迟缓爱德华菌菌蜕疫苗的构建及动物免疫试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迟缓爱德华菌(Edwardsiella tarda)是危害水产养殖的病原菌之一,可引起多种类型的感染,致病机理复杂。由迟缓爱德华菌引起的疾病在世界海水、淡水养殖动物中普遍流行。
     化学药物是治疗迟缓爱德华菌感染的一种重要手段,但又会引起食品药物残留、细菌耐药性等问题。尽管预防迟缓爱德华菌感染的疫苗报道很多,但这些常用疫苗多是福尔马林(或热)灭活疫苗或亚单位疫苗,影响了细菌表面抗原的物理化学结构,影响了疫苗的免疫效果,而一些亚单位疫苗又缺少足够的免疫原性,常需加入免疫佐剂使用,而这些免疫佐剂有可能具有副作用。
     细菌菌蜕是通过调控噬菌体PhiX174的裂解基因E在革兰氏阴性细菌中表达而形成的无细胞浆和繁殖能力的细菌空壳,因其保持了细菌原有的细胞形态、细菌表面抗原性和黏附性等特性,即使象菌毛一样脆弱的结构也能被保护。同时,菌蜕包含LPS、类脂、肽聚糖等天然的免疫刺激复合物,无须使用佐剂。因此,菌蜕疫苗能诱导更强的免疫反应,是一种比常规疫苗更理想的新型疫苗体系。
     本研究首次在国内报道迟缓爱德华菌菌蜕疫苗的制备及应用。
     1迟缓爱德华菌制苗菌株的筛选
     通过形态学观察、选择性培养基筛选、生理生化分析、PCR鉴定及16S rDNA序列测定,证明本实验室保存的细菌为迟缓爱德华菌。应用PCR方法检测了迟缓爱德华菌的6个毒力基因在国内外分离株中的分布情况,并根据其溶血活性、对斑马鱼和小鼠的致病性研究,筛选出强毒株,为进一步后续研究奠定了基础。
     2迟缓爱德华菌菌蜕疫苗的制备
     本研究成功构建溶菌质粒载体,并将其转入迟缓爱德华菌真鲷分离株,通过温度诱导并跟踪检测其溶菌动力学过程,制备出迟缓爱德华菌菌蜕疫苗。扫描电镜和透射电镜观察,证实细菌结构未改变,且不含内容物。
     3以小鼠动物模型评价迟缓爱德华菌菌蜕疫苗的口服免疫效果
     分别用菌蜕疫苗(ETG)、福尔马林全菌灭活疫苗(FKC)和PBS口服免疫小鼠,并跟踪检测其体液免疫水平和细胞免疫水平的变化。结果表明,ETG免疫组血清IgA和IgG的抗体滴度与FKC和PBS免疫组相比,差异显著;ETG免疫组小鼠外周血淋巴细胞中CD3+/CD4+/CD8+阳性的百分率与FKC和PBS免疫组相比,差异显著。同源菌攻击试验表明,ETG、FKC和PBS组的相对保护率分别为86.7%(26/30),73.3%(22/30)和33.3%(10/30)。结果表明,ETG疫苗能诱导强烈的细胞免疫和体液免疫,提高免疫保护能力。
     4迟缓爱德华菌菌蜕疫苗对斑马鱼的免疫保护试验
     详细阐述研究斑马鱼白细胞吞噬活性的方法,并研究了迟缓爱德华菌蜕疫苗对斑马鱼白细胞吞噬活性的影响。试验表明,ETG免疫组的白细胞吞噬活性明显高于FKC和PBS免疫组,差异显著。攻击试验结果显示,ETG的免疫保护率高达83.3%(25/30)与FKC和PBS免疫组的70%(21/30)和6.7%(2/30)相比,差异显著。结果表明,ETG疫苗能有效地激活鱼类的免疫系统,产生免疫保护。
     5应用裂解基因和核酸酶基因共表达制备菌蜕疫苗
     葡萄球菌核酸酶A(SNA)对单链、双链DNA或RNA均具有较强的降解能力。成功构建表达葡萄球菌核酸酶A不同片段的质粒载体,通过诱导表达发现酶活性只与N’末端氨基酸序列有关,并发现编码SNA N’末端26个氨基酸的序列与λ噬菌体Cro基因融合表达可以降解细菌核酸,又可以被入噬菌体的cI857ts/PR调节系统调控。因此,利用这一技术成功构建调控噬菌体裂解基因和葡萄球菌核酸酶基因先后表达的质粒载体,制备出安全性更高的菌蜕疫苗。
Edwardsiella tarda (E. tarda) is widely distributed in aquatic environments and is infectious to variety of animals including humans, fish, amphibians, reptiles and birds. This organism's versatility with respect to the broad-range of hosts highlight the importance of developing strategies for the protection of both animals and humans from E. tarda infections.
     In recent years, chemotherapy has been used effectively in controling fish infections, however, there is significant concern regarding food safety following chemotherapeutic interventions in addition to the danger of selecting for antibiotic-resistant E. tarda isolates which have been reported worldwide. These concerns have prompted the development of novel vaccination strategies for the control of E. tarda infections. Although the development of E. tarda vaccines has been attempted, their efficacy against challenge has been inconsistent. The commercial vaccines presently available consist of heat- or formalin-inactivated E. tarda or subunit formulations, however these strategies can affect the physio-chemical structural properties of surface antigens thereby negatively affecting the development of protective immunity. Subunit vaccines are often less immunogenic, necessitating the use of adjuvants which may have significant negative side effects on the host.
     Bacterial ghosts are empty cell envelopes that are produced, for example, by the controlled expression of the PhiX174 lysis gene E in Gram-negative bacteria. Expression of lysis gene E leads to the formation of trans-membrane tunnels which consequently lead to the loss of cytoplasmic contents. The resulting bacterial ghosts have been demonstrated to retain functional and antigenic determinants of the envelope. Even highly-sensitive and fragile structures such as pili are well protected following ghost formation. These data suggested that ghosts could be used in place of the traditional live-attenuated vaccine preparations to elicit immunity.
     In the present study, E. tarda ghosts were generated and used as vaccine candidates.
     1 Screening of Edwardsiella tarda Strain for Ghost Vaccine
     The applicability of morphology, selective culture medium, biochemical tests, PCR and 16S rDNA methods for identification of E. tarda associated in fish and human culture system was studied, and the result suggest that they were all E. tarda. Six pairs of primers were designed according to six virulence gene published nucleotide sequence, and PCR was developed to detect the distribution of above virulence genes in domestic and oversea isolation strains. There was different in the virulence genes distribution between domestic and oversea isolation strains. We tested the haemolysis of E. tarda, and challenged the mouse and zebrafish using E. tarda CD strain, suggesting that CD strain was virulence.
