkov, I., Banavar, J.R., Hubbell, S.P., Maritan, A. Neutral theory and relative species abundance in ecology. Nature.2003,424(6952):1035-1037.
    [36]Holt, R.D. Emergent neutrality. Trends in Ecology & Evolution.2006,21(10):531-533.
    [37]Stanley Harpole, W., Tilman, D. Non-neutral patterns of species abundance in grassland communities. Ecology Letters.2006,9(1):15-23.
    [38]Zak, J.C., Willig, M.R., Moorhead, D.L., Wildman, H.G. Functional diversity of microbial communities:A quantitative approach. Soil Biology and Biochemistry.1994,26(9):1101-1108.
    [39]Naeem, S. DISENTANGLING THE IMPACTS OF DIVERSITY ON ECOSYSTEM FUNCTIONING IN COMBINATORIAL EXPERIMENTS. Ecology.2002,83(10):2925-2935.
    [40]Canadell, J.G., Pataki, D.E., Pitelka, L.F., Diaz, S., Lavorel, S., Chapin, F.S., Tecco, P.A., Gurvich, D.E., Grigulis, K.:Functional Diversity—at the Crossroads between Ecosystem Functioning and Environmental Filters. In Terrestrial Ecosystems in a Changing World, Springer Berlin Heidelberg,2007, p.^pp.81-91.
    [41]Grime, J.P. Benefits of Plant Diversity to Ecosystems:Immediate, Filter and Founder Effects. Journal of Ecology.1998,86(6):902-910.
    [42]Grime, J.P., Brown, V.K., Thompson, K., Masters, G.J., Hillier, S.H., Clarke, I.P., Askew, A.P., Corker, D., Kielty, J.P. The Response of Two Contrasting Limestone Grasslands to Simulated Climate Change. Science.2000,289(5480):762-765.
    [43]Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P, Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., Wardle, D.A. Biodiversity and Ecosystem Functioning:Current Knowledge and Future Challenges. Science.2001,294(5543):804-808.
    [44]Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A.J., Vandermeer, J., Wardle, D.A. EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING:A CONSENSUS OF CURRENT KNOWLEDGE. Ecological Monographs.2005,75(1):3-35.
    [45]Tilman, D. An evolutionary approach to ecosystem functioning. Proceedings of the National Academy of Sciences.2001,98(20):10979-10980.
    [46]Diaz, S., Cabido, M. Vive la difference:plant functional diversity matters to ecosystem processes. Trends in ecology & evolution (Personal edition).2001,16(11):646-655.
    [47]Leps, J., De Bello, F., Lavorel, S., Berman, S. Quantifying and interpreting functional diversity of natural communities:practical considerations matter. PRESLIA-PRAHA-.2006,78(4): 481-501.
    [48]Navas, M., Violle, C. Plant traits related to competition:how do they shape the functional diversity of communities? Community Ecology.2009,10(1):131-137.
    [49]Keeney, D.B., Poulin, R. Functional richness, functional evenness, and use of niche space in parasite communities. The Journal ofparasitology.2007,93(1):216-219.
    [50]Rosenfeld, J.S. Functional redundancy in ecology and conservation. Oikos.2002,98(1): 156-162.
    [51]Petchey, O., Gaston, K. Functional diversity (FD), species richness and community composition. Ecology Letters.2002,5(3):402-411.
    [52]Rao, C.R. Diversity and dissimilarity coefficients:A unified approach. Theoretical Population Biology.1982,21(1):24-43.
    [53]Shimatani, K. On the Measurement of Species Diversity Incorporating Species Differences. Oikos.2001,93(1):135-147.
    [54]Mouchet, M.A., Villeger, S., Mason, N.W.H.,1, D.M. Functional diversity measures:an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology.2010,24(4):867-876.
    [55]Diaz, S., Lavorel, S., de Bello, F., Quetier, F., Grigulis, K., Robson, T.M. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America.2007,104(52):20684-20689.
    [56]孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统.植物生态学报2007,31(1):150-165.
    [57]Schimper, A.F.W.:Pflanzengeographie auf Physiologischer Grundlage. G. Fischer 1898 1898.
    [58]Hubbell, S.P.:A Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ 2001.
    [59]McGill, B.J. A test of the unified neutral theory of biodiversity. Nature.2003,422(6934): 881-885.
    [60]Bell, G. Neutral Macroecology. Science.2001,293(5539):2413-2418.
    [61]Westoby, M., Wright, I.J. Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution.2006,21(5):261-268.
    [62]Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M., Flexas, J., Gamier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L. Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R. The worldwide leaf economics spectrum. Nature.2004,428(6985):821-827.
    [63]张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展.植物生态学报.2004,28(6):844-852.
    [64]Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 1998,199(2):213-227.
