蔚县煤矿区地下水模拟与矿井水资源化评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔚县矿区煤炭资源丰富,拥有资源地质储量14.9亿吨,可采储量9.1亿吨。大部分可采煤层受底板奥灰突水威胁。本文在收集大量地质资料和水文地质资料的基础上,系统分析了蔚县矿区地下水系统及各含、隔水层的主要特征,运用“突水系数法”对蔚县矿区——崔家寨、单侯、北阳庄和南留庄井田的主采煤层1煤、5煤、6煤底板奥灰突水危险性进行了评价分区,得出1煤和5煤部分区域有奥灰突水危险的可能,6煤全区安全。然后,应用地质构造岩性场、地下水渗流场和水化学场综合确定了水文地质概念模型,采用国际先进软件Visual Modflow建立了区域地下水三维水流数值模型,应用实际地下水长期动态水位资料对模型进行了识别和验证。最后,结合地下水优化管理模型,针对5煤和1煤突水危险区进行疏水降压,通过模型求解得出5煤和1煤底板奥灰含水层最优疏排方案,矿井排水总量分别为9424.5万m3/a和18078.1万m3/a,并对矿井水资源化进行了分析与评价,既保证了煤炭的安全开采,又实现保护地下水资源的日的,达到了矿区排、供水结合。本次研究成果为矿区以后安全开采提供依据,为地下水资源更加合理有效的利用提供了参考。
Yuxian Mine Area is a rich region with1.49billion ton of resources geological reserves and0.91billion ton of recoverable reserves. Most minable seams are threatened by floor limestone aquifer. Based on amount of geology datum and hydro-geological data, the article analyzes the major characteristic of any aquifer, aquiclude and the whole groundwater system. It is implemented water bursting coefficient to evaluate the hazard of floor limestone aquifer for No.1, No.5and No.6coal and partitions the area for Cuijiazhai Mine, Danhou Mine, Beiyangzhuang Mine and Nanliuzhuang Mine. And it is showed the5and1coal seams inrush in danger part areas,6coal safety in the region. Then, it is application of structural lithologic field, groundwater flow field and water chemical field to determine hydrogeological conceptual model, and using Visual Modflow software to establish the regional groundwater three dimensional flow numerical model, and the model is identified by actual long-term dynamic groundwater level material. At last, the optimal management model of groundwater is introduced, and the optimal discharge quantity is calculated for coal water bursting danger zone that No.5is.9424.5×104m3/a and No.1is.18078.1×104m3/a. Therefore, the security is insured while groundwater is protected and supplying and discharging is combined in the mine area. The achievement supports safe mining, and provides references for the management of groundwater.
引文
1.李建斌.浅议矿井水对开采过程的影响与防治.煤,2008,17(6):77-78
    2.陈元良,何绪文.我国矿井水处理利用现状及存在的问题.科技创新导报,2009,24:213
    3.范传辉,陈颖,孙瑞等.煤矿矿井水综合利用问题分析与对策研究.能源技术与管理,2010(3):114-115
    4.武强,金玉洁.华北型煤田矿井防治水决策系统.煤炭工业出版社,1995:123-160
    5.武强,董东林,石占华.华北型煤田排-供-生态环保三位一体化结合研究.中国科学(D辑),1999,29(6):567-573
    6. WU Qiang, LI Duo, DI Zhiqiang. Combination of drainage, water supply and environmentalprotection as well as rational distribution of water resource inZhengzhou mining district[J]. Science in China Series D Earth Sciences,2005,48(10):1768-1779
    7. Wu Qiang, Li Duo. Management of karst waterresources in mining area:dewatering in mines and demand for water supply in the Dongshan Mine of Taiyuan, Shanxi Province, North China, Environmen-tal Geology,2006,50 (8):1701-1709
    8.武强,李铎.“煤—水”双资源矿井建设与开发研究.中国煤炭地质,2009,21(3):32-35
    9.武强,王志强,郭周克等矿井水控制、处理、利用、回灌与生态环保五位一体优化结合研究.中国煤炭,2010,36(2):109-112
    10.何绪文,肖宝清,王平.废水处理与矿井水资源化.北京:煤炭工业出版社,2002:56-58
    11.何绪文,杨静,邵立南等.我国矿井水资源化利用存在的问题与解决对策.煤炭学报,2008,33(1):63-66
    12.袁存忠,陈锦如.水资源与矿井水处理利用.合肥工业大学学报(自然科学版),2000,23(1):927-930.