     2 Generation of Edwardsiella tarda ghosts by PhiX174 lysis gene E
     Bacterial ghosts may be generated by the controlled expression of the PhiX174 lysis gene E in Gramnegative bacteria and they are intriguing vaccine candidates since ghosts retain functional antigenic cellular determinants often lost during traditional inactivation procedures. The objective of this study was to examine the potential utility of the PhiX174 E gene driven by the PR/cI857 regulatory system for the generation of E. tarda ghosts. The E. tarda ghost (ETG) vaccine was successfully prepared using this technology and tested in safe trials.
     3 Mice orally vaccinated with Edwardsiella tarda ghosts are significantly protected against infection
     The Edwardsiella tarda ghost (ETG) vaccine was tested in vaccination trials. Control groups included mice immunized with formalin-killed E. tarda (FKC) or mice treated with phosphate-buffered saline (PBS), respectively. The results showed that serum IgA and IgG antibody titers were significantly higher in the ETG-vaccinated group compared to the other groups. In addition, CD8+T cell counts in peripheral blood were elevated in the ETG groups. Most important, ETG-immunized mice were significantly protected against E. tarda challenge (86.7% survival) compared to 73.3 and 33.3% survival in the FKC-immunized and PBS-treated control, respectively, suggesting that an ETG oral vaccine could confer protection against infection in a mouse model of disease.
     4 Immune Effect of Edwardsilla tarda ghosts on zebrafish
     In this work, we describe a method to assay the phagocytic activity of zebrafish leukocytes induced by E. tarda ghosts (ETG) vaccine. Control groups included zebrafish immunized with formalin-killed E. tarda (FKC) or zebrafish treated with phosphate-buffered saline (PBS), respectively. The results showed that the leukocytes phagocytic activity was significantly higher in ETG group than those in the other two groups. Most important, ETG-immunized fish were significantly protected against E. tarda challenge (83.3% survival) compared to 70 and 6.7% survival in the FKC-immunized and PBS-treated control, respectively, suggesting that an ETG vaccine could confer protection against infection in a zebrafish model of disease.
     5 Edwardsiella tarda Ghost Production by Expression of Lysis Gene E and Staphylococcal Nuclease A
     A dual vector expressing the ghost-inducing PhiX174 lysis E gene and the bacterial DNA degrading staphylococcal nuclease A (SNA) gene was constructed to solve the problem of remnant antibiotic resistance genes and genomic DNA with intact pathogenic islands in the final product of E. tarda ghosts (ETG). The expression of staphylococcal nuclease A in E. tarda resulted in intracellular accumulation of the protein and degradation of the host DNA into fragments. The dual expression system for the nuclease are presented and were combined with the protein E-mediated lysis system. Under optimized conditions for the coexpression of gene E and the staphylococcal nuclease, the concentration of viable cells fell below the lower limit of detection, whereas the rates of ghost formation were not affected. The 26 amino acid N-terminal sequence of SNA fused with theλphage Cro gene, showed successful degradation of bacterial nucleic acids. BG were generated via coexpression of the SNA gene and lysis gene E under the control of eachλPR promoter. The ghost bacteria generation system we describe is advantageous as it allows the use of a single plasmid, improves safety and vaccine purity by limiting residual genetic content from the ghost bacteria.
引文
[1]Hoshina T. On a new bacterium, Paracolobactrum anguillimortiferum. Bull Jpn Soc Sci Fish 1962;28(2):162-4.
    [2]Mohanty B R,Sahoo P K. Edwardsiellosis in fish:a brief review; J. Biosci.2007;32:1331-1344.
    [3]郑大海,麦康森.迟钝爱德华氏菌(Edwardsiella tarda)研究概况.海洋湖沼通报,2004;1:52-59.
    [4]Thune R L, Stanley L A,Cooper R K. Pathogenesis of Gram-negative bacterial infections in warm water fish; Annu.Rev. Fish Dis.1993;3:37-68.
    [5]Ewing W H, McWhorter A C, Escobar M R and Lubin A H. Edwardsiella, a new genus of Enterobacteriaceae based on a new species.Int. Bull. Bacteriol. Nomencl. Taxon.1965;15:33-38.
    [6]Meyer F P, Bullock G L. Edwardsiella tarda, a new pathogen of channel catfish (Ictalurus punctatus). Appl.Microbiol.1973;25:155-156.
    [7]McWhorter A C, Ewing W H,Sakazaki R. Bacteriol. Proc,1967; 89.
    [8]Hawke J P.A bacterium associated with disease of pond cultured channel catfish.J. Fish. Res. Board Can.1979; 36:1508-1512.
    [9]Holt J G, Krieg N R, Sneath P H A, Staley J T,Williams S T. Family Enterobacteriaceae; in Bergey's manual of determinative bacteriology (ed.). J G Holt (Baltimore:Williams& Wilkins).1994; 175-194.
    [10]Acharya M, Maiti N K, Mohanty S, Mishra P,Samanta M. Genotyping of Edwardsiella tarda isolated from freshwater fish culture system. Comp. Immunol. Microbiol. Infect. Dis. 2007;30:33-40.
    [10]Wyatt L E, Nickelson II R, Vanderzant C. Edwardsiella tarda in freshwater catfish and their environment.Appl.Environ. Microbiol.1979;38:710-714.
    [12]Grimont P A D, Grimont F, Richard C and Sakazaki R. Edwardsiella hoshinae, a new species of Enterobacteriaceae,Curr. Microbiol.1980;4:347-351.
    [13]Fang H, Zhang X, Chen C, Jin X, Wang X. Studies on the edwardsiellosis and characterization of pathogenic bacteria from diseased flounder (Paralichthys olivaceus L.) and turbot (Scophthalmus maximus L.); Acta Oceanol. Sin.2006;25:138-147.
    [14]Park S, Wakabayashi H and Watanabe Y. Serotype and virulence of Edwardsiella tarda isolated from eel and their environment. Fish Pathol.1983;18:85-89.
    [15]Rashid M M, Honda K, Nakai T,Muroga K. An ecological study on Edwardsiella tarda in flounder farms; Fish. Pathol.1994;29:221-227.
    [16]Sakazaki R. Serological typing of Edwardsiella tarda; in Methods in microbiology (ed) P H T Bergan (London:Academic Press) 1984; 15:213-225.
    [17]Tamura K, Sakazaki R, McWhorter A C, Kosako Y. Edwardsiella tarda serotyping scheme for international use; J. Clin. Microbiol.1988;26:2343-2346.
    [18]Tan Y P, Lin Q, Wang X H, Joshi S, Hew C L,Leung K Y. Comparative proteomic analysis of extracellular proteins of Edwardsiella tarda; Infect. Immun.2002; 70:6475-6480.
    [19]Matsuyama T, Kamaishi T, Ooseko N, Kurohara K and Iida T. Pathogenicity of motile and non-motile Edwardsiella tarda to some marine fish; Fish Pathol.2005; 40:133-136.
    [20]Nucci C, Silveria W D, Correa S S, Nakazato G, Bando S Y, Ribeiro M A, Castro A F P. Microbiological comparative study of isolates of Edwardsiella tarda isolated in different countries from fish and humans; Vet. Microbiol.2002; 89:29-39.