    [65]Wright, I.J., Reich, P.B., Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology.2001,15(4):423-434.
    [66]Grassein, F., Till-Bottraud, I., Lavorel, S. Plant resource-use strategies:the importance of phenotypic plasticity in response to a productivity gradient for two subalpine species. Annals of Botany.2010,106(4):637-645.
    [67]Vendramini, F., Diaz, S., Gurvich, D.E., Wilson, P.J., Thompson, K., Hodgson, J.G. Leaf Traits as Indicators of Resource-Use Strategy in Floras with Succulent Species. New Phytologist. 2002,154(1):147-157.
    [68]Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J. Plant Ecological Strategies: Some Leading Dimensions of Variation between Species. Annu Rev Ecol Syst.2002,33(125-159.
    [69]Gamier, E., Cortez, J., Billes, G., Navas, M.-L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C., Toussaint, J.-P. Plant Functional Markers Capture Ecosystem Properties during Secondary Succession. Ecology.2004,85(9):2630-2637.
    [70]Kazakou, E., Vile, D., Shipley, B., Gallet, C., Gamier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology.2006,20(1):21-30.
    [71]Shipley, B. Trade-Offs between Net Assimilation Rate and Specific Leaf Area in Determining Relative Growth Rate:Relationship with Daily Irradiance. Functional Ecology.2002,16(5): 682-689.
    [72]Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio:which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology.2006,20(4):565-574.
    [73]Vile, D., Shipley, B., Gamier, E. Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecology Letters.2006,9(9):1061-1067.
    [74]Ryser, P., Urbas, P. Ecological Significance of Leaf Life Span among Central European Grass Species. Oikos.2000,91(1):41-50.
    [75]庄树宏,王克明,陈礼学.昆仑山老杨坟阳坡与阴坡半天然植被植物群落生态学特性的初步研究.植物生态学报.1999,23(3):238-249.
    [76]陈文年.岷江源头阴坡与阳坡针叶林物种多样性比较.内江师范学院学报.2001,19(2):31-34.
    [77]邱波,任青吉,罗燕江,杜国祯.高寒草甸不同生境类型植物群落的α即β多样性研究.西北植物学报.2004,24(4):655-661.
    [78]Gong, X., Brueck, H., Giese, K.M., Zhang, L., Sattelmacher, B., Lin, S. Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments.2008,72(4):483-493.
    [79]聂莹莹,李新娥,王刚.阳坡-阴坡生境梯度上植物群落α多样性与β多样性的变化模式及其与环境因子的关系.兰州大学学报(自然科学版).2010,46(6):73-79.
    [80]Sternberg, M., Shoshany, M. Influence of slope aspect on Mediterranean woody formations: Comparison of a semiarid and an arid site in Israel. Ecological Research.2001,16(2):335-345.
    [81]Bennie, J., Hill, M.O., Baxter, R., Huntley, B. Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology.2006,94(2):355-368.
    [82]Auslander, M., Nevo, E., Inbar, M. The effects of slope orientation on plant growth, developmental instability and susceptibility to herbivores. Journal of Arid Environments. 2003,55(3):405-416.
    [83]Tomimatsu, H., Hori, Y. Effect of soil moisture on leaf ecophysiology of Parasenecio yatabe, a summer-green herb in a cool-temperate forest understory in Japan. Journal of Plant Research. 2008,121(1):43-53.
    [84]Nevo, E. Evolution in action across phylogeny caused by microclimatic stresses at "Evolution Canyon". Theoretical Population Biology.1997,52(3):231-243.
    [85]Badano, E.I., Cavieres, L.A., Molina-Montenegro, M.A., Quiroz, C.L. Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile. Journal of Arid Environments.2005,62(1):93-108.
    [86]Marti'nez, J.A., Armesto, J.J. Ecophysiological plasticity and habitat distribution in three evergreen sclerophyllous shrubs of the Chilean matorral. Acta Oecologica.1983,4(3):211-219.
    [87]Miller, P.C., Poole, D.K. Partitioning of solar and net irradiance in mixed and chamise chaparral in southern California. Oecologia.1980,47(3):328-332.
    [88]Pen-Mouratov, S., Berg, N., Genzer, N., Ukabi, S., Shargil, D., Steinberger, Y. Do slope orientation and sampling location determine soil biota composition? Frontiers of Biology in China. 2009,4(3):364-375.
    [89]Warren, R. Mechanisms driving understory evergreen herb distributions across slope aspects: as derived from landscape position. Plant Ecology.2008,198(2):297-308.
    [90]Xu, Z., Yan, B., He, Y., Songl, C. NUTRIENT LIMITATION AND WETLAND BOTANICAL DIVERSITY IN NORTHEAST CHINA:CAN FERTILIZATION INFLUENCE ON SPECIES RICHNESS? Soil Science.2007,172(1):86-93.