    13.秦树林,斯乾佐,申屠民良等.发展循环经济实现矿井水资源化利用.能源环境保护,2005,19(6):59-64.
    14.崔村丽.我国煤炭资源及其分布特征.科技情报开发与经济,2011,21(24):181-182
    15.朱晓岚,孙建明,陈于恒.我国煤炭资源储量及其开发利用现状.矿山测量,1992,2(1)54-56
    16.孟召平,易武,兰华等.开滦范各庄井田突水特征及煤层底板突水地质条件分析.岩石力学与工程学报,2009,28(2):228-236
    17.黄继武.焦作矿务局与矿井水作斗争的经验.合肥矿业学院学报,1956,(1):88-109
    18.张伟,李铎,法蕾.矿山排水引发的环境问题及其调控.石家庄经济学院学报,2002,25(2):160-164
    19.赵树红.唐山市地下水资源可持续利用对策研究.海河水利,2010,8:8
    20.王真奉,华解明.邯郸西部岩溶地下水集中式开采对水环境的影响.河北建筑科技学院学报,2005,22(2):13-16
    21.徐载俊,宋志敏,崔树军.等煤矿床勘探开发中环境地质及灾害地质研究.北京:煤炭工业出版社,1995:300-356
    22.王梦玉.国外煤矿防治水技术的发展.煤炭科学技术,1987,(7):53-54
    23. Coldewey W G, Semrau L. Mine water in Ruhr Area (Federal Republic of Germany). In:Proceeding of 5th International Mine Water Congress, The International Mine Water Association 1994
    24. Sivakumar M, Morten S, Singh R N. Case history analysis of mine water pollution In:Proceeding of 5th International Mine Water Congress, The International Mine Water Association 1994
    25.叶贵钧,张道.论中国岩溶充水煤矿特征和排供结合.煤炭地质与勘探,1988(4):33-38
    26.谭绩文,邵爱军.北方岩溶水盆地排供结合研究的前景分析.河北地质学院学报,1986,9(3-4):347-358
    27.辛全德.余淼.试论我国北方岩溶大水矿床的排供结合.水文地质与工程地质,1986,(3):1-3
    28. Todd, D. K. Ground Water Hydrology. John Wiley, New York and Sons,1959
    29. Deninger, R. A. System analysis of water supply systems. Water Resources, Bull.,1970, 6(4):573-579
    30. Maddock, T Ⅲ. Algebraic technological function from a simulation model. Water Resour. Res.,1972,8(1):129-134
    31. Aguado, E., and I. Remson. Groundwater hyralics in aquifer management.. Hydraul. Div. Am. Soc. Civ. Eng.,1974,100(HY1):103-118
    32. Gorelick, S. M. A review of distributed groundwater management modeling methods. Water Resour. Res.,1983,19(2):305-319
    33. Yeh, William W-G. Systems analysis in ground-water planning and management. Water Res. Planng. And Mgmt., ASCE,1992,118(3):224-237
    34. Basagaoglu, H., and H. Yazicigil. Optimal capacity-expansion planning in multiaquifer systems. Water Resour. Planning. And Mgmt., ASCE,1994,120(6):836-856,
    35. Wagner, Brain J. Recent advances in simulation-optimization groundwater management modeling. U. S. national report to IUGG,1991-1994. Rev. Geophys. (1995), Vol.33 Suppl. AGU
    36.林学钰,焦雨.石家庄市地下水资源的科学管理.长春地质学院院报(水文地质专集),1987
    37.许涓铭,邵景力.地下水管理引论.工程勘察,1988,(1):50-53
    38.许涓铭,邵景力.地下水系统的分类与单位脉冲响应函数.工程勘察,1988,(2):46-52
    39.许涓铭,邵景力.集中参数系统管理模型(地下水-地表水联合调度).工程勘察,1988,(3):47-52
    40.许涓铭,邵景力.地下水分布参数水力管理模模型(建立模型的基本方法之一——嵌入法).工程勘察,1988,(4):50-54
    41.许涓铭,邵景力.地下水分布参数水力管理模型建模的基本方法之二——响应矩阵法.工程勘察,1988,(5):49-53
    42.许涓铭,邵景力.其他类型的地下水管理模模型.工程勘察,1988,(6):48-53
    43.谢新民.地下水资源系统经济管理模型研究.水文地质工程地质,1991,18(4):12-15
    44. Freeze R A, Gorelick S M. Convergence of stochastic optimization and decision analysis in the engineering design of aquifer remediation. Ground Water,1999,37(6):934-954
    45. Mayer A S, Kelley C T, Miller C T. Optimal design for problems involving flow and transport phenomena in saturated subsurface systems. Adv Water Resour,2002,25:1233-1256