    [21]Acharya M, Maiti N K, Mohanty S, Mishra P and Samanta M. Genotyping of Edwardsiella tarda isolated from freshwater fish culture system; Comp. Immunol. Microbiol. Infect. Dis.2007; 30:33-40.
    [22]Panangala V S, Shoemaker C A, McNulty S T, Arias C R and Klesius P H. Intra-and interspecific phenotypic characteristics of fish-pathogenic Edwardsiella ictaluri and E. tarda; Aqua. Res.2006; 37:49-60.
    [23]Bhat, P.,Myers, R. M., Carpenter, K.P. Edwardsiella tardain a study of juvenile diarrhea. J. Hyg. Camb.1967,65:293-298.
    [24]Vandepitte, J., Lemmens, P., Swert, L. Human edwardsiellosis traced to ornamental fish. Journal of Clinical Microbiology.1983; 17(1):165-167.
    [25]Wang I K, Kuo H L, Chen Y M, Lin C L, Chang H Y, Chuang F R and Lee M H. Extraintestinal manifestations of Edwardsiella tarda infection; Int. J. Clin. Pract.2005; 59:917-921.
    [26]Janda, J. M, S.L. Abbott. Infections associated with the genus Edwardsiella:the role of Edwardsiella tarda in human disease. Clinical Infectious Diseases.1993; 17(4):742-748.
    [27]Brady, Y. J. Vinitnantharat, S. Viability of bacterial pathogens in frozen fish. Journal of Aquatic Animal Health,1990;2(2):149-150.
    [28]Liu, CI, Tsai, S. S. Edwardsiellosis in pond-cultured eel in Taiwan. Reports on Fish Disease Research,1980;3:109-117.
    [29]Kusuda, R., and K. Kawai. Bacterial diseases of cultured marine fish in Japan. Fish Pathology 1998;33(4):221-227.
    [30]Chang, J. B., Yang, J. M., Sun, F. X. On diseases control and diagnosis of Paralichthys olivaceus (Ⅰ). Shandong Fisheries 1995; 12 (5),21-24.
    [31]Choi, H. S. Study on Edwardsiella tarda isolated from cultured bastard halibut (Paralichthys olivaceus). Bulletin of National Fisheries Research and Development Agency 1991;45:197-205.
    [32]肖克宇,黄志坚,金燮理,舒新华,陈可毅,江为民.牛蛙爱德华氏菌病病原菌的鉴定和致病因素的研究.水产学报,1997;21(3):316-321.
    [33]蔡完其,孙佩芳,刘至治.中华鳖爱德华氏菌病病原和组织病理研究.水产学报,1997;21(4):428-433.
    [34]Uhland F C, Helie P, Higgins R, Infections of Edwardsiella tarda among brook trout in Quebec; J. Aquat. Anim. Health 2000;12:74-77.
    [35]Zheng D, Mai K, Liu S, Limin C, Liufu Z, Xu W, Tan B and Zhang W. Effect of temperature and salinity on virulence of Edwardsiella tarda to Japanese fl ounder, Paralichthys olivaceus(Temminck et Schlegel); Aqua. Res.2004;35:494-500.
    [36]Walters G R and Plumb J A. Environmental stress and bacterial infection in channel catfish, Ictalurus puctatus Rafi nesque; J.Fish Biol.1980;17:177-185.
    [37]Muratori M C S, de Oliveira A L, Ribeiro L P, Leite R C, Costa A P R,da Silva M C C. Edwardsiella tarda isolated in integrated fish farming; Aqua. Res.2000;31:481-483.
    [38]Pressley M E, Phelan P E III, Witten P E, Mellon M T and Kim C H. Pathogenesis and infl ammatory response to Edwardsiella tarda infection in the zebrafish; Dev. Comp. Immunol. 2005;29:501-513.
    [39]Wiedenmayer A A, Evans J J and Klesius P H. Experimental Edwarsiella tarda infection in nonabraded channel catfish Ictalurus punctatus by immersion; Fish. Sci.2006;72:1124-1126.
    [40]Meyer F P and Bullock G L. Edwardsiella tarda, a new pathogen of channel catfish (Ictalurus punctatus); Appl.Microbiol.1973;25:155-156.
    [41]Matsuoka S. Discharge of E. tarda cells from experimentally infected Japanese flounder; Fish Pathol.2004;39:9-14.
    [42]Du M, Chen J, Zhang X, Li A, Li Y and Wang Y. Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate; Appl. Environ. Microbiol.2007;73:1349-1354.
    [43]Janda J M, Abbott S L, Kroske-Bystrom S, Cheung W K, Powers C, Kokka R P and Tamura K. Pathogenic properties of Edwardsiella species; J. Clin. Microbiol.1991;29:1997-2001.
    [44]Phillips A D, Trabulsi L R, Dougan G and Frankel G. Edwardsiella tarda induces plasma membrane ruffl es on infection of HEp-2 cells; FEMS Microbiol. Lett.1998; 161:317-323.
    [45]Hoshina,T.studies o red disease of eels. Journal of Tokyo University of Fisheries,Special Report. 1962b; 6:100-104.
    [46]Suprato, H., Nakai, T.,and Muroga,K.,. Toxicity of extracellular products and intracellular components of Edwardsiella tarda in the Japanese eel and flounder. Journal of Aquatic Animal Health 1995;7:292-297
    [47]Suprapto, H:, Hara, T., Nakai, T., Muroga, K. Purification of a lethal toxin of Edwardsiella tarda. Fish Pathology 1996;31(4):203-207
    [48]Ullah, M.A., Arai, T. Pathological activities of the naturally occurring strains of Edwardsiella tarda. Fish Pathology,1983a;18(2):65-70.
    [49]Ullah, M.A., Arai, T. Exotoxic substances produced by Edwardsiella tarda. Fish Pathology, 1983b;18(2):71-75.
    [50]Chung, Y. W., Hsieh, T. F., Wang, C. T. Identification of phospholipase activities in the exotoxin of Edwardsiella tarda.COA Fisheries Series,1991;29:39-46.
    [51]Janda JM, Abbott SL. Expression of aniron-regulated hemolysin by Edwardsiella tarda. FEMS MicrobiolLett,1998;111:275-280.
    [52]葛艳,陈怀青,陆承平.迟缓爱德华氏菌的溶血特性.中国预防兽医学报,1999;21(1):4-6.
    [53]高大庆,黄锡全,陆承平等.迟缓爱德华菌溶血特性,中国人兽共患病杂志,2000;16(4):53-55.
    [54]Chen J D,Lai S Y,Huang S L.Molecular cloning characterization and sequeucing of the hemolysingene from Edwardsiel tarda.Arch.Microbiol.,1996;165:9-17.
    [55]Hirono I etal.Iron-regulated haemolysingene from Edwardsiella tarda. Med. Microbiol. 1997;24:851-856.