    [91]keddy, P.A.:Wetland Ecology:Principles and Conservation. Cambridge University Press, Cambridge,UK 2000.
    [92]Willby, N.J., Pulford, I.D., Flowers, T.H. Tissue nutrient signatures predict herbaceouswetland community responses to nutrient availability. New Phytol.2001,152(463-481.
    [93]GUSewell, S. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology.2005,19(2):344-354.
    [94]Cleveland, C., Liptzin, D. C:N:P stoichiometry in soil:is there a "Redfield ratio" for the microbial biomass? Biogeochemistry.2007,85(3):235-252.
    [95]Tessier, J.T., Raynal, D.J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limilation and nitrogen saturation. Journal of Applied Ecology 2003,40(523-534.
    [96]Rajaniemi, t.k. Explaining productivity-diversity relationships in plants. Oikos.2003,101(3): 449-457.
    [97]Olsen, S.R., Cole, C.V., F.S.Watanabe, D, L.A.:Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dep. of Agric.1954.
    [98]Grace, J.B. The factors controlling species density in herbaceous plant communities:an assessment. Perspectives in Plant Ecology, Evolution and Systematics.1999,2(1):1-28.
    [99]Morin, P.J. Biodiversity's ups and downs. Nature.2000,406(6795):463-464.
    [100]Xu, J., Michalet, R., Zhang, J.L., Wang, G., Chu, C.J., Xiao, S. (2009):Assessing facilitative responses to a nurse shrub at the community level:the example of Potentilla fruticosa in a sub-alpine grassland of northwest China.
    [101]Hector, A. The Effect of Diversity on Productivity:Detecting the Role of Species Complementarity. Oikos.1998,82(3):597-599.
    [102]Rajaniemi, t.k. Why does fertilization reduce plant species diversity?Testing three competition-based hypotheses. Journal of Ecology.2002,90(316-324.
    [103]宋晓谕,张仁懿,李新娥,袁建立,储诚进,王刚.甘南亚高山草甸弃耕演替过程中的物种多样性与生产力变化模式及相互关系研究.草业学报.2010,19(6):1-8.
    [104]Griffin, J.N., Mendez, V., Johnson, A.F., Jenkins, S.R., Foggo, A. Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos.2009,118(1): 37-44.
    [105]Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Gamier, E., Hikosaka, K., Lamont, B.B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D.I., Westoby, M. Assessing the generality of global leaf trait relationships. New Phytologist.2005,166(2):485-496.
    [106]Niklas, K.J., Owens, T., Reich, P.B., Cobb, E.D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters.2005,8(6):636-642.
    [107]Niklas, K.J. Plant Allometry, Leaf Nitrogen and Phosphorus Stoichiometry, and Interspecific Trends in Annual Growth Rates. Annals of Botany.2006,97(2):155-163.
    [108]Niinemets, U. GLOBAL-SCALE CLIMATIC CONTROLS OF LEAF DRY MASS PER AREA, DENSITY, AND THICKNESS IN TREES AND SHRUBS. Ecology.2001,82(2): 453-469.
    [109]SebastiA, M.-T. Plant guilds drive biomass response to global warming and water availability in subalpine grassland. Journal of Applied Ecology.2007,44(1):158-167.
    [110]Campbell, C. Grasses and grasslands. Systematics and Ecology. J. R. Estes, R. J. Tyrl and J. N. Brunken, editors. Brittonia.1982,34(2):218-219.
    [111]Ledeganck, P., Nijs, I., Beyens, L. Plant Functional Group Diversity Promotes Soil Protist Diversity. Protist.2003,154(2):239-249.
    [112]McLaren, J.R., Turkington, R. Ecosystem properties determined by plant functional group identity. Journal of Ecology.2009,98(2):459-469.
    [113]He, J.-S., Wang, Z., Wang, X., Schmid, B., Zuo, W., Zhou, M., Zheng, C., Wang, M., Fang, J. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist. 2006,170(4):835-848.
    [114]Kull, O., Aan, A. The relative share of graminoid and forb life-forms in a natural gradient of herb layer productivity. Ecography.1997,20(2):146-154.
    [115]Dmitriew, C.M. The evolution of growth trajectories:what limits growth rate? Biological Reviews.2010:no-no.
    [116]Casper, B.B., Forseth, I.N., Kempenich, H., Seltzer, S., Xavier, K. Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava. Functional Ecology.2001,15(6): 740-747.
    [117]Kochy, M., Wilson, S.D. Competitive effects of shrubs and grasses in prairie. Oikos. 2000,91(2):385-395.