    46. Orr S, Meystel A M. Approaches to optimal aquifer management and intelligent control in a multiresolutional decision support system. Hydrogeology Journal,13(1):223-246
    47. Lefkoff L J, Gorelick S M. AQMAN:Linear and Quadratic Programming Matrix Generator Using Two-Dimensional Groundwater Flow Simulation for Aquifer Management Modeling. U S Geological Survey Water-Resources Investigations Report,1987,87-4061
    48. Greenwald R M. MODMAN User's Manual. International Ground Water Modeling Center(IGWMC). Golden, CO,1994
    49. Greenwald R M. Hydraulic Optimization Demonstration for Groundwater Pump-and-Treat Systems. Vol. Ⅱ:Application of Hydraulic Optimization. U S Environmental Protection Agency, Washington D C,1999, Epa/542/R-99/011B
    50. Ahlfeld D P, Riefler R G. MODOFC Documentation and User's Guide. Storrs,CT:University of Connecticut,1999
    51. Ahlfeld D P, Barlow P M, Muligan A E. GWM-A ground-water management process for the U S. Geological Survey modular ground-water model(MODFLOW-2000). In:U S Geological Survey Open-File Report,2005,2005-1072:124
    52. Goldberg D E. Genetic Algorithms in Search. Optimization and Machine Learning, Addison-Wesley, Reading,1989, MA:412
    53. Sen M, Stoffa P L. Global Optimization Methods in Geophysical Inversion.1995, The Netherlands:Elsevier
    54. Glover F, Laguna M. Tabu Search.1997,The Netherlands:Dordrecht, Kluwer
    55. Dougherty D E, Marryoot R A. Optimal groundwater management.1 Simulated annealing. Water Resour Res,1991,127(10):2493-2508
    56. Wang M, Zheng C. Application of genetic algorithms and simulated annealing in groundwater management:Formulation and comparison. Am Water Resour Assoc,1998,34(3):519-530
    57. McKinnery D, Lin M. Genetic algorithm solution of groundwater management. High Plains aquifer,2000, U S Geological Survey Circular(1243):51
    58. Wang M, Zheng C. Optimal remediation policy selection under general conditions. Ground Water,1997,35(5):757-764
    59. Rogers L L, Dowla F U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour Res,1994,30(2):457-481
    60. Aly A H, Peralta R C. Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm. Water Resour Res,1999,35(8):2523-2532
    61. Karatzas G P,Pinder G. Groundwater management using numerical simulation and the outer-approximation method for global optimization. Water Resour Res,1993, 25(10):2245-2258
    62. Zheng C,Wang P P. Parameter structure identification using tabu search and simulated annealing. Adv Water Res,1996,19(4):215-244
    63. Zheng C,Wang P P. An integrated global and local optimization approach for remediation system design. Water Resour Res,1999b 35(1):137-148
    64. Zheng C,Wang P P. A field demonstration of the simulation-optimization approach for remediation system design. Ground Water,2002,40(3):258-265