    [56]高大庆,阚飙,陆承平等.迟缓爱德华菌溶血相关基因的测序和初步的功能分析,遗传学报,2001,28(12):1162-1167.
    [57]孙敬锋,吴信忠.贝类血细胞及其免疫功能研究进展.水生生物学报,2006;30(5):601-607.
    [58]张峰,李光友.贝类血细胞活性氧体内防御作用的研究进展.海洋科学.1999;2:16-19.
    [59]Putanae S. Srinivasa Rao,Tit Meng Lim Ka Yin Leung. Opsonized Virulent Edwardsiella tarda Strains Are Able To Adhere to and Survive and Replicate within Fish Phagocytes but Fail To Stimulate Reactive Oxygen Intermediates. Infection and Immunity,2001;9:5689-5697.
    [60]P. S. Srinivasa Rao, Yoshiyuki Yamada, Ka Yin Leungo A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology,2003; 149:2635-2644.
    [61]Mietzner, T. A., Morse, S. A. The role of iron-binding proteins in the survival of pathogenic bacteria. Annu Rev Nutr.1994;14:471-493.
    [62]Griffiths E, Rogers H J, Bullen J J. Iron,plasmid,and infection.Nature (London),1980;284:508-509.
    [63]Weinberg, E. D. Patho-ecological implications of microbial acquisition of host iron. Rev Med
    Microbiol.1998;9:171-178.
    [64]Kokubo, T,Iida, T. K, Wakabayashi, H. Production of siderophore by Edwardsiella tarda. Fish Pathol,1990;25(410:237-241.
    [65]Iida, T., Wakabayashi, H. Relationship between iron acquisition ability and virulence of Edwardsiella tarda, the etiological agent of paracolo disease in Japanese eel Anguilla japonica.In "The Second Asian Fisheries Forum". (By R. Hirano&I.Hanyu), Asian Fisheies Society, Manila, Philippines 1990;667-670.
    [66]Thune, R. L., Stanley, L. A.,Cooper, R. K.. Pathogenesis of gram-negative bacterial infections in warmwater fish. Annu Rev Fish Dis.1993;3:37-68.
    [67]J. A. Mathew, Y. P. Tan, P. S. Srinivasa Rao, T. M. Lim and K. Y. Leung. Edwardsiella tarda mutants defective in siderophore production, motility, serum resistance and catalase activity.Microbiology,2001; 147:449-457
    [68]黄新新,陆承平.迟缓爱德华菌的外膜蛋白图谱及耐药性分析.微生物学报,2001;41(5):630-634.
    [69]Kenji Kawai, Ying Liu, Kouhei Ohnishi, Syun-ichirou Oshima.A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate. Vaccine 2004;22:3411-3418.
    [70]Y. P. T,Q. Lin,X. H. Wang etal. Comparative Proteomic Analysis of Extracellular Proteins of Edwardsiella tarda.Infection and Immunity,2002;70(11):6475-6480.
    [71]Noel Verjan,Ikuo Hirono, Takashi Aok. Genetic Loci of Major Antigenic Protein Genes of Edwardsiella tarda.Applied and Environmental Microbilogy,2005;71(9):5654-5658.
    [72]Mathew, J. A., Tanal, Y. P., Roal, P. S., Liml, T. M., Leungl, K. YEdwardsiella tarda mutants defective in siderophore production, motility,serum resistance and catalase activity. Microbiology 2001;147:449-457.
    [73]王蔚森,潘玲.细菌Ⅲ型分泌系统的研究进展.畜牧与兽医,2006;38(6):58-60.
    [74]Y. P. Tan,J. Zheng,S. L. Tung,etal. Role of type III secretion in Edwardsiella tardavirulence. Microbiology 2005;151:2301-2313.
    [75]J. Zheng,S. L. Tung, K. Y. Leung.Regulation of a Type III and a Putative Secretion System in Edwardsiella tarda by EsrC Is under the Control of a Two-Component System, EsrA-EsrB. Infection and Immunity,2005;7:4127-4137.
    [76]Jun Okuda,Yoko Arikawa,Yusuke Takeuchi etal. Intracellular replication of Edwardsiella tarda in murine macrophage is dependent on the type III secretion system and induces an up-regulation of anti-apoptotic NF-kB target genes protecting the macrophage from staurosporine-induced apoptosis. Microbial Pathogenesis 2006; 41:226-240.
    [77]Putanae S. Srinivasa Rao, Tit Meng Lim, and Ka Yin Leung。Functional Genomics Approach to the Identification of Virulence Genes Involved in Edwardsiella tarda Pathogenesis。Infection and Immunity,2003,71(3):1343-1351.
    [78]Chalfi e M, Tu Y, Euskirchen G, Ward W W and Prasher D C. Green fluorescent protein as a marker for gene expression; Science 1994;263:802-805.
    [79]Valdivia R H, Hromockyj A E, Monack D, Ramakrishnan L and Falkow S.Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions; Gene 1996; 173:47-52.
    [80]Ling S H M, Wang X H, Xie L, Lim T M and Leung K Y. Use of green fl uorescent protein (GFP) to track the invasive pathways of Edwardsiella tarda in the in vivo and in vitro fish models; Microbiology 2000;146:7-19.
    [81]Ling S H M, Wang X H, Lim T M and Leung K Y. Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish; FEMS Microbiol. Lett.2001; 194:239-243.
    [82]Pirarat N, Maita M, Endo M and Katagiri T. Lymphoid apoptosis in Edwardsiella tarda septicemia in tilapia,Oreochromis niloticus; Fish Shellfish Immunol.2007;22:608-616.
    [83]Meyer F P and Bullock G L. Edwardsiella tarda, a new pathogen of channel catfish (Ictalurus punctatus); Appl. Microbiol.1973;25:155-156.
    [84]Padros F, Zarza C, Dopazo L, Cuadrado M and Crespo S. Pathology of Edwardsiella tarda infection in turbot, Scophthalmus maximus (L.); J. Fish Dis.2006;29:87-94.
    [85]Sahoo P K, Mukherjee S C and Sahoo S K. Aeromonas hydrophila versus Edwarsiella tarda:A pathoanatomical study in Clarias batrachus; J. Aqua.1998;6:57-66.
    [86]Miwa S and Mano N. Infection with Edwardsiella tarda causes hypertrophy of liver cells in Japanese fl ounder Paralichthys olivaceus; Dis. Aquat. Org.2000;42:227-231.
    [87]Sahoo P K, Swain P, Sahoo S K, Mukherjee S C and Sahu A K. Pathology caused by the bacterium Edwarsiella tarda in Anabas testudineus (Bloch); Asian Fish. Sci.2000;13:357-362.
    [88]Jin X, Huang W, Xia Y, Li Y and Li B. Application of monoclonal antibody against Edwardsiella tarda; J Fish. China 2000;24:554-558.
    [89]Herman R L and Bullock G L. Pathology caused by the bacterium Edwardsiella tarda in striped bass; Trans. Amer. Fish. Soc.1986;115:232-235.