    [118]Trannin, W.S., Urquiaga, S., Guerra, G., Ibijbijen, J., Cadisch, G. Interspecies competition and N transfer in a tropical grass-legume mixture. Biology and Fertility of Soils. 2000,32(6):441-448.
    [119]Schade, J.D., Espeleta, J.F., Klausmeier, C.A., McGroddy, M.E., Thomas, S.A., Zhang, L. A conceptual framework for ecosystem stoichiometry:balancing resource supply and demand. Oikos.2005,109(40-51.
    [120]Gusewell, S. N:P ratios in terrestrial plants:variation and functional significance. New Phytologist.2004,164(2):243-266.
    [121]Reich, P.B., Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America. 2004,101(30):11001-11006.
    [122]Van Heerwaarden, L.M., Toet, S., Aerts, R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology.2003,91(6):1060-1070.
    [123]Gelfand, A.E., Schmidt, A.M., Wu, S., Silander, J.A., Jr., Latimer, A., Rebelo, A.G. Modelling Species Diversity through Species Level Hierarchical Modelling. Journal of the Royal Statistical Society. Series C (Applied Statistics).2005,54(1):1-20.
    [124]Weigelt, A., Schumacher, J., Roscher, C., Schmid, B. Does biodiversity increase spatial stability in plant community biomass? Ecology Letters.2008,11(4):338-347.
    [125]Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J., Scherer-Lorenzen, M., Spehn, E.M., Bazeley-White, E., Weilenmann, M., Caldeira, M.C., Dimitrakopoulos, P.G., Finn, J.A., Huss-Danell, K., Jumpponen, A., Mulder, C.P., Palmborg, C., Pereira, J.S., Siamantziouras, A.S., Terry, A.C., Troumbis, A.Y., Schmid, B., Loreau, M. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology. 2010,91(8):2213-2220.
    [126]Petchey, O.L. Species Diversity, Species Extinction, and Ecosystem Function. Am Nat. 2000,155(5):696-702.
    [127]Colleen, T.W., Jennifer, A.H., Gregory, M.A., Matthew, I.P., Poff, N.L. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters. 2010,13(3):267-283.
    [128]Schumacher, J., Roscher, C. Differential effects of functional traits on aboveground biomass in semi-natural grasslands. Oikos.2009,118(11):1659-1668.
    [129]Vogt, R.J., Beisner, B.E., Prairie, Y.T. Functional diversity is positively associated with biomass for lake diatoms. Freshwater Biology.2010,55(8):1636-1646.
    [130]Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., Mouquet, N. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity:the need for integrative conservation strategies in a changing world. Ecology Letters.2010,13(8):1030-1040.
    [131]Mayfield, M.M., Bonser, S.P., Morgan, J.W., Aubin, I., McNamara, S., Vesk, P.A. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography.2010,19(4):423-431.
    [132]Cornwell, W.K., Ackerly, D.D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs. 2009,79(1):109-126.
    [133]Jung, V., Violle, C., Mondy, C., Hoffmann, L., Muller, S. Intraspecific variability and trait-based community assembly. Journal of Ecology.2010,98(5):1134-1140.
    [134]Kraft, N.J.B., Cornwell, W.K., Webb, C.O., Ackerly, D.D. Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities. The American Naturalist. 2007,170(2):271-283.
    [135]Baher, Z.F., Mirza, M., Ghorbanli, M., Bagher Rezaii, M. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour and Fragrance Journal.2002,17(4):275-277.
    [136]Yael, S., Galina, S., Leonid, K., Marcelo, S. From mesic to arid environments: Morphological and genetic divergence in Asphodelus aestivus Brot. populations. Isr J Plant Sci. 2009:91-102.
    [137]Blondel, J. Guilds or functional groups:does it matter? Oikos.2003,100(2):223-231.
    [138]Don, D.D. Competition between Forbs and Grasses. J Range Manage.1958,11(3): 115-118.
    [139]Hubbell, S.P.:A Unified Theory of Biodiversity and Biogeography. Princeton University Press,, Princeton, NJ 2001.
    [140]Morin, P.J. Biodiversity's ups and downs. Nature.2000,406(6795):463-464.
    [141]Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D., Diaz, S. Filtering processes in the assembly of plant communities:Are species presence and abundance driven by the same traits? Journal of Vegetation Science.2007,18(6):911-920.
    [142]张杰琦,李奇,任正炜,杨雪,王刚.氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响.植物生态学报.2010,34(10):1125-1131.
    [143]Elser, J.J., Sterner, R.W., Gorokhova, E., Fagan, W.F., Markow, T.A., Corner, J.B., Harrison, J.F., Hobbie, S.E., Odell, G.M., Weider, L.W. Biological stoichiometry from genes to ecosystems. Ecology Letters.2000,3(6):540-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700