    65. Wagner B J, Gorelick S M. Optimal Groundwater quality management under parameter uncertainty. Water Resour Res,1987,23(7):1162-1174
    66. Wagner B J, Gorelick S M. Reliable aquifer remediation in the presene of spatially variable hydraulic conductivity:From data to design. Water Resour Res,1989,25(10):2211-2225
    67. Wagner J M, Shamir U, Nemati H R. Groundwater quality management under uncertainty: Stochastic programming approaches and Applications to Geomechanics. Water Resour Res, 1992,28(5):1233-1246
    68. Morgan D R, Eheart J W, Valocchi A J. Aquifer remediation design under uuncertainty using a new chance constrained programming technique. Water Resour Res,1993,29(3):551-561
    69. Minsker B S,Shoemaker C A. Quantifying the effects of uncertainty on optimal groundwater bioremediation policies. Water Resour Res,1998,34(12):3651-3625
    70. Gerelick S M. Incorporating uncertainly into aquifer management models. In:Dagan G, Neuman S P(eds). Subsurface Flow and Transport:A Stochastic Approach. Cambridge: Cambridge University Press.1997:101-111
    71. Lawford R, Fort D, Hartmann H, Eden S(eds). Water:Science, Policy, and Management. AGU Water Resources Monograph Series,2003, Volume 16, Washington D C:American Geophysical Union
    72. McKinney D, Cai X, Rosegrant M, Ringler C, Scott C. Integrated Basin-Scale Water Resources Management Modeling:Review and Future Direction. In:Sri Lanka. System-Wide Initiative on Water Management(SWIM). Colombo:International Water Management Institute, 1999,6
    73. Burness S, Chermak J, Brookshire D. Water management in a mountain front recharege aquifer. Water Resour Res,2004,40, W06S21
    74. Cai X, Rosegrant M W R.. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands. Water Resour Res,2004,40, W08S04
    75. Siegfried T, Kinzelbach W. A multiobjective discrete stochastic optimization approach to shared aquifer management:Methodology and application. Water Resour Res,2006,42, W02402
    76. Becker D, Minsker B, Greenwald R. Reducing long-term remedial costs by transport modeling optimization. Ground Water,2006,44(6):864-875
    77.戴振学,郝旗胜.区域地下水资源优化管理模刑研究.煤田地质与勘探,1996,24(6):33-37
    78.范伟,肖长来,梁秀娟.地下水资源可持续性管理研究——以吉林省平原区为例.节水灌溉,2008,9:46-49
    79.柳华武,齐晶.区域地下水信息管理系统设计初探.地下水,2010,32(4):97-98
    80.徐海珍,李国敏.北京市平谷盆地地下水三维数值模拟及管理应用.水文地质工程地质,2011,38(2):27-34
    81.叶剑锋,刘小勇.基于GIS技术的地下水管理系统研究.水土保持研究,2011,18(3):247-251
    82.叶剑锋,刘小勇.基于混合系统架构的GIS设计——以新疆南疆地下水资源管理系统为例.测绘与空间地理信息,2012,35(1):51-58
    83.许保海,李燕,李敏.基于GIS的水资源管理信息系统——以贵阳市地下水资源规划利用管理为例.科技创新导报,2008,4,12-13
    84.张卫,易连兴,覃小群.基于GIS的区域地下水资源管理及辅助决策系统研究——以遵义市红花岗区海龙坝水源地为例.华东地质学院学报,2000,23(1):11-18
    85.张肃卉.GIS在铜山县地下水资源管理中的应用.中国西部科技,2009,8(2):40-41
    86.曹佳云,付晓婷,贺丹.3S技术在地下水管理与开发中的应用.地下水,2011,33(3):40-43
    87.黎良杰.采场底板突水机理的研究[D].徐州:中国矿业大学,1995
    88.孙苏南,曹中初,郑世书.用地理信息系统预测煤矿底板突水—以峰峰二矿小青煤采区为例.煤田地质与勘探,1996,24(6):40-43.
    89.张西民,侯育道.采煤工作面底板突水危险性的量化评价.西安矿业学院学报,1998,18(1):32-36
    90.王延福,靳德武,曾艳京.矿井煤层底板突水预测新方法研究.水文地质工程地质,1999,(4):33-37.