    [90]Darwish A, Plumb J A and Newton J C. Histopathology and pathogenesis of experimental infection with Edwardsiella tarda in channel catfish; J. Aquat. Anim. Health 2000; 12:255-266.
    [91]Sahoo P K, Mukherjee S C and Sahoo S K. Aeromonas hydrophila versus Edwarsiella tarda:A pathoanatomical study in Clarias batrachus; J. Aqua.1998;6:57-66.
    [92]Padros F, Zarza C, Dopazo L, Cuadrado M and Crespo S. Pathology of Edwardsiella tarda infection in turbot,Scophthalmus maximus (L.); J. Fish Dis.2006;29:87-94.
    [93]Benli A C K and Yildiz H Y. Blood parameters in Nile tilapia (Oreochromis niloticus L.) spontaneously infected with Edwardsiella tarda; Aqua. Res.2004;35:1388-1390.
    [94]Caruso D, Schlumberger O, Dahm C and Proteau J. Plasma lysozyme levels in sheatfish Silurus glanis (L.) subjected to stress and experimental infection with Edwardsiella tarda; Aqua. Res. 2002;33:999-1008.
    [95]Balfry S K, Iwama G K and Evelyn T P T. Components of the non-specifi c immune system in coho salmon associated with strain differences in innate disease resistance; Dev. Comp. Immunol. 1994;18:82.
    [96]Mohanty B R, Sahoo P K, Mahapatra K D and Saha J N. Innate immune responses in families of Indian major carp,Labeo rohita, differing in their resistance to Edwardsiella tarda infection; Curr. Sci.2007; 92:1270-1274.
    [97]Swain P and Nayak S K. Comparative sensitivity of different serological tests for seromonitoring and surveillance of Edwardsiella tarda infection of Indian major carps; Fish Shellfish Immunol. 2003;15:333-340.
    [98]Swain P, Mukherjee S C, Sahoo P K, Das B K, Pattnaik P, Murjani G and Nayak S K. Dot-enzyme-linked immunosorbent assay (Dot-ELISA) for the diagnosis of Edwardsiella tarda infection in fish; Asian Fish. Sci.2001;14:89-93.
    [99]Hikima J, Hirono I and Aoki T. Characterization and expression of c-type lysozyme cDNA from Japanese fl ounder (Paralichthys olivaceus); Mol. Mar. Biol. Biotechnol.1997;6:339-344.
    [100]Matsuyama T, Fujiwara A, Nakayasu C, Kamaishi T, Oseko N,Hirono I and Aoki T. Gene expression of leucocytes in vaccinated Japanese flounder (Paralichthys olivaceus) during the course of experimental infection with Edwardsiella tarda; Fish Shellfish Immunol.2007;22:598-607.
    [101]Horenstein S, Smolowitz R, Uhlinger K and Roberts S. Diagnosis of Edwardsiella tarda infection in oyster toadfish (Opsanus tau) held at the Marine Resources Center; Biol. Bull.Woods Hole Mass. 2004;207:171.
    [102]Srinivasa Rao P S, Lim T M and Leung K Y. Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates; Infect. Immun.2001;69:5689-5697.
    [103]Savan R, Kono T, Itami T and Sakai M. Loop-mediated isothermal amplifi cation:an emerging technology for detection of fish and shellfish pathogens; J. Fish Dis.2005;28:573-581.
    [104]Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N and Hase T. Loop-mediated isothermal amplifi cation of DNA; Nucleic Acids Res.2000;28:63.
    [105]Ootsubo M, Shimizu T, Tanaka R, Sawabe T, Tajima K, Yoshimizu M, Ezura Y, Ezaki T and Oyaizu H. Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization;J. Appl. Microbiol.2002;93:60-68.
    [106]Yu L, Yuan L, Feng H and Li S F. Determination of the bacterial pathogen Edwardsiella tarda in fish species by capillary electrophoresis with blue light-emitting diode-induced fluorescence; Electrophoresis 2004;25:3139-3144.
    [107]Jin Jun L, Bum Jeong J, Huh M D, Chung J K, Choi D I, Lee C H and Jeong H D. Detection of tetracycline-resistance determinants by multiplex polymerase chain reaction in Edwardsiella tarda isolated from fish farms in Korea; Aquaculture 2004;240:89-100.
    [108]Waltman W D and Shotts E B. Antimicrobial susceptibility of Edwardsiella tarda from the United States and Taiwan; Vet. Microbiol.1986;12:277-282.
    [109]Clark R B, Lister P D and Janda J M. In vitro susceptibilities of Edwardsiella tarda to 22 antibiotics and antibiotic-betalactamase-inhibitor agents; Diagn. Microbiol. Infect. Dis. 1991;14:173-175.
    [110]Sahoo P K and Mukherjee S C. In-vitro susceptibility of three bacterial pathogens of catfish to 23 antimicrobial agents; Indian J. Fish.1997; 44:393-397.
    [111]Zhang X J, Fang H, Chen C Z, Ge M X and Wang X Y. Sensitivity of pathogenic Edwardsiella tarda isolated from flounder (Paralichthys olivaceus) to some antimicrobial agents; Fish. Sci.2005; 24:15-18.
    [112]Zhu Z C, Shi X G, Zhang S J, Jiang G J, Xing Z B, Zhao Y L,Li Z J and Wu P. The pathogenic bacteria of the ascites in Japanese flounder (Paralichthys olivaceus); Fish. Sci.2006;7:325-329.
    [113]Taoka Y, Maeda H, Jo J Y, Kim S M, Park S I, Yoshikawa and Sakata T. Use of live and dead probiotic cells in tilapia Oreochromis niloticus; Fish. Sci.2006;72:755-766.
    [114]Fuller R. Probiotics in man and animals; J. Appl. Bacteriol.1989;66:365-378.
    [115]Pirarat N, Kobayashi T, Katagiri T, Maita M and Endo MProtective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus); Vet. Immunol. Immunopathol.2006;113:339-347.
    [116]Taoka Y, Maeda H, Jo J Y, Kim S M, Park S I, Yoshikawa and Sakata T. Use of live and dead probiotic cells in tilapia Oreochromis niloticus; Fish. Sci.2006;72:755-766.
    [117]Swain P, Nayak S K, Sahu A, Mohapatra B C and Meher P K. Bath immunization of spawn, fry and fi ngerlings of Indian major carps using a particulate bacterial antigen; Fish Shellfish Immunol. 2002;13:133-140.
    [118]Kawai K, Liu Y, Ohnishi K and Oshima S. A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate; Vaccine 2004;22:3411-3418.
    [119]Liu Y, Oshima S-I, Kurohara K, Ohnishi K and Kawai K. Vaccine effi cacy of recombinant GAPDH of Edwardsiella tarda against edwardsiellosis; Microbiol. Immunol.2005;49:605-612.