    91.刘伟韬,张文泉,李加祥.用层次分析—模糊评判进行底板突水安全性评价.煤炭学报,2000,25(3):278-282
    92.王连国,宋杨.矿井突水危险性评价模型.工程地质学报,2001(9):158-163.
    93.刘伟韬,宋传文,张国玉.底板突水的专家评分—层次分析预测与评价.工程勘察,2002,(01):97-110.
    94. Wu Qiang, Wang Minyu, Wu Xiong. Investigations of groundwater bursting into coal mine seam floors from fault zones. International Journal of Rock Mechanics and Ming Sciences, 2004,41(4),557-571
    95.干凯,位爱竹,陈彦飞等.煤层底板突水的突变理论预测方法及其应用.中国安全科学学报,2004,14(1):11-14.
    96.管恩太,武强等.煤矿底板突水的多源地学信息复合模型研究.工程勘察,2001(4):18-20
    97.武强,张志龙,马积福.煤层底板突水评价的新型实用方法Ⅰ—主控指标体系的建设.煤炭学报,2007,32(1):42-47
    98.武强,张志龙,张生元等.煤层底板突水评价的新型实用方法—脆弱性指数法.煤炭学报,2007,32(11):1121-1126
    99.尹尚先,虎维岳,刘其声等.承压含水层上采煤突水危险性评估研究.中国矿业大学学报,2008,37(3):31-35
    100.煤矿防治水规定[M].北京:煤炭工业出版社,2009
    101.段水云.煤层底板突水系数计算公式的探讨.水文地质工程地质,2003,(1):96-99
    102.严大思,奚砚涛,潘玲玲.基于突水系数的煤矿底板突水危险性评价系统.中国煤炭地质,2010,22(4):31-34
    103.管恩太.突水系数与煤矿水害防治.煤炭工程,2011,(1):46-47
    104.管恩太.突水系数的产生及修正过程.中国煤炭地质,2012,24(2):30-32
    105.邓聚龙.参数不完全系统的最小信息镇定.自动化学报,1982,(1):49-54
    106.邓聚龙.灰色系统综述.世界科学,1983,(7):1-4
    107.邓聚龙.灰色系统理论与科技进步.科技进步与对策,1986,(5):40-41
    108.苏文智,刘汉斋,李世海.应用灰灰色因素间的关联度分析矿井充水水源.西安矿业学院学报,1992(3):226-228
    109.梁俊勋.用灰色关联度分析法判别矿井突水水源.煤田地质与勘探,1993,21(6):42-44
    110.曹J‘涛.鲍店矿区水源地水资源评价灰色模型的研究.中国矿业大学学报,1993,22(4):62-71
    111.赵岩.用灰色关联度分析法分析矿井充水水源.煤炭地质与勘探,1994,22(1):41-42
    112.胡友彪,郑世书.灰色关联度法在新河煤矿矿井水源判别中的应用.中国煤田地质,1996,8(4):50-51
    113.胡友彪,郑世书.矿井水源判别的灰色关联度方法.工程勘察,1997(1):33-35
    114.岳梅,张怀弓.灰色系统多变量关联分析在判断矿井突水水源中的应用.淮南矿业学院 学报,1998,18(2):7-10
    115.吴晓鹏,石林国.灰色关联度法在峨八井涌水水源判别中的应用.江西煤炭科技,2000,(3):31-32
    116.岳梅.判断矿井突水水源灰色系统关联分析的应用.煤炭科学技术,2002,30(2)37-38
    117.张永伟,董强,郑秀荣.灰色关联度分析在水文地质中的应用—以山东省济宁长沟水源地为例.山东国土资源,2003(4):34-38
    118.郝彬彬,李冲,王春红.灰色关联度在矿井突水水源判别中的应用.中国煤炭,2010(6):20-22
    119.付成祥.用灰色关联分析对老采空区渗水水源的判别.,水力采煤与管道运输,2006(3):23-24
    120.姜敏德,沈佩霞,黄丹.灰色关联分析在煤矿突水水源识别中的应用.中州煤炭,2011,(7):42-43
    121. Bear, J. Hydraulics of Groundwater. McGraw-Hill, New York,1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700