    [120]Liu Y, Oshima S-I and Kawai K. Glyceraldehyde-3-phosphate dehydrogenase of Edwardsiella tarda has protective antigenicity against Vibrio anguillarum in Japanese fl ounder; Dis. Aquat. Org. 2007;75:217-220
    [121]Verjan N, Hirono I and Aoki T. Genetic loci of major antigenic protein genes of Edwardsiella tarda; Appl. Environ. Microbiol.2005;71:5654-5658.
    [122]Lan M Z, Peng X, Xiang M Y, Xia Z Y, Bo W, Jie L, Li X Y and Jun Z P. Construction and characterization of a live, attenuated esrB mutant of Edwardsiella tarda and its potential as a vaccine against the haemorrhagic septicemia in turbot, Scophthamus maximus (L.); Fish Shellfish Immunol.2007; 23(3):521-30.
    [123]Evans J J, Klesius, P H and Shoemaker C A 2006 Modifi ed live Edwardsiella tarda vaccine for aquatic animals; United States Patent 7067122.
    [124]Sahoo P K and Mukherjee S C. The effect of dietary immunomodulation upon Edwardsiella tarda vaccination in healthy and immunocompromised Indian major carp (Labeo rohita) Fish Shellfish Immunol.2002;12:1-16.
    [125]Kim K, Wang X, Choi S, Park G, Koo J and Bai S C. No synergistic effects by the dietary supplementation of ascorbic acid, alpha—tocopheryl acetate and selenium on the growth performance and challenge test of Edwardsiella tarda in fingerling Nile tilapia, Oreochromis niloticus L; Aqua. Res.2003;34:1053-1058.
    [126]Wang Z, Mai K, Kangsen M, Liufu Z, Ma H, Xu W, Ai Q, Zhang W, Tan B and Wang X. Effect of high dietary intakes of vitamin E and n-3 HUFA on immune responses and resistance to Edwardsiella tarda challenge in Japanese fl ounder (Paralichthys olivaceus, Temminck and Schlegel); Aqua. Res.2006; 37:681-692.
    [127]Misra C K, Das B K, Mukherjee S C and Meher P K. The immunomodulatory effects of tuftsin on the non-specific immune system of Indian major carp, Labeo rohita; Fish Shellfish Immunol. 2006;20:728-738.
    [128]Mohanty B R, Sahoo P K, Mahapatra K D and Saha J N. Innate immune responses in families of Indian major carp, Labeo rohita, differing in their resistance to Edwardsiella tarda infection; Curr. Sci.2007;92:1270-1274.
    [129]Witte A, Blasi U, Halfmann G et al. Phi X174 protein E-mediated lysis of Escherichia coli.
    Biochimie,1990;72(2-3):191-200.
    [130]Witte A, Wanner G, Blasi U et al. Endogenous transmembrane tunnel formation mediated by phi X174 lysis protein E. J Bacteriol,1990;172(7):4109-4114.
    [131]Witte A, Wanner G, Sulzner M et al. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch Microbiol,1992;157(4):381-388.
    [132]Lubitz W, Halfmann G, Plapp R. Lysis of Escherichia coli after infection with phiX174 depends on the regulation of the cellular autolytic system. J Gen Microbiol,1984;130(5):1079-1087.
    [133]Witte A, Brand E, Mayrhofer P et al. Dependence of PhiX174 protein E-mediated lysis on cell division activities of Escherichia coli. Arch Microbiol,1998; 170:259-268.
    [134]Lubitz W, Pugsley AP. Changes in host cell phospholipid composition of PhiX174 gene E product. FEMS Microbiol Lett,1985;30:171-175.
    [135]Schon P, Schrot G, Lubitz W et al. Two-stage model for integration of t he lysis protein E of PhiX174 into t he cell envelope of Escherichia coli. FEMS Microbiol Reviews,1995; 17:207-212.
    [136]Witte A, Schrot G, Schon P et al. Proline 21, a residue within the alpha-helical domain of PhiX174 lysis protein E,is required for its lysis function in Escherichia coli. Mol Microbial, 1997;26:337-346
    [137]Schuller A, Harkness RE, Ruther U et al. Deletion of C-terminal amino acid codons of PhiX174 gene E,effects of its lysis inducing properties. Nucleic Acids Research,1985;13:4143-4153.
    [138]Szostak MP, Hensel A, Eko FO et al. Bacterial ghosts:non-living candidate vaccines. Journal of Biotechnology,1996;44(1-3):161-170.
    [139]M. Carmen Ronchel, Lazaro Molina, Angela Witte et al. Characterization of Cell Lysis in Pseudomonas putida Induced upon Expression of Heterologous Killing Genes. Applied and Environmental Microbiology,1998;64(12):4904-4911.
    [140]Kloos DU, Stratz M, Guttler A et al. Inducible cell lysis system for the study of natural transformation and environmental fate of DNA released by cell death. J Bacteriol, 1994;176(23):7352-7361.
    [141]Jechlinger W, Szostak MP, Witte A et al. Altered temperature induction sensitivity of the lambda pR/cI857 system for controlled gene E expression in Escherichia coli. FEMS Microbiol Lett, 1999;173(2):347-352.
    [142]Jechlinger W, Szostak MP, Lubitz W. Cold-sensitive E-lysis systems. Gene,1998,218(1-2):1-7.
    [143]Lubitz W, Witte A, Eko FO et al. Extended recombinant bacterial ghost system. Journal of Biotechnology,1999;73(2-3):261-273.
    [144]Kwon SR, Nam YK, Kim SK et al. Generation of Edwardsiella tarda ghosts by bacteriophage PhiX174 lysis gene E. Aquaculture,2005;250(1-2):16-21.
    [145]储卫华,庄禧懿,陆承平.嗜水气单胞菌菌蜕的制备及其对银螂的口服免疫.微生物学报.2008;48(2):202-206.
    [146]W. Haidinger, U. B. Mayr, M. P. Szostak et al. Escherichia coli Ghost Production by Expression of Lysis Gene E and Staphylococcal Nuclease. Applied and Environmental Microbiology, 2003;69(10):6106-6113.
    [147]Haidinger W, Szostak MP, Jechlinger W et al. Online monitoring of Escherichia coli ghost production. Appl Environ Microbiol,2003;69(1):468-474.
    [148]J. Marchart, G. Dropmann, S. Lechleitner, T. Schlapp, G.Wanner, M.P. Szostak, W. Lubitz, Pasteurella multocida- and Pasteurella haemolytica-ghosts:new vaccine candidates,Vaccine 2003;21:3988-3997.
    [149]Katinger A, Lubitz W, Szostak MP et al. Pigs aerogenously immunized with genetically inactivated (ghosts) or irradiated Actinobacillus pleuropneumoniae are protected against a homologous aerosol challenge despite differing in pulmonary cellular and antibody responses. J Biotechnol,1999;73(2-3):251-260.
    [150]Hensel A, Huter V, Katinger A et al. Intramuscular immunization with genetically inactivated (ghosts) Actinobacillus pleuropneumoniae serotype 9 protects pigs against homologous aerosol challenge and prevents carrier state. Vaccine,2000;18(26):2945-2955.
    [151]Huter V, Hensel A, Brand E et al. Improved protection against lung colonization by Actinobacillus pleuropneumoniae ghosts:characterization of a genetically inactivated vaccine. J Biotechnol, 2000;83(1-2):161-172.
    [152]Eko FO, Schukovskaya T, Lotzmanova EY et al. Evaluation of the protective efficacy of Vibrio cholerae ghost (VCG) candidate vaccines in rabbits. Vaccine,2003;21(25-26):3663-3674.
    [153]Kwon SR, Lee EH, Nam YK et al. Efficacy of oral immunization with Edwardsiella tarda ghosts against edwardsiellosis in olive flounder (Paralichthys olivaceus). Aquaculture, 2007;269(1-4):84-88.
    [154]Kwon SR, Nam YK, Kim SK et al. Protection of tilapia (Oreochromis mosambicus) from edwardsiellosis by vaccination with Edwardsiella tarda ghosts. Fish & Shellfish Immunology, 2006;20(4):621-626.
    [155]A.G. Haslberger, H.J. Mader, M. Schmalnauer, G. Kohl, P. Messner, U.B. Sleytr, G. Wanner, S. Fqrst-Ladani, W. Lubitz, Bacterial cell envelops (ghosts) and LPS but not bacterial Slayers induce synthesis of immune-mediators in mouse macrophages involving CD 14, J. Endotoxin Res.1997; 4:431-441.
    [156]A. Haslberger, G. Kohl, D. Felnerova, U.B. Mayr, S. FqrstLadani, W. Lubitz, Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells, J. Biotechnol.2000; 83:57-66.
    [157]H.J. Mader, M.P. Szostak, A. Hensel, W. Lubitz, A.G.Haslberger, Endotoxicity does not limit the use of bacterial ghosts as candidate vaccine, Vaccine 1997; 15:195-202.
    [158]A. Hensel, W. Lubitz, Vaccination by aerosols:modulation of clearance mechanisms in the lung, Behring-Inst.-Mitt.1997; 98:212-219.
    [159]A. Hensel, L.A.G. van Leengoed, M. Szostak, H. Windt, H.Weissenbfck, N. Stockhofe-Zurwieden, A. Katinger, M.Stadler, M. Ganter, S. Bunka, R. Pabst, W. Lubitz, Induction of protective immunity by aerosol or oral application of candidate vaccines in a dose-controlled pig aerosol infection model, J. Biotechnol.1996; 44:171-181.
    [160]Mayr UB, Haller C, Haidinger W, Atrasheuskaya A, Bukin E, Lubitz W, Ignatyev G. Bacterial Ghosts as an Oral Vaccine:a Single Dose of Escherichia coli O157:H7 Bacterial Ghosts Protects Mice against Lethal Challenge. Infect Immun 2005;73(8):4810-17.
    [161]Tabrizi CA, Walcher P, Mayr UB, Stiedl T, Binder M, McGrath J, Lubitz W. Bacterial ghosts biological particles as delivery systems for antigens, nucleic acids and drugs. Curr Opin Microbiol 2004;15(6):530-7.
    [162]Kang HY, Curtiss R III:Immune responses dependent on antigen location in recombinant attenuated Salmonella typhimurium vaccines following oral immunization.FEMS Immunol Med Microbiol 2003;37:99-104.
    Beyer T, Herrmann M, Reiser C, Bertling W, Hess J:Bacterial carriers and virus-like-particles as antigen delivery devices:role of dendritic cells in antigen presentation. Curr Drug Targets Infect Disord 2001; 1:287-302.
    [163]Jeannin P, Magistrelli G, Goetsch L, Haeuw JF, Thieblemont N,Bonnefoy JY, Delneste Y:Outer membrane protein A (OmpA):a new pathogen-associated molecular pattern that interacts with antigen presenting cells-impact on vaccine strategies.Vaccine 2002;20 (4):A23-A27.
    [164]Beyer T, Herrmann M, Reiser C, Bertling W, Hess J:Bacterial carriers and virus-like-particles as antigen delivery devices:role of dendritic cells in antigen presentation. Curr Drug Targets Infect Disord 2001; 1:287-302.
    [165]Medina E, Guzman CA:Use of live bacterial vaccine vectors for antigen delivery:potential and limitations. Vaccine 2001;19:1573-1580.
    [166]Mayr UB, Walcher P, Azimpour C et al. Bacterial ghosts as antigen delivery vehicles. Advanced Drug Delivery Reviews,2005;57(9):1381-1391.
    [167]Eko FO, Witte A, Huter V et al. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine,1999;17(13-14):1643-1649.
    [168]Hobom G, Arnold N, Ruppert A. OmpA fusion proteins for presentation of foreign antigens on the bacterial outer membrane. Dev Biol Stand,1995;84:255-262.
    [169]Jechlinger W, Haller C, Resch S et al. Comparative immunogenicity of the hepatitis B virus core 149 antigen displayed on the inner and outer membrane of bacterial ghosts. Vaccine, 2005;23(27):3609-3617.
    [170]M. Truppe, S. Howorka, G. Schroll et al. Biotechnological applications of recombinant Slayer proteins rSbsA and rSbsB from Bacillus stearothermophilus PV72. FEMS MicrobiolRev, 1997;(20):47-98.
    [171]Kuen B, Sara M, Lubitz W. Heterologous expression and self-assembly of the S-layer protein SbsA of Bacillus stearothermophilus in Escherichia coli. Mol Microbiol,1996;19(3):495-503.
    [172]Kuen B, Sleytr UB, Lubitz W. Sequence analysis of the sbsA gene encoding the 130kDa surface layer protein of Bacillus stearothermophilus strain PV72. Gene,1994,145(1):115-120.
    [173]Riedmann EM, Kyd JM, Smith AM et al. Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts-a delivery system for the nontypeable Haemophilus influenzae antigen Omp26. FEMS Immunol Med Microbiol,2003;37(2-3):185-192.
    [174]V. Huter, M.P. Szostak, J. Gampfer, S. Prethaler, G. Wanner, F. Gabor, W. Lubitz, Bacterial ghosts as drug carrier and targeting vehicles, J. Control. Release1999; 61:51-63.
    [175]M.P. Szostak, W. Lubitz, Recombinant bacterial ghosts as multivaccine vehicles, in:R.M. Chanock, et al., (Eds.),Modern Approaches to New Vaccines Including Preventionof AIDS, Vaccines,91, Cold Spring Harbor Laboratory Press, New York,1991:409-414.
    [176]M.P. Szostak, T. Auer, W. Lubitz, Immune response against recombinant bacterial ghosts carrying HIV-1 reverse transcriptase,Vaccine 1993; 93:419-425.
    [177]M.P. Szostak, A. Hensel, F.O. Eko, R. Klein, T. Auer, H. Mader, A. Haselberger, S. Bunka, G. Wanner, W. Lubitz, Bacterial ghosts, non-living candidate vaccines, J. Biotechnol.44 (1996) 161-170.
    [178]Eko FO, Lubitz W, McMillan L et al. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine,2003;21(15):1694-1703.
    [179]Ulrike Beate Mayr, Petra Walcher, Chakameh Azimpour, Eva Riedmann, Christoph Haller, Werner Lubitz. Bacterial ghosts as antigen delivery vehicles. Advanced Drug Delivery Reviews 2005;57:1381-1391.
    [180]Martinez X, Regner M, Kovarik J, Zarei S, Hauser C, Lambert PH, Leclerc C, Siegrist CA: CD4-independent protective cytotoxic T cells induced in early life by a non-replicative delivery system
    based on virus-like particles. Virology 2003;305:428-435.
    [181]Gluck R, Metcalfe IC:Novel approaches in the development of immunopotentiating reconstituted influenza virosomes as efficient antigen carrier systems. Vaccine 2003;21:611-615.
    [182]Jalava K, Eko FO, Riedmann E, Lubitz W:Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev Vaccines 2003,2:45-51.
    [183]Gentschev I, Dietrich G, Spreng S, Kolb-Mau" rer A, Brinkmann V, Grode L, Hess J, Kaufmann SH, Goebel W:Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine 2001, 19:2621-2628.
    [184]Weiss J:Transfer of eukaryotic expression plasmids to mammalian host cells by salmonella spp. Int J Med Microbiol 2003;293:95-106.
    [185]Xu F, Hong M, Ulmer JB:Immunogenicity of an HIV-gag DNA vaccine carried by attenuated Shigella. Vaccine 2003;21:644-648.
    [186]Ebensen T, Paukner S, Link C, Kudela P, de Domenico C, Lubitz W, Guzman CA:Bacterial ghosts are an efficient delivery system for DNA vaccines. J Immunol 2004; 172:6858-6865.
    [187]Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y:Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 2004;23:253-281.
    [188]Hamidi M, Tajerzadeh H:Carrier erythrocytes:an overview. Drug Deliv 2003;10:9-20
    [189]Wunder A, Muller-Ladner U, Stelzer EH, Funk J, Neumann E, Stehle G, Pap T, Sinn H, Gay S, Fiehn C:Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol 2003;170:4793-4801.
    [190]Yamada T, Ueda M, Seno M, Kondo A, Tanizawa K, Kuroda S:Novel tissue and cell type-specific gene/drug delivery system using surface engineered hepatitis B virus nano-particles. Curr Drug Targets Infect Disord 2004;4:163-167.
    [191]Mayrhofer P, Tabrizi CA, Walcher P et al. Immobilization of plasmid DNA in bacterial ghosts. J Control Release,2005;102(3):725-735.
    [192]Paukner S, Kohl G, Lubitz W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. Journal of Controlled Release,2004;94(1):63-74.
    [193]Paukner S, Kohl G, Jalava K et al. Sealed bacterial ghosts-novel targeting vehicles for advanced drug delivery of water-soluble substances. J Drug Target,2003;11(3):151-161.
    [194]Spier RE. Modern approaches to new vaccines, including prevention of AIDS.16-22 September
    1992, Cold Spring Harbor, Long Island, NY. Vaccine,1993;11(7):789-790.
    [195]Mader HJ, Szostak MP, Hensel A et al. Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines. Vaccine,1997; 15(2):195-202.
    [196]Woese C R. Bacterial evolution. Microbiological Review,1987;51(2):221-271.
    [197]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001;409-412.
    [198]赛文婴东秀珠.定向进化同源基因在细菌系统进化研究中的应用.微生物学通报,2000,27(5):377-381.
    [199]江云.致病性迟缓爱德华氏菌PCR检测体系的建立及其mukF毒力基因的克隆表达.福建农林大学硕士学位论文,2007.
    [200]Wang XP,Lu CP. Mice orally vaccinated with Edwardsiella tarda ghosts are significantly protected against infection. Vaccine,2009;27:1571-1578.
    [201]李凤玲,陆承平.口服α2巨球蛋白对剑尾鱼的免疫保护作用.南京农业大学学报,2005;28(2):144-146.
    [202]Vazquez-Torres A, Fang FC. Cellular routes of invasion by enteropathogens. Curr Opin Microbiol 2000;3(1):54-59.
    [203]Kim B, Feng N, Narvaez CF, He XS, Eo SK, Lim CW, Greenberg HB. The influence of CD4+ CD25+ Foxp3+ regulatory T cells on the immune response to rotavirus infection. Vaccine 2008; 26(44):5601-11.
    [204]Samar H, Molavi O., Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 2008;26(39):5046-57.
    [205]Walton CB, H. Inos AB, Andres OA, Jube S, d.Couet HG, Douglas JT, Patek PQ, Borthakur D. Immunization with hybrid recombinant Mycobacterium tuberculosis H37Rv proteins increases the TH1 cytokine response in mice following a pulmonary instillation of irradiated mycobacteria. Vaccine 2008; 26(34):4396-402.
    [206]Kudela P, Paukner S, Mayr UB, Cholujova D, Schwarczova Z, Sedlak J, Bizik J, Lubitz W. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J Immunother 2005;28(2):136-43.
    [207]Paukner S, Kudela P, Kohl G, Schlapp T, Friederichs S, Lubitz W. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol Ther 2005;11(2):215-23.
    [208]Matsuyama H, Yano T, Yamakawa R, Nakao M. Opsonic effect of the third complement component (C3) of carp (Cyprinus carpio) on phagocytosis by neurophils. Fish Shellfish Immunol
    1992;2:69-78.
    [209]Pressley ME, Phelan PE 3rd, Witten PE, Mellon MT, Kim CH. Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish.2005;29(6):501-513.
    [210]徐立东,童宇峰,王金凤.金黄色葡萄球菌核酸酶C末端1去9肽对酶蛋白溶液构象的影响.生物物理学报,2003;19:7-12.
    [211]丁辉,罗辽复.λ噬菌体操纵基因和调控蛋白相互作用网络及溶原态/裂解态转变特性的动力学研究.内蒙古大学学报,2007;38(5):537-546.
    [212]Dong Jin Lee, Se Ryun Kwon, Kosuke Zenke, Eun Hye Lee, Yoon Kwon Nam,Sung Koo Kim, Ki Hong Kim. Generation of safety enhanced Edwardsiella tarda ghost vaccine. Dis Aquat Org,2008;81:249-254.
    [213]Haidinger W, Mayr UB, Szostak MP, Resch S, Lubitz W. Escherichia coli ghost production by expression of lysis gene E and staphylococcal nuclease. Appl Environ Microbiol, 2003;69:6106-6113.
    [214]Recchi C, Rauzier J, Gicquel B, Reyrat JM. Signalsequence-independent secretion of the staphylococcal nuclease in Mycobacterium smegmatis. Microbiology 2002;148:529-536